
Olympiads in Informatics, 2015, Vol. 9, 75–88
2015 Vilnius University, IOI
DOI: http://dx.doi.org/10.15388/ioi.2015.07

75

Metamorphic Testing and DSL for Test Cases
& Checker Generators

Ryan Ignatius HADIWIJAYA, M. M. Inggriani LIEM
Data and Software Engineering Research, School of Electrical Engineering and Informatics
Institut Teknologi Bandung
e-mail: ryan.ign54@gmail.com, inge@informatika.org

Abstract. In programming competition, a problem setter must prepare a task description, pro-
gram solution, test cases and sometimes a checker. Test cases should be able to capture all pos-
sible cases; therefore, its preparation is time-consuming. Metamorphic Testing (MT) is a proper-
ty-based testing method where relationships are defined between input and output to alleviate a
test oracle problem. The success of MT relies on the existence of a Metamorphic Relation which
is comprised of two interrelated relations: the test-case relation and the test-result relation. MR
can be used for automated test-case generation and verification of results. In this research, we
defined a Domain Specific Language (DSL) to describe metamorphic relations that will be used
for test case and checker generation of programming tasks. Our method has been tested for tasks
with Knapsack, Greedy, and Dynamic Programming solutions, and it has been proven, reliable,
reusable and more systematic.

Keywords: test case generation, programming task checker, programming competition, Knapsack
problem, Greedy problem, metamorphic testing.

1. Background

In Indonesia, autograder systems are used for national training programs and for the
selection of IOI participants. To prepare a contest or training session, we have to define
a problem set, which includes a description of the task, program solutions, and test cases
(input as well as output). Some tasks also need checker. Up until now, the preparation
has been carried out manually by a problem setter, including preparation of input and
output test cases. Manual test case preparation is time-consuming and nearly impossible
for a complex problem with a large amount of data. Therefore, test cases are generated
by programs written one by one in a manner, specific to each problem set.

In IOI, there are two types of tasks, namely batch tasks and interactive tasks. In this
paper, we focus on the batch task, which is judged by a grader and based on black-box
testing. However, grading is more than testing because the grader must judge and give a
score for each subtask that refers to a contestant’s solution. A batch task has one or more
subtasks, which in turn have constraints and scores. A good black-box testing method

R.I. Hadiwijaya, M.M.I. Liem76

uses all of the values in the input domain as input test cases. This would be impossible if
the input data domain had very large (or even infinite) values. The problem setter must
select reasonable values to be used in grading. This problem is known as the test-case
selection strategy. If test cases are selected manually, either intuitively, or randomly, then
their coverage is not guaranteed. The programming of a task also has time constraints
that require appropriate test cases. An incorrect solution can be judged as an acceptable
answer when the test cases do not precisely reflect the conditions. On the other hand,
a redundant test cases will consume unnecessary time of execution and consume CPU
resources. Good test cases must have sufficient test coverage and reasonable quantity
and properties. Therefore, a test-case specification is needed. We aim to write a test-case
generator based on specifications so that it is self-documented, and the scientific com-
mittee can verify its coverage and quality.

Some tasks may have many possible solutions. In order to optimize the autograd-
ing process, the team writes a checker instead of generating all possible solutions. The
checker is used to compare contestant output to output test cases. Usually, the checker is
also made ad-hoc and by writing a specific program for a specific task. It is difficult to
verify its correctness. A faulty checker can make an incorrect answer become acceptable.
In our research, we aim to provide the problem setter with a checker specification.

Before using the system explained in this paper, test cases for Indonesian training
programs are actually being generated by the program as much as possible and not com-
pletely manual. However, test-case generation source code depends on problem setter
and not driven by specific method. Checkers are programmed one by one specifically
for each task and are not generated. Metamorphic Testing has the potential to be imple-
mented as a method for improving test case and checker generation which implies an
improvement in the automatic grading process.

