
Olympiads in Informatics, 2015, Vol. 9, 45–55
DOI: http://dx.doi.org/10.15388/ioi.2015.05

45

Towards a Better Way to Teach
Dynamic Programming

Michal FORIŠEK
Comenius University, Bratislava, Slovakia
e-mail: forisek@dcs.fmph.uniba.sk

Abstract. We give an overview of how various popular algorithm textbooks deal with the topic of
dynamic programming, and we identify various issues with their expositions. In the second part of
the paper we then give what we believe to be a better way of presenting the topic. While textbooks
only contain the actual exposition, our paper also provides the rationale behind our choices. In
particular, we managed to divide the topic into a sequence of simpler conceptual steps that are
easier to learn.

Keywords: algorithms, dynamic programming, memoization, task analysis.

1. Overview

Dynamic programming is a standard paradigm used in the design of efficient algorithms.
This approach is usable for problems that exhibit an optimal substructure: the optimal
solution to a given instance can be recursively expressed in terms of optimal solutions
for some sub-instances of the given instance.

Dynamic programming comes in two basic flavors. The top-down approach, usually
called memoization, is based on implementing the computation of the discovered recur-
sive relation as a recursive function, and then adding a cache so that each sub-instance
only gets evaluated once. The bottom-up approach, usually called dynamic program-
ming, essentially evaluates the same recurrence but in an iterative way: the algorithm
designer specifies an order in which the sub-instances are processed, and this order is
chosen in such a way that whenever we process a particular instance, all its needed sub-
instances have already been processed and their optimal solutions are already known by
the algorithm.

Below, we use the term dynamic programming (DP) to cover both flavors. When
talking specifically about the iterative approach we will use the term iterative DP or
bottom-up DP.

Despite being conceptually easy, dynamic programming is notorious for being hard
to learn. Quoting Skiena (2008): “[Until] you understand dynamic programming, it
seems like magic.”

M. Forišek46

Different textbooks use very different approaches to present dynamic programming.
The canonical way of presenting dynamic programming in algorithm textbooks is by
showing a sequence of tasks and solving them using dynamic programming techniques.
What is usually missing is:

Rationale for choosing these specific tasks and their order.●●
Notes on potential pitfalls when presenting the tasks and their solutions.●●

In this paper we aim to fill in those missing gaps. More precisely, the paper consists
of the following parts:

We present the way dynamic programming is exposed in multiple standard algo-●●
rithm textbooks.
We analyse those expositions and identify a set of possible pitfalls that often con-●●
fuse and mislead students.
We present our suggested version of a better order in which to teach the individual ●●
concepts related to dynamic programming, and we argue about the benefits of our
approach.

2. Algorithm Textbooks

Throughout this paper we are going to refer to the way dynamic programming is treated
in some of the canonical algorithm textbooks. In particular, we examined the following
ones: Cormen et al. (2001), Dasgupta et al. (2006), Kleinberg and Tardos (2006), Sedge-
wick (1998), Skiena (2008). When refering to these textbooks below, for better read-
ability we will use the following shorthand instead citations: Cormen, Dasgupta,
Kleinberg, Sedgewick, and Skiena.

Below we give a brief summary how each of these textbooks introduces dynamic
programming.

Cormen prefers and almost exclusively uses a bottom-up approach. Dynamic pro-
gramming is introduced using the following sequence of tasks and texts:

Assembly-line scheduling.1.	
Matrix chain multiplication.2.	
A general overview of iterative dynamic programming and memoization.3.	
Longest common subsequence.4.	
Optimal binary search tree.5.	

Dasgupta also prefers and almost exclusively uses a bottom-up approach, on a
rather large set of solved tasks:

Shortest paths in a DAG.1.	
Longest increasing subsequence.2.	
A warning against exponential-time recursion.3.	
Edit distance.4.	
Knapsack.5.	
A note about memoization.6.	
Matrix chain multiplication.7.	

Towards a Better Way to Teach Dynamic Programming 47

Shortest paths.8.	
Independent sets in trees.9.	

Kleinberg first introduces dynamic programming using a top-down approach, but
then uses a bottom-up iterative approach in all following problems. The entire exposi-
tion looks as follows:

Weighted interval scheduling.1.	
A general overview of iterative dynamic programming and memoization.2.	
Segmented least squares.3.	
Subset sums and Knapsack.4.	
RNA secondary structure.5.	
Sequence alignment (and optimizations to reduce memory use).6.	
Shortest paths.7.	

Sedgewick prefers a top-down approach. Only presents two problems:
Fibonacci numbers.1.	
Knapsack.2.	

Note that the new 4th edition (Sedgewick and Wayne, 2011) no longer contains a
section on dynamic programming.