2. Related Works

Our work is inspired by Metamorphic Testing (MT) (Chen et al., 1998; Chen et al.
2004; Zhou et al., 2004; Mahmuda et al., 2011; Barus et al., 2011) and Domain Specific
Language (DSL) (Im et al., 2008; Ghosh, 2011). Chen et al. (1998) which suggest using
Metamorphic Testing for test case generation. Test case generation based on Metamor-
phic Relation (MR) could be automated (Gotlieb and Botella, 2003), with the MR coded
directly in a general programming language. In our approach, we generate test cases
(input, output) and a checker for a programming task by defining a Domain Specific
Language for representing MR and input/output.

2.1. Metamorphic Testing and Metamorphic Relation

Metamorphic Testing (MT) is a technique to generate follow-up test cases based on ex-
isting test cases that have not revealed any failure. MT generates follow-up test cases by
making reference to the metamorphic relation (MR).

Metamorphic Testing and DSL for Test Cases & Checker Generators 77

An MR refers to two types of relations. First, by referring to the MR of the target
function, follow-up test cases can be automatically constructed, executed, and checked
to further verify the program. Metamorphic testing is to be used in conjunction with a
test-case selection strategy  S. Test set T generated from  S  must also exist in the first
place.

Second, MR refers to the verification of testing the output (test result). Suppose we
have a metamorphic relation  R  of function  f, of which  p  is an implementation. The sec-
ond relation refers to necessary properties of the target function  f  where if any of these
properties does not hold, then program  p  is faulty. Metamorphic testing makes use of the
relationship between the inputs and outputs, and involves multiple executions of  p.

For example, if  f (a) = ea, then the property  ea × e–a = 1  is a typical MR. For a test
case  a = 0.3, metamorphic testing generates its follow up test case  a’ = –0.3  and then
runs the program again on  a’. The relation of the two outputs is checked against the
expected relation  p (0.3) × p (– 0.3) = 1. If this identity does not hold, then a failure
is immediately detected (Zhou et al., 2004). Another example of trivial MR is  sin x =
sin (π − x)  for a program that computes  sin (x).

In testing, successful test cases are test cases which do not reveal any failure of the
program. In a contest, successful test cases are test cases that reveal a correct answer
and give a full score. Therefore, successful test cases have been considered useless in
conventional testing because they do not reveal any failures. In other words, in a con-
ventional testing, the successful test cases are discarded or retained. In contrast, meta-
morphic testing can be employed to make use of the successful test cases. In the context
of the programming task, this idea will be used for validating the result of the generator
(test input), and to accept or reject a generated test case.

Another example of follow-up test cases is illustrated in Fig. 1 (Murphy, 2010).
Fig. 1 illustrates an example of a metamorphic relation to sum all elements of an un-
sorted numerical array. Permute, add, multiply, include and exclude are five examples
of metamorphic relation. Five sets of new test cases can be generated based on an initial

Fig. 1. Example of Metamorphic Relation for Sum Function (Murphy, 2010).

R.I. Hadiwijaya, M.M.I. Liem78

successful test case in order to reveal faults in the program. The output of these new test
cases can be determined easily by its metamorphic relation, and this can save time and
reduce the cost of making test cases.

2.2. Domain Specific Language

A DSL is a programming language that is targeted for a specific domain. It contains syn-
tax and semantics that models concepts at the same level as abstraction of the problem
domain.

Compared to GPL (General Purpose Language), DSL is shorter and simpler (Ghosh,
2011). DSL is easier to understand by domain experts. By using DSL, users can focus
on the problem and deliberate from detail implementation. DSL is designed to be used
intuitively.

A domain-specific language is created specifically to solve problems in a particular
domain and is not intended to be able to solve problems outside that domain (although
it may technically be possible). DSL for the business domain is defined to externalize
business rules and computations, such as tax calculations, salary calculations, or finan-
cial engineering.

Examples of domain-specific languages include HTML and SQL for relational data-
base queries, YACC grammars for creating parsers, regular expressions for specifying
lexers, Csound for sound and music synthesis, and the input languages of GraphViz and
GrGen, software packages used for graph layout and graph rewriting.