Skiena is also in favor of starting with the top-down approach. His exposition pro-
ceeds in the following order:

Fibonacci numbers: recursively, with memoization, iteratively.1.	
Binomial coefficients.2.	
Edit distance.3.	
Longest increasing subsequence.4.	
Linear partition.5.	
Context-free grammar parsing.6.	

3. Critical Analysis

In this section we show the results of our analysis of the expositions used in the text-
books mentioned above. We mostly focus on tasks used in multiple textbooks.

3.1. Matrix Chain Multiplication

Statement: Given is a sequence 

Kleinberg first introduces dynamic programming using a top-down approach,
but then uses a bottom-up iterative approach in all following problems. The
entire exposition looks as follows:

1. Weighted interval scheduling
2. a general overview of iterative dynamic programming and memoization
3. Segmented least squares
4. Subset sums and Knapsack
5. RNA secondary structure
6. Sequence alignment (and optimizations to reduce memory use)
7. Shortest paths

Sedgewick prefers a top-down approach. Only presents two problems:

1. Fibonacci numbers
2. Knapsack

Note that the new 4th edition (Sedgewick, Wayne: Algorithms) no longer con-
tains a section on dynamic programming.

Skiena is also in favor of starting with the top-down approach. His exposition
proceeds in the following order:

1. Fibonacci numbers: recursively, with memoization, iteratively
2. Binomial coefficients
3. Edit distance
4. Longest increasing subsequence
5. Linear partition
6. Context-free grammar parsing

3 Critical analysis

In this section we show the results of our analysis of the expositions used in
the textbooks mentioned above. We mostly focus on tasks used in multiple text-
books.

3.1 Matrix chain multiplication

Statement: Given is a sequence M1, . . . ,Mn of rectangular matrices such that
the product M1 × · · · × Mn can be computed. Clearly, it can be computed as
a sequence of n − 1 standard matrix multiplications, and the result does not
depend on their order. Given the assumption that multiplying an a × b and a
b× c matrix takes Θ(abc) time, what is the most efficient way of computing the
entire product?

The problem is solved by dynamic programming over all intervals. I.e., the
states can be described by pairs of indices i, j such that i ≤ j. For each state we
compute the best solution for the matrices in the given range.

Issues with this problem:

  of rectangular matrices such that the
product

Kleinberg first introduces dynamic programming using a top-down approach,
but then uses a bottom-up iterative approach in all following problems. The
entire exposition looks as follows:

1. Weighted interval scheduling
2. a general overview of iterative dynamic programming and memoization
3. Segmented least squares
4. Subset sums and Knapsack
5. RNA secondary structure
6. Sequence alignment (and optimizations to reduce memory use)
7. Shortest paths

Sedgewick prefers a top-down approach. Only presents two problems:

1. Fibonacci numbers
2. Knapsack

Note that the new 4th edition (Sedgewick, Wayne: Algorithms) no longer con-
tains a section on dynamic programming.

Skiena is also in favor of starting with the top-down approach. His exposition
proceeds in the following order:

1. Fibonacci numbers: recursively, with memoization, iteratively
2. Binomial coefficients
3. Edit distance
4. Longest increasing subsequence
5. Linear partition
6. Context-free grammar parsing

3 Critical analysis

In this section we show the results of our analysis of the expositions used in
the textbooks mentioned above. We mostly focus on tasks used in multiple text-
books.

3.1 Matrix chain multiplication

Statement: Given is a sequence M1, . . . ,Mn of rectangular matrices such that
the product M1 × · · · × Mn can be computed. Clearly, it can be computed as
a sequence of n − 1 standard matrix multiplications, and the result does not
depend on their order. Given the assumption that multiplying an a × b and a
b× c matrix takes Θ(abc) time, what is the most efficient way of computing the
entire product?

The problem is solved by dynamic programming over all intervals. I.e., the
states can be described by pairs of indices i, j such that i ≤ j. For each state we
compute the best solution for the matrices in the given range.

Issues with this problem:

  can be computed. Clearly, it can be computed as a sequence
of 

Kleinberg first introduces dynamic programming using a top-down approach,
but then uses a bottom-up iterative approach in all following problems. The
entire exposition looks as follows:

1. Weighted interval scheduling
2. a general overview of iterative dynamic programming and memoization
3. Segmented least squares
4. Subset sums and Knapsack
5. RNA secondary structure
6. Sequence alignment (and optimizations to reduce memory use)
7. Shortest paths

Sedgewick prefers a top-down approach. Only presents two problems:

1. Fibonacci numbers
2. Knapsack

Note that the new 4th edition (Sedgewick, Wayne: Algorithms) no longer con-
tains a section on dynamic programming.