DSL is also used in automated test case generation (Im et al., 2008). We intend to
define a specific DSL to solve the generation of test cases of a programming task, based
on MR.

3. Problem Statement and Objectives

When test cases are generated randomly, the coverage is not guaranteed and the genera-
tor is not reusable. More than that, its documentation is not preserved. Test case genera-
tion that contains initial specification can solve this problem. DSL offers precise and
simple expressions well known by experts of the domain. Specifications written in a
DSL will preserve the documentation of test cases and the checker. MT is property-based
testing and provides a method for automated generation of test cases by defining MR.
MT will improve the quality of test cases so that the autograding process will be more
robust. During the grading process, the checker must not only check the properties of the
output, but also checks the relations of many executions.

In this research, we combine the idea of Metamorphic Testing by defining the Meta-
morphic Relation with a Domain Specific Language. We aim to deliver a solution to a
problem setter, so that the problem setter as the domain expert can express test cases and
a checker by a specification written in a DSL.

Metamorphic Testing and DSL for Test Cases & Checker Generators 79

The advantages of our approach are :
The problem setter focuses on specifications rather than on a program.1.	
The system provides a reusable library of common test cases and checkers, since 2.	
algorithmic solutions can be grouped by a variety of techniques such as Knap-
sack, Greedy, Dynamic Programming, Geometry, etc. It uses standard data struc-
tures (arrays, trees, graphs, etc.) since each techniques and data structure has a
common MR.

4. Proposed Solution

First of all, we define a DSL grammar to represent MR, input/output variable names,
constraints and their values, input/output format, and checker expression. A part of the
DSL grammar represents the name of the class, and its features and six main declarations
are presented in Code 1. The complete grammar is accessible in https://github.
com/ryanignatius/CheckerDSL/tree/master/Grammar. Our system will
read the specification, and generate test cases and checkers. The problem setter is not
required to write a program, compared to the usage of a framework or an existing library
(Mirzayanov, 2008).

Class:
 'class' name=ValidID '{' features+=Feature* '}';
Feature:
 ChkVariableDeclaration | Method | Format | Check | MR | Score;
ChkVariableDeclaration:
 type=ChkTypeReference ('[' sz+=CHK_NUMBER ']')* name=ValidID
 ('(' limit1=Limit (';' limit+=Limit)* ')')?
 ('value' '{' spValue=SpValue '}')?;
Method:
 'op' type=JvmTypeReference name=ValidID
 '('(params+=FullJvmFormalParameter
 	 (',' params+=FullJvmFormalParameter)*)?')'
 	 body=XBlockExpression;
Format:
 InputFormat | OutputFormat;
Check:
 check='check' '{' (chk+=(ChkExpression | ChkLoopExpression))* '}';
MR:
 mr='MR' num=INT '{'
 	 (mrExp+=(ChkExpression | ChkLoopExpression))*
 	 followup=FollowUp
 	 property=Property
 	 '}';
Score:
 'score' '{' (scores+=ChkScoreExpression)+ '}';

Code 1. A Part of DSL Grammar.

In the auto-grading process, a grader executes a contestant’s program with a cor-
responding input test case, and then compares the execution result with the output test
cases. If the output of the contestant’s program is equal to output test cases, then the

R.I. Hadiwijaya, M.M.I. Liem80

grader judges it as a correct answer. For some tasks, contestant outputs are checked by
provided checker(s). The contestant obtains a score for each correct input-output set and
the final score for a task is visualized on a scoreboard. In our case, the checker does not
only check a single-run output. The checker checks MR and other properties defined in
the specification.

By using MR, the relation between the output of one run to another run (related by
MR) can be checked. This will increase test robustness. When a relation between two
outputs does not conform to the defined MR, then the grader will judge it as a wrong
answer. We define each MR as a checker. A checker is a predicate that can check whether
a set of output corresponds to a predefined MR, simply checks the property of the output,
or checks the coverage of the input.

The problem setter must write a problem solution, a base-test case (a set of minimum
test cases), and a specification file. The specifications are written in the DSL and consist
of six declarations:

 1.	 Variable declaration. The problem setter declares variable names, variable con-
straints, and test-case domain partitions that will be used in other sections. A vari-
able can be declared as a JAVA primitive type, an array or a specific data structure
such as a graph, tree or list. Each variable is generated as a private attribute in the
generated JAVA file. For each attribute, functions are also generated to read, write,
and validate.
 2.	 Input/output format declaration. The problem setter declares the input and out-
put formats, where values of variables will be read or written. The system will
generate functions to read and write all variables that have been declared in the
previous section. The read/write function will validate the input or check the output
based on the constraints that have been defined in the variable declaration section.
 3.	 Predicate declaration. A predicate is a function returning a boolean. This predi-
cate will be used to generate a checker. If the input or output to be checked passes
all tests by invoking the predicates, then the output will be judged as a correct
answer.
 4.	 MR declaration consists of follow-up and properties. Follow-up will be generated
based on the MR, and properties are used to ensure that MR is satisfied.
 5.	 Other function declarations. The problem setter can define specific functions.
The system provides predefined functions such as sort, swap, min, max, check if a
number is a prime number, etc. If a function is not defined in the library, the prob-
lem setter must implement it. The problem setter can enrich his environment by
registering his function in the library.
 6.	 Score declaration. The problem setter defines the score distribution for each sub-
task. In IOI, the score is given when a contestant’s program passes all test cases
in the subtask.

Test case and checker generation are described by the work flow depicted in Fig. 2.
The first phase of the process consists of two parts that can be carried out in any order.
The first part is processing the DSL specification file within the XText framework (Xtext,
2014) and produce a file named GeneratedClass.java. This file is then compiled
with the given MainGenerator.java and LibraryFunction.java. Main-

Metamorphic Testing and DSL for Test Cases & Checker Generators 81

Generator.java is a main program that receives parameters from the problem setter
(output checker, input-output test cases, minimum number of test cases, mapping of test
cases to subtasks). LibraryFunction.java contains predefined functions, that can
grow as we may find other generic functions in the future. The result of this compilation
is a jar file that will be used in the second phase. The second part is the generation of base
test cases by running the problem solution with the given input.

The second phase is the generation of input files, output files, score files and chec-
kers. The generation process is repeated and for each generation the program will vali-
date input and output (defined in the specification). The system will reject test cases that
do not comply with the specification, and repeat the process until the problem setter
obtains sufficient test cases described in the specification. For each MR and given test
case, the system will generate a follow-up test case. A corresponding checker will also
be generated for checking the MR of the given test case output with generated follow-up
test-case outputs.

5. System Architecture

The user of our system is the problem setter. The architecture of the system consists of
four layers as can be seen in Fig. 3. The first layer is Java, containing JVM as the runtime
environment. The second layer is IDE, whose framework contains Eclipse and XText,
running on JVM. The DSL grammar, JVM Model Inferrer, Library Function, and Main
Generator are put in the Developer layer. This layer is provided by us. On top of the third
layer is the user layer, where a problem setter defines the specification and obtains gen-
erated classes. The problem setter interacts with the system through components in this
layer. For each task, the problem setter writes a module. Checker specification is defined
by a user using the XText component. Checker specifications are parsed by the XText
parser using DSL grammar. If parsing is successful, then a checker will be generated by
XText based on the existing JVM Model Inferrer. This generated file will be compiled

(1.a) (1.b) (2)

Fig. 2. Workflow of Test Case and Checker Generation.

R.I. Hadiwijaya, M.M.I. Liem82

by the Library Function and Main Generator. The execution of these files will produce
files (test-case input, test-case output, score, and checker).