Skiena is also in favor of starting with the top-down approach. His exposition
proceeds in the following order:

1. Fibonacci numbers: recursively, with memoization, iteratively
2. Binomial coefficients
3. Edit distance
4. Longest increasing subsequence
5. Linear partition
6. Context-free grammar parsing

3 Critical analysis

In this section we show the results of our analysis of the expositions used in
the textbooks mentioned above. We mostly focus on tasks used in multiple text-
books.

3.1 Matrix chain multiplication

Statement: Given is a sequence M1, . . . ,Mn of rectangular matrices such that
the product M1 × · · · × Mn can be computed. Clearly, it can be computed as
a sequence of n − 1 standard matrix multiplications, and the result does not
depend on their order. Given the assumption that multiplying an a × b and a
b× c matrix takes Θ(abc) time, what is the most efficient way of computing the
entire product?

The problem is solved by dynamic programming over all intervals. I.e., the
states can be described by pairs of indices i, j such that i ≤ j. For each state we
compute the best solution for the matrices in the given range.

Issues with this problem:

  standard matrix multiplications, and the result does not depend on their order.
Given the assumption that multiplying an 

Kleinberg first introduces dynamic programming using a top-down approach,
but then uses a bottom-up iterative approach in all following problems. The
entire exposition looks as follows:

1. Weighted interval scheduling
2. a general overview of iterative dynamic programming and memoization
3. Segmented least squares
4. Subset sums and Knapsack
5. RNA secondary structure
6. Sequence alignment (and optimizations to reduce memory use)
7. Shortest paths

Sedgewick prefers a top-down approach. Only presents two problems:

1. Fibonacci numbers
2. Knapsack

Note that the new 4th edition (Sedgewick, Wayne: Algorithms) no longer con-
tains a section on dynamic programming.

Skiena is also in favor of starting with the top-down approach. His exposition
proceeds in the following order:

1. Fibonacci numbers: recursively, with memoization, iteratively
2. Binomial coefficients
3. Edit distance
4. Longest increasing subsequence
5. Linear partition
6. Context-free grammar parsing

3 Critical analysis

In this section we show the results of our analysis of the expositions used in
the textbooks mentioned above. We mostly focus on tasks used in multiple text-
books.

3.1 Matrix chain multiplication

Statement: Given is a sequence M1, . . . ,Mn of rectangular matrices such that
the product M1 × · · · × Mn can be computed. Clearly, it can be computed as
a sequence of n − 1 standard matrix multiplications, and the result does not
depend on their order. Given the assumption that multiplying an a × b and a
b× c matrix takes Θ(abc) time, what is the most efficient way of computing the
entire product?

The problem is solved by dynamic programming over all intervals. I.e., the
states can be described by pairs of indices i, j such that i ≤ j. For each state we
compute the best solution for the matrices in the given range.

Issues with this problem:

  and a 

Kleinberg first introduces dynamic programming using a top-down approach,
but then uses a bottom-up iterative approach in all following problems. The
entire exposition looks as follows:

1. Weighted interval scheduling
2. a general overview of iterative dynamic programming and memoization
3. Segmented least squares
4. Subset sums and Knapsack
5. RNA secondary structure
6. Sequence alignment (and optimizations to reduce memory use)
7. Shortest paths

Sedgewick prefers a top-down approach. Only presents two problems:

1. Fibonacci numbers
2. Knapsack

Note that the new 4th edition (Sedgewick, Wayne: Algorithms) no longer con-
tains a section on dynamic programming.

Skiena is also in favor of starting with the top-down approach. His exposition
proceeds in the following order:

1. Fibonacci numbers: recursively, with memoization, iteratively
2. Binomial coefficients
3. Edit distance
4. Longest increasing subsequence
5. Linear partition
6. Context-free grammar parsing

3 Critical analysis

In this section we show the results of our analysis of the expositions used in
the textbooks mentioned above. We mostly focus on tasks used in multiple text-
books.

3.1 Matrix chain multiplication

Statement: Given is a sequence M1, . . . ,Mn of rectangular matrices such that
the product M1 × · · · × Mn can be computed. Clearly, it can be computed as
a sequence of n − 1 standard matrix multiplications, and the result does not
depend on their order. Given the assumption that multiplying an a × b and a
b× c matrix takes Θ(abc) time, what is the most efficient way of computing the
entire product?

The problem is solved by dynamic programming over all intervals. I.e., the
states can be described by pairs of indices i, j such that i ≤ j. For each state we
compute the best solution for the matrices in the given range.