DSL grammar is implemented using the XText framework, a plugin for the Eclipse
IDE. Eclipse’s features such as autocomplete and automatic error checking are also
available while the problem setter defines the specifications. These specifications will
be translated into a .java file. XText is used because of its availability as part of the
Eclipse. Eclipse is a cross platform IDE, independent of a specific Operating System.
Xtext is also integrated with JAVA so that our DSL can take advantage of the existing
JAVA data type.

Some metamorphic relations are common in mathematical functions (Murphy, 2010),
such as Additive (increases or decreases numerical values by a constant), Multiplicative
(multiplies numerical values by a constant), Permutative (permutes the order of elements
in a set), Invertive (takes the inverse of each element in a set), Inclusive (adds a new ele-
ment to a set), Exclusive (removes an element from a set), and Compositional (creates a
set from a number of smaller sets). These relations are generally applicable to tasks that
deal with numerical inputs and outputs. Since many tasks in IOI involve numerical input
and output, these relations are frequently applied. Therefore, we also have implemented
these relations in our Library Function as reusable MR.

6. Case Studies

We applied the methods and tools to generate test cases for tasks with Knapsack, Greedy
and DP solutions. More than that, we also demonstrate that the generic knapsack MRs
can be used as a reusable specification for a more specific knapsack problem.

6.1. Knapsack

The Knapsack program accepts three sets of integers. Two n-tuple sets,  P = {p1, p2,
…, pn}  and  W = {w1, w2, …, wn}  represent the profits and the weights of  n  items,

Fig. 3. System Architecture.

Metamorphic Testing and DSL for Test Cases & Checker Generators 83

respectively; while another m-tuple set  C = {c1, c2, …, cm}  contains the capacities of
m knapsacks. The outputs of Knapsack are one n-tuple set  Y = {y1, y2, …, yn}  and one
positive integer TP.  yi = j  (where  i = 1, 2, …, n  and  j = 0, 1, …, m) states that the
ith  item should be put into the  jth  knapsack. If  yi = 0, it means that the  ith  item will
not be selected into any knapsack. TP represents the total profit of the picked items. The
Knapsack program attempts to calculate the optimal solution and thus to maximize the
total profit. (Mahmuda et al., 2011).

For generic knapsack problem, we adopted 10 Metamorphic Relations defined by
Mahmuda (Mahmuda et al., 2011) and translated into 10 MR declarations, MR1 to
MR10. These MRs will be used to generate input test cases and checkers to check the
relation between outputs. Examples of MR1 and MR5 are translated into DSL expres-
sions :

 1.	 MR1: Swap the  kth  and the  lth  items, where  1 ≤ k < l ≤ n, and  pk ≠ pl  or  wk
≠ wl. We can get the follow-up test case  T’ = {P’, W’, C}, where  P’ = {pl, p2,
…, pl, …, pk, …, pn}  and  W’ = {w1, w2, …, wl, …, wk, …, wn}. The output cor-
responding to  T’  is  O’ = {Y’, TP’}. We should have  Y’ = {y1, y2, …, yl, …, yk,
…, yn}  and  TP’ = TP.

MR1 expressed in DSL :

MR 1 {
 (select(k,l) where 1<=k and k<l and l<=n and p[k]!=p[l]
 or w[k]!=w[l])
 followup {
 (p' = swap(p,k,l))
 (w' = swap(w,k,l))
 }
 check {
 (y' = swap(y,k,l))
 }
}

 2.	 MR5: Change the capacity of the 1st knapsack to a new value  c1’, where  c1’  is
equal to the sum of the weights of all items put into the 1st knapsack. We can get
the follow-up test case  T’ = {P, W, C’}  where  C’ = {c1’, c2, …, cm}. The output
corresponding to  T’  is  O’ = {Y’, TP’}. We should have  Y’ = Y  and  TP’ = TP.

MR5 expressed in DSL :
MR 5 {

 (def c1 = sum(w) where y[i]==1)
 followup {
 (c'[1] = c1)
 }
 check {
 }
}

R.I. Hadiwijaya, M.M.I. Liem84

This problem has multiple values that can produce an optimal total profit. Therefore,
we have to define a checker to verify the correctness of a solution. A checker (source
code) will be generated from the specification to check the following properties :

The total profit of the output produced must be equal to the total profit generated 1.	
in the answer.
The sum of all profits of the item must be equal to the total profit.2.	
The sum of weight of all items in each knapsack must be less than or equal to the 3.	
capacity of the corresponding knapsack.

MR1 to MR10 will be used in follow-up test-case generation. We give an illustration
of test-case generation for MR1 and MR5 in Table 1.

Complete implementation of the DSL specification of the Knapsack problem, all
generated input, output, and checkers are accessible in:
https://github.com/ryanignatius/CheckerDSL/tree/master/Ex-
amples/Knapsack/Knapsack1.

6.2. Specific Knapsack

From a knapsack case study, we can see that MR1 to MR10 can be used for other tasks
with a knapsack solution, for example “Polo the Penguin and The Test” (http://
www.codechef.com/problems/PPTEST). Here is an example of how test cases
and checkers from the knapsack case study can be reused for another task that has the
nature of a knapsack problem. In this task, there is one knapsack. The amount of time
represents the capacity of the knapsack. Tests represent the items that must be put in the

Table 1
Test-case generation example for MR1 and MR5 of a Knapsack problem

Test Case File Input File Output Explanation

Original Test
Case

3 2
5 4 8
2 3 5
6 1

1 1 0
9

Input and Output are defined by a problem setter.
Input:
1st line: 3 items to be put in 2 knapsacks
2nd line: profit of each item
3rd line: weight of each item
4th line: capacity of each knapsack
Output :
1st line: knapsack number for each item
Total Profit = 9

MR1 3 2
5 8 4
2 5 3
6 1

1 0 1
9

File input and output are generated based on the
original test case and MR1 (by swapping the 2nd
and 3rd item)
Output: Total profit = 9

MR5 3 2
5 4 8
2 3 5
5 1

1 1 0
9

File input and output are generated based on
the original test case and MR5 (by changing the
capacity of the 1st knapsack to the sum of the
weights of all items put into the 1st knapsack)

Metamorphic Testing and DSL for Test Cases & Checker Generators 85

knapsack. Profit is analogous to the number of tests contain this question (C[i]) multi-
plied by the number of points of this question (P[i]). However, MR10 is not applicable
since the number of knapsacks is one. We replace MR2 (to add profit to an item) by
MR11 and MR12. MR 11 is to add the number of tests (C[i]) to an item. MR12 is to add
the number of points to an item (P[i]). We also remove the variable y, since the task asks
for the total profit only.

We generate test cases and checker for another example (“farmer”), is taken from
IOI 2004 task (http://www.ioinformatics.org/locations/ioi04/con-
test/day2.shtml#p2). This task can be modeled as a knapsack problem, so we can
use the same MRs of the knapsack problem to generate test cases and checkers for this
task. In this task, there is one knapsack. The number of cypress trees to be selected rep-
resents the capacity of the knapsack. Fields and strips represent the items. The number
of trees in each field represents a profit and weight of the item. The number of trees in
each strip represents weight for the item and the profit for this item equals to the weight
of this item minus one. MR10 is not applicable since the number of the knapsack is one.
We replaced MR1 (to swap two items) by MR11 and MR12. MR11 is to swap two fields
and MR12 is to swap two strips. We replaced MR6 (to add a new item) by MR13 and
MR14. MR13 is to add a new field and MR14 is to add a new strip. We replaced MR7 (to
delete an item) by MR15 and MR16. MR15 is to delete a field and MR16 is to delete a
strip. MR3 and MR4 are not applicable to this task since the weight and profit of an item
can’t be manipulated individually.

In this case study, we have demonstrated the reusability of our system and how to
modify an existing metamorphic relation for a variant of a Knapsack problem.