Issues with this problem:

  matrix takes 

Kleinberg first introduces dynamic programming using a top-down approach,
but then uses a bottom-up iterative approach in all following problems. The
entire exposition looks as follows:

1. Weighted interval scheduling
2. a general overview of iterative dynamic programming and memoization
3. Segmented least squares
4. Subset sums and Knapsack
5. RNA secondary structure
6. Sequence alignment (and optimizations to reduce memory use)
7. Shortest paths

Sedgewick prefers a top-down approach. Only presents two problems:

1. Fibonacci numbers
2. Knapsack

Note that the new 4th edition (Sedgewick, Wayne: Algorithms) no longer con-
tains a section on dynamic programming.

Skiena is also in favor of starting with the top-down approach. His exposition
proceeds in the following order:

1. Fibonacci numbers: recursively, with memoization, iteratively
2. Binomial coefficients
3. Edit distance
4. Longest increasing subsequence
5. Linear partition
6. Context-free grammar parsing

3 Critical analysis

In this section we show the results of our analysis of the expositions used in
the textbooks mentioned above. We mostly focus on tasks used in multiple text-
books.

3.1 Matrix chain multiplication

Statement: Given is a sequence M1, . . . ,Mn of rectangular matrices such that
the product M1 × · · · × Mn can be computed. Clearly, it can be computed as
a sequence of n − 1 standard matrix multiplications, and the result does not
depend on their order. Given the assumption that multiplying an a × b and a
b× c matrix takes Θ(abc) time, what is the most efficient way of computing the
entire product?

The problem is solved by dynamic programming over all intervals. I.e., the
states can be described by pairs of indices i, j such that i ≤ j. For each state we
compute the best solution for the matrices in the given range.

Issues with this problem:

  time,
what is the most efficient way of computing the entire product?

The problem is solved by dynamic programming over all intervals. I.e., the states can
be described by pairs of indices 

Kleinberg first introduces dynamic programming using a top-down approach,
but then uses a bottom-up iterative approach in all following problems. The
entire exposition looks as follows:

1. Weighted interval scheduling
2. a general overview of iterative dynamic programming and memoization
3. Segmented least squares
4. Subset sums and Knapsack
5. RNA secondary structure
6. Sequence alignment (and optimizations to reduce memory use)
7. Shortest paths

Sedgewick prefers a top-down approach. Only presents two problems:

1. Fibonacci numbers
2. Knapsack

Note that the new 4th edition (Sedgewick, Wayne: Algorithms) no longer con-
tains a section on dynamic programming.

Skiena is also in favor of starting with the top-down approach. His exposition
proceeds in the following order:

1. Fibonacci numbers: recursively, with memoization, iteratively
2. Binomial coefficients
3. Edit distance
4. Longest increasing subsequence
5. Linear partition
6. Context-free grammar parsing

3 Critical analysis

In this section we show the results of our analysis of the expositions used in
the textbooks mentioned above. We mostly focus on tasks used in multiple text-
books.

3.1 Matrix chain multiplication

Statement: Given is a sequence M1, . . . ,Mn of rectangular matrices such that
the product M1 × · · · × Mn can be computed. Clearly, it can be computed as
a sequence of n − 1 standard matrix multiplications, and the result does not
depend on their order. Given the assumption that multiplying an a × b and a
b× c matrix takes Θ(abc) time, what is the most efficient way of computing the
entire product?

The problem is solved by dynamic programming over all intervals. I.e., the
states can be described by pairs of indices i, j such that i ≤ j. For each state we
compute the best solution for the matrices in the given range.

Issues with this problem:

  such that 

Kleinberg first introduces dynamic programming using a top-down approach,
but then uses a bottom-up iterative approach in all following problems. The
entire exposition looks as follows:

1. Weighted interval scheduling
2. a general overview of iterative dynamic programming and memoization
3. Segmented least squares
4. Subset sums and Knapsack
5. RNA secondary structure
6. Sequence alignment (and optimizations to reduce memory use)
7. Shortest paths

Sedgewick prefers a top-down approach. Only presents two problems:

1. Fibonacci numbers
2. Knapsack

Note that the new 4th edition (Sedgewick, Wayne: Algorithms) no longer con-
tains a section on dynamic programming.

Skiena is also in favor of starting with the top-down approach. His exposition
proceeds in the following order:

1. Fibonacci numbers: recursively, with memoization, iteratively
2. Binomial coefficients
3. Edit distance
4. Longest increasing subsequence
5. Linear partition
6. Context-free grammar parsing

3 Critical analysis

In this section we show the results of our analysis of the expositions used in
the textbooks mentioned above. We mostly focus on tasks used in multiple text-
books.

3.1 Matrix chain multiplication

Statement: Given is a sequence M1, . . . ,Mn of rectangular matrices such that
the product M1 × · · · × Mn can be computed. Clearly, it can be computed as
a sequence of n − 1 standard matrix multiplications, and the result does not
depend on their order. Given the assumption that multiplying an a × b and a
b× c matrix takes Θ(abc) time, what is the most efficient way of computing the
entire product?