Detailed implementation of DSL specification for this Knapsack problem, the gener-
ated input, output and checker are accessible here:
https://github.com/ryanignatius/CheckerDSL/tree/master/Ex-
amples/Knapsack/Knapsack2

and
https://github.com/ryanignatius/CheckerDSL/tree/master/Ex-
amples/IOI%20Task/farmer.

6.3. Greedy

The Greedy program (key-lock problem) receives input that is a set of keys  K = {k1, k2,
…, kx}  and a set of locks  L = {l1, l2, …, ly}, where  x, y > 0. For every pair  (km, ln), we
define  r (m, n) as a relationship between key  km  and lock  ln  such that  r (m, n) = 1  if
km  opens lock  ln  and  r (m, n) = 0, otherwise. (Barus et al., 2011)

We adopted nine Metamorphic Relations defined for this problem from Barus (Ba-
rus et al., 2011). This problem does not need a checker, therefore the checker session
is “NONE”. Examples of MR and DSL expressions for Greedy problems are given as
follows.

 1.	 MR3: Adds an insecure lock column

R.I. Hadiwijaya, M.M.I. Liem86

MR3 expression in DSL :
MR 3 {
 followup {
 (y' = y+1)
 (m' = addColumn(m))
 for (i,x){
 (m'[i][y] = 0)
 }
 }
 check {
 }
}

 2.	 MR8: Adds an exclusive lock to an unselected key
MR8 expression in DSL :

MR 8 {
 (select(k) where not contain(o,k))
 followup {
 (y' = y+1)
 (m' = addColumn(m))
 for (i,x){
 (m'[i][y] = 1 where i==k)
 (m'[i][y] = 0 where i!=k)
 }
 }
 check {
 (numKey' = numKey+1)
 (o' = add(o,k))
 }
}

An illustration of test-case generation for MR3 and MR8 are given in Table 2.
Detailed implementation of DSL specification for the Greedy problem, the generated

input, output and checker are accessible here:
https://github.com/ryanignatius/CheckerDSL/tree/master/Ex-
amples/Greedy/Greedy1

6.4. Other Case Studies from the Indonesian National Informatics Olympiad

The same method has been used for test cases and checkers generator for some tasks in
the Indonesian National Informatics Olympiad with MR corresponding to a DP (Dynam-
ic Programming) solution. Complete definition of the tasks, MRs, test-case specification
and the generated input, output, and checkers are accessible from:
https://github.com/ryanignatius/CheckerDSL

Metamorphic Testing and DSL for Test Cases & Checker Generators 87

7. Conclusion

A specifications-based test-case generator has been built for improving test-case genera-
tion and checkers. The generator has been used for Indonesian training-program task
definition. The relation between input and output is checked by running the contestant’s
program. Whereas in the classical way checker is written to check one output run, in
our system the checker is capable of checking the relation between two or more output
executions, based on the Metamorphic Relation. Instead of writing a program, a prob-
lem setter writes a specification based on a DSL grammar. The specifications contain
variables and their values, input-output format, input-output values, input-output con-
straints, score, MR and predicates representing a checker. The specifications will then
be used to generate test cases and checkers. However, the usage of this system is not
intuitive unless the problem setter has a minimum knowledge and understanding of MR
and our DSL.

For a problem class, MR represents a property that can be reused in other similar
problems in the same domain. We have proven the reusability of metamorphic relation
for Knapsack, Greedy, DP, and numerical problems for generating test cases and check-
ers for an Indonesian national training task and IOI task. By using our method and tools,
a problem setter can take advantage of previous experience and enrich the system.

The system also provides a library of predefined functions that will grow along with
the experience of the problem setter. This generator will be useful for simple problems
in which the input-output relationship can be expressed easily, even without writing so-
lutions. This is the case in preliminary selection, such as national preparation where we
have to conduct training programs with many simple tasks.

In this version, the code is generated in JAVA. In the future version, the generated
code can also be applied to other languages, such as C, C++, or Pascal, by changing the
DSL grammar.