The problem is solved by dynamic programming over all intervals. I.e., the
states can be described by pairs of indices i, j such that i ≤ j. For each state we
compute the best solution for the matrices in the given range.

Issues with this problem:

. For each state we compute the best

M. Forišek48

solution for the matrices in the given range.
Issues with this problem:

Incomprehensible to students who lack background in linear algebra. The problem ●●
feels unnatural and the cost function seems arbitrary.
Unnecessary clutter: the input is a sequence of ordered pairs of integers. There are ●●
other similar problems on integer sequences and/or strings.
Lack of practical motivation. Finding a clear practical application for this algo-●●
rithm is probably impossible.
The existence of a much better solution. The ●●

– Incomprehensible to students who lack background in linear algebra. The
problem feels unnatural and the cost function seems arbitrary.

– Unnecessary clutter: the input is a sequence of ordered pairs of integers.
There are other similar problems on integer sequences and/or strings.

– Lack of practical motivation. Finding a clear practical application for this
algorithm is probably impossible.

– The existence of a much better solution. The Θ(n3) DP algorithm shown in
textbooks is an overkill, Hu and Shing [4] gave a different O(n log n) solution
for this problem.

3.2 Shortest paths in DAGs

Statement: Given is a weighted directed acyclic graph (DAG). Find the shortest
path from vertex 1 to vertex n.

This is a very good problem to be used at some point during the instruction
on dynamic programming – mostly because it is the most general one. Essentially
all dynamic programming solutions can be viewed as computations on directed
acyclic graphs: the states of the computation (i.e., sub-instances we are solving)
are the vertices of the DAG, the recursive relation determines the edges, and the
order in which an iterative DP solution evaluates the states must correspond to
a topological order of this graph.

Issues: Dasgupta uses this problem as the first problem on which a dynamic
programming approach is presented. We strongly advise against that. While we
agree that the concepts mentioned in the previous paragraph are important, we
believe that the proper time and way to learn them is by abstraction after already
being familiar with many specific problems solved using dynamic programming.

Additionally, this problem requires students to be able to store and access a
graph, and the data structures needed to do so efficiently are more involved than
simple static arrays. A detailed analysis of the time and space complexity is also
non-trivial as there are two different parameters (the number of vertices and the
number of edges). This is especially true if one tries to solve this problem using
recursion without memoization.

3.3 Longest common subsequence

Statement: Given two sequences (or strings), find one longest sequence that
occurs as a (not necessarily contiguous) subsequence in each of them.

Related problems: Edit distance (Levenshtein distance) between two strings,
DNA sequence alignment.

This is, and certainly should be, the gold standard among introductory prob-
lems solvable using dynamic programming. The solution only requires basic ar-
rays, the subproblems and the recurrence are natural, and each of the subprob-
lems can be evaluated in constant time.

Later, this problem can be used when discussing the differences between the
top-down and the bottom-up approach.

  DP algorithm shown in text-
books is an overkill, Hu and Shing (1982, 1984) gave a different 

– Incomprehensible to students who lack background in linear algebra. The
problem feels unnatural and the cost function seems arbitrary.

– Unnecessary clutter: the input is a sequence of ordered pairs of integers.
There are other similar problems on integer sequences and/or strings.

– Lack of practical motivation. Finding a clear practical application for this
algorithm is probably impossible.

– The existence of a much better solution. The Θ(n3) DP algorithm shown in
textbooks is an overkill, Hu and Shing [4] gave a different O(n log n) solution
for this problem.

3.2 Shortest paths in DAGs

Statement: Given is a weighted directed acyclic graph (DAG). Find the shortest
path from vertex 1 to vertex n.

This is a very good problem to be used at some point during the instruction
on dynamic programming – mostly because it is the most general one. Essentially
all dynamic programming solutions can be viewed as computations on directed
acyclic graphs: the states of the computation (i.e., sub-instances we are solving)
are the vertices of the DAG, the recursive relation determines the edges, and the
order in which an iterative DP solution evaluates the states must correspond to
a topological order of this graph.

Issues: Dasgupta uses this problem as the first problem on which a dynamic
programming approach is presented. We strongly advise against that. While we
agree that the concepts mentioned in the previous paragraph are important, we
believe that the proper time and way to learn them is by abstraction after already
being familiar with many specific problems solved using dynamic programming.

Additionally, this problem requires students to be able to store and access a
graph, and the data structures needed to do so efficiently are more involved than
simple static arrays. A detailed analysis of the time and space complexity is also
non-trivial as there are two different parameters (the number of vertices and the
number of edges). This is especially true if one tries to solve this problem using
recursion without memoization.