Table 2
Test-case generation example for MR3 and MR8 of a Greedy problem

Test Case File Input File Output Explanation

Original 3 4
1 0 1 0
1 0 1 1
0 1 0 0

2
2 3

Original test case defined by problem setter.
1st line: the number of keys and the number of locks.
2nd line until the last line contains the definition of
each key. Each number in each line defines the relation
between a key and a lock.

MR3 3 5
1 0 1 0 1
1 0 1 1 1
0 1 0 0 1

2
2 3

File input and output are generated based on the
original test case and MR3 (adding an insecure lock
column)

MR8 3 5
1 0 1 0 1
1 0 1 1 0
0 1 0 0 0

3
1 2 3

File input and output are generated based on the
original test case and MR8 (adding an exclusive lock
to an unselected key)

R.I. Hadiwijaya, M.M.I. Liem88

References

Barus, A.C., Chen, T.Y., Grant, D., Kuo, F.C., Lau, M.F. (2011). Testing of heuristic methods: a case study of
greedy algorithm. In: Zbigniew H. et al. (Eds.), 3rd IFIP TC 2 Central and East European Conference on
Software Engineering Techniques (CEE-SET 2008), Brno, Czech Republic, 13–15 October 2008. (Lecture
Notes in Computer Science, 4980). 246–260

Chen T.Y., Cheung, S.C., Yiu, S.M. (1998), Metamorphic Testing: A New Approach for Generating Next Test
Cases. Technical Report HKUST-CS98-01. Hong Kong, Department of Computer Science, Hong Kong Uni-
versity of Science and Technology.

Chen, T.Y., Huang, D.H., Tse, T.H., Zhou, Z.Q. (2004). Case studies on the selection of useful relations in
metamorphic testing. In: Proceedings of the 4th Ibero-American Symposium on Software Engineering and
Knowledge Engineering (JIISIC 2004). Madrid, Spain, 569–583

Ghosh, D. (2011). DSLs in Action. Manning Publication, 2011
Gotlieb, A., Botella, B. (2003). Automated metamorphic testing. In: Computer Software and Applications Con-

ference, 2003. COMPSAC 2003. Proceedings. 27th Annual International
Im, K., Im, T., McGregor, J. D. (2008). Automating test case definition using a domain specific language. In:

ACM-SE 46 Proceedings of the 46th Annual Southeast Regional Conference on XX. 180–185.
Mahmuda, A., Liu, H., Kuo, F.-C. (2011). On testing effectiveness of metamorphic relation: a case study. In:

Fifth International Conference on Secure Software Integration and Reliability Improvement, Jeju Island
Korea, 2011.

Mirzayanov, M. (2008). Testlib. https://code.google.com/p/testlib
Murphy, C. (2010). Metamorphic Testing Techniques to Detect Defects in Applications without Test Oracles.

Columbia University Dept of Computer Science tech report cucs-010-10.
XText. (2014). https://eclipse.org/Xtext
Zhou, Z.Q., Huang, D.H., Tse, T.H., Yang, Z., Huang, H., Chen, T.Y. (2004). Metamorphic testing and its appli-

cations. In: Proceedings of the 8th International Symposium on Future Software Technology (ISFST 2004).
Japan, Software Engineers Association.

R.I. Hadiwijaya is a student in Informatics Engineering, Institut
Teknologi Bandung, and an assistant in Programming Laboratory, Data
& Software Engineering Research Group. He is doing his research in
development of a systematic checker and test case generation for the
automated grading system as a part of his final project, under supervi-
sion of Inggriani Liem.

M.M.I. Liem is a member of Data and Software Engineeing Research
Group, School of Electrical and Engineering, Institut Teknologi Band-
ung (ITB). She has been teaching programming in ITB since 1977. She
obtained her doctoral degree in Universite Joseph Fourier Grenoble
France in 1989, with teaching programming as major topics of her
dissertation. From 2004, she is involved as a team member in national
recruitment, training and IOI preparation for Indonesian team. She is
also ITB ACM ICPC coach and advisor.