3.3 Longest common subsequence

Statement: Given two sequences (or strings), find one longest sequence that
occurs as a (not necessarily contiguous) subsequence in each of them.

Related problems: Edit distance (Levenshtein distance) between two strings,
DNA sequence alignment.

This is, and certainly should be, the gold standard among introductory prob-
lems solvable using dynamic programming. The solution only requires basic ar-
rays, the subproblems and the recurrence are natural, and each of the subprob-
lems can be evaluated in constant time.

Later, this problem can be used when discussing the differences between the
top-down and the bottom-up approach.

  solu-
tion for this problem.

3.2. Shortest Paths in DAGs

Statement: Given is a weighted directed acyclic graph (DAG). Find the shortest path
from vertex 1 to vertex 

– Incomprehensible to students who lack background in linear algebra. The
problem feels unnatural and the cost function seems arbitrary.

– Unnecessary clutter: the input is a sequence of ordered pairs of integers.
There are other similar problems on integer sequences and/or strings.

– Lack of practical motivation. Finding a clear practical application for this
algorithm is probably impossible.

– The existence of a much better solution. The Θ(n3) DP algorithm shown in
textbooks is an overkill, Hu and Shing [4] gave a different O(n log n) solution
for this problem.

3.2 Shortest paths in DAGs

Statement: Given is a weighted directed acyclic graph (DAG). Find the shortest
path from vertex 1 to vertex n.

This is a very good problem to be used at some point during the instruction
on dynamic programming – mostly because it is the most general one. Essentially
all dynamic programming solutions can be viewed as computations on directed
acyclic graphs: the states of the computation (i.e., sub-instances we are solving)
are the vertices of the DAG, the recursive relation determines the edges, and the
order in which an iterative DP solution evaluates the states must correspond to
a topological order of this graph.

Issues: Dasgupta uses this problem as the first problem on which a dynamic
programming approach is presented. We strongly advise against that. While we
agree that the concepts mentioned in the previous paragraph are important, we
believe that the proper time and way to learn them is by abstraction after already
being familiar with many specific problems solved using dynamic programming.

Additionally, this problem requires students to be able to store and access a
graph, and the data structures needed to do so efficiently are more involved than
simple static arrays. A detailed analysis of the time and space complexity is also
non-trivial as there are two different parameters (the number of vertices and the
number of edges). This is especially true if one tries to solve this problem using
recursion without memoization.

3.3 Longest common subsequence

Statement: Given two sequences (or strings), find one longest sequence that
occurs as a (not necessarily contiguous) subsequence in each of them.

Related problems: Edit distance (Levenshtein distance) between two strings,
DNA sequence alignment.

This is, and certainly should be, the gold standard among introductory prob-
lems solvable using dynamic programming. The solution only requires basic ar-
rays, the subproblems and the recurrence are natural, and each of the subprob-
lems can be evaluated in constant time.

Later, this problem can be used when discussing the differences between the
top-down and the bottom-up approach.

.

This is a very good problem to be used at some point during the instruction on dy-
namic programming – mostly because it is the most general one. Essentially all dyna-
mic programming solutions can be viewed as computations on directed acyclic graphs:
the states of the computation (i.e., sub-instances we are solving) are the vertices of the
DAG, the recursive relation determines the edges, and the order in which an iterative
DP solution evaluates the states must correspond to a topological order of this graph.

Issues: Dasgupta uses this problem as the first problem on which a dynamic pro-
gramming approach is presented. We strongly advise against that. While we agree that
the concepts mentioned in the previous paragraph are important, we believe that the
proper time and way to learn them is by abstraction after already being familiar with
many specific problems solved using dynamic programming.

Additionally, this problem requires students to be able to store and access a graph,
and the data structures needed to do so efficiently are more involved than simple static
arrays. A detailed analysis of the time and space complexity is also non-trivial as there
are two different parameters (the number of vertices and the number of edges). This is
especially true if one tries to solve this problem using recursion without memoization.

3.3. Longest Common Subsequence

Statement: Given two sequences (or strings), find one longest sequence that occurs as a
(not necessarily contiguous) subsequence in each of them.

Related problems: Edit distance (Levenshtein distance) between two strings, DNA
sequence alignment.

This is, and certainly should be, the gold standard among introductory problems
solvable using dynamic programming. The solution only requires basic arrays, the sub-

Towards a Better Way to Teach Dynamic Programming 49

problems and the recurrence are natural, and each of the subproblems can be evaluated
in constant time.

Later, this problem can be used when discussing the differences between the top-
down and the bottom-up approach.

This problem also leads to an advanced topic: Hirschberg’s implementation (Hirsch-
berg, 1975) of a bottom-up DP solution that can reconstruct an optimal solution in linear
memory.

Issues: The time complexity of the brute force approach (recursive search without
memoization) is hard to analyse exactly and it is often neglected in textbooks. Cormen
only mentions it to be “exponential-time” without any details, while Dasgupta and
Kleinberg completely avoids mentioning it. Skiena is the only one to address it,
showing a (non-tight) 3 lower bound for his version of the Edit distance problem.

3.4. 0–1 Knapsack

Statement: Given is an integer weight limit    and a collection of    items, each with
an integer weight  and an arbitrary cost  . Find a subset of items that has a total weight
not exceeding the given limit and the largest possible total cost.

Related problems: Knapsack where arbitrarily many copies of each item are avail-
able. Coin change problems.

This is a reasonably natural class of problems. Again, their advantage is that the
implementation only requires basic tools and that the recurrence relation is simple.

Issues: The whole notion of pseudopolynomial time. At some point, the students need
to be explained why an algorithm that runs in 

This problem also leads to an advanced topic: Hirschberg’s implementation
[3] of a bottom-up DP solution that can reconstruct an optimal solution in linear
memory.

Issues: The time complexity of the brute force approach (recursive search
without memoization) is hard to analyse exactly and it is often neglected in
textbooks. Cormen only mentions it to be “exponential-time” without any de-
tails, while Dasgupta and Kleinberg completely avoid mentioning it. Skiena
is the only one to address it, showing a (non-tight) 3n lower bound for his version
of the Edit distance problem.

3.4 0-1 knapsack

Statement: Given is an integer weight limit W and a collection of n items, each
with an integer weight wi and an arbitrary cost ci. Find a subset of items that
has a total weight not exceeding the given limit and the largest possible total
cost.

Related problems: Knapsack where arbitrarily many copies of each item are
available. Coin change problems.

This is a reasonably natural class of problems. Again, their advantage is that
the implementation only requires basic tools and that the recurrence relation is
simple.

Issues: The whole notion of pseudopolynomial time. At some point, the stu-
dents need to be explained why an algorithm that runs in O(nW) is not consid-
ered a polynomial-time algorithm. While this issue is orthogonal to the concept
of dynamic programming, it is an inherent part of this task and it should come
up during its analysis. From experience, this may be the most challenging part
of the problem for the students.

Sedgewick avoids the topic of pseudopolynomial time completely. It is just
mentioned that the algorithm is only useful if the capacities are not huge.Klein-
berg also avoids this topic completely.

Dasgupta addresses the topic with a single brief note: “[...] they can both
be solved in O(nW) time, which is reasonable when W is small, but is not
polynomial since the input size is proportional to logW rather than W .”

3.5 Fibonacci numbers

Statement: Given n, compute the n-th Fibonacci number.
Fibonacci numbers are an excellent source of what is possibly the simplest

non-trivial recurrence relation. They can easily be used to demonstrate the ef-
fect of memoization, as a straightforward recursive function that computes their
values runs in exponential time.

Issues: The only issue with this very simple problem is that the numbers
themselves grow exponentially and their values quickly exceed the range of stan-
dard integer variables in most languages. And even if you use a programming
language with arbitrary precision integers (e.g., Python), the size of these num-
bers plays a role in estimating the time complexity of efficient programs.

  is not considered a polynomial-
time algorithm. While this issue is orthogonal to the concept of dynamic programming,
it is an inherent part of this task and it should come up during its analysis. From experi-
ence, this may be the most challenging part of the problem for the students.

Sedgewick avoids the topic of pseudopolynomial time completely. It is just men-
tioned that the algorithm is only useful if the capacities are not huge. Kleinberg also
avoids this topic completely.

Dasgupta addresses the topic with a single brief note: “[...] they can both be solved
in 

This problem also leads to an advanced topic: Hirschberg’s implementation
[3] of a bottom-up DP solution that can reconstruct an optimal solution in linear
memory.

Issues: The time complexity of the brute force approach (recursive search
without memoization) is hard to analyse exactly and it is often neglected in
textbooks. Cormen only mentions it to be “exponential-time” without any de-
tails, while Dasgupta and Kleinberg completely avoid mentioning it. Skiena
is the only one to address it, showing a (non-tight) 3n lower bound for his version
of the Edit distance problem.

3.4 0-1 knapsack

Statement: Given is an integer weight limit W and a collection of n items, each
with an integer weight wi and an arbitrary cost ci. Find a subset of items that
has a total weight not exceeding the given limit and the largest possible total
cost.

Related problems: Knapsack where arbitrarily many copies of each item are
available. Coin change problems.

This is a reasonably natural class of problems. Again, their advantage is that
the implementation only requires basic tools and that the recurrence relation is
simple.

Issues: The whole notion of pseudopolynomial time. At some point, the stu-
dents need to be explained why an algorithm that runs in O(nW) is not consid-
ered a polynomial-time algorithm. While this issue is orthogonal to the concept
of dynamic programming, it is an inherent part of this task and it should come
up during its analysis. From experience, this may be the most challenging part
of the problem for the students.

Sedgewick avoids the topic of pseudopolynomial time completely. It is just
mentioned that the algorithm is only useful if the capacities are not huge.Klein-
berg also avoids this topic completely.

Dasgupta addresses the topic with a single brief note: “[...] they can both
be solved in O(nW) time, which is reasonable when W is small, but is not
polynomial since the input size is proportional to logW rather than W .”

3.5 Fibonacci numbers

Statement: Given n, compute the n-th Fibonacci number.
Fibonacci numbers are an excellent source of what is possibly the simplest

non-trivial recurrence relation. They can easily be used to demonstrate the ef-
fect of memoization, as a straightforward recursive function that computes their
values runs in exponential time.

Issues: The only issue with this very simple problem is that the numbers
themselves grow exponentially and their values quickly exceed the range of stan-
dard integer variables in most languages. And even if you use a programming
language with arbitrary precision integers (e.g., Python), the size of these num-
bers plays a role in estimating the time complexity of efficient programs.

  time, which is reasonable when    is small, but is not polynomial since the
input size is proportional to 

This problem also leads to an advanced topic: Hirschberg’s implementation
[3] of a bottom-up DP solution that can reconstruct an optimal solution in linear
memory.

Issues: The time complexity of the brute force approach (recursive search
without memoization) is hard to analyse exactly and it is often neglected in
textbooks. Cormen only mentions it to be “exponential-time” without any de-
tails, while Dasgupta and Kleinberg completely avoid mentioning it. Skiena
is the only one to address it, showing a (non-tight) 3n lower bound for his version
of the Edit distance problem.

3.4 0-1 knapsack

Statement: Given is an integer weight limit W and a collection of n items, each
with an integer weight wi and an arbitrary cost ci. Find a subset of items that
has a total weight not exceeding the given limit and the largest possible total
cost.

Related problems: Knapsack where arbitrarily many copies of each item are
available. Coin change problems.

This is a reasonably natural class of problems. Again, their advantage is that
the implementation only requires basic tools and that the recurrence relation is
simple.

Issues: The whole notion of pseudopolynomial time. At some point, the stu-
dents need to be explained why an algorithm that runs in O(nW) is not consid-
ered a polynomial-time algorithm. While this issue is orthogonal to the concept
of dynamic programming, it is an inherent part of this task and it should come
up during its analysis. From experience, this may be the most challenging part
of the problem for the students.

Sedgewick avoids the topic of pseudopolynomial time completely. It is just
mentioned that the algorithm is only useful if the capacities are not huge.Klein-
berg also avoids this topic completely.

Dasgupta addresses the topic with a single brief note: “[...] they can both
be solved in O(nW) time, which is reasonable when W is small, but is not
polynomial since the input size is proportional to logW rather than W .”

3.5 Fibonacci numbers

Statement: Given n, compute the n-th Fibonacci number.
Fibonacci numbers are an excellent source of what is possibly the simplest

non-trivial recurrence relation. They can easily be used to demonstrate the ef-
fect of memoization, as a straightforward recursive function that computes their
values runs in exponential time.

Issues: The only issue with this very simple problem is that the numbers
themselves grow exponentially and their values quickly exceed the range of stan-
dard integer variables in most languages. And even if you use a programming
language with arbitrary precision integers (e.g., Python), the size of these num-
bers plays a role in estimating the time complexity of efficient programs.

  rather than  .”

3.5. Fibonacci Numbers

Statement: Given  , compute the  -th  Fibonacci number.

Fibonacci numbers are an excellent source of what is possibly the simplest non-
trivial recurrence relation. They can easily be used to demonstrate the effect of
memoization, as a straightforward recursive function that computes their values runs
in exponential time.

M. Forišek50

Issues: The only issue with this very simple problem is that the numbers themselves
grow exponentially and their values quickly exceed the range of standard integer vari-
ables in most languages. And even if you use a programming language with arbitrary
precision integers (e.g., Python), the size of these numbers plays a role in estimating the
time complexity of efficient programs.

A common way to address this issue is to modify the problem: instead of computing
the exact value of the  -th  Fibonacci number we aim to compute its value modulo some
small integer. (E.g., if the modulus is 109, we are in fact computing the last 9 decimal
digits of  .) Here we would just like to remark that the Fibonacci sequence modulo
any    is necessarily periodic and this observation leads to asymptotically more ef-
ficient algorithms.

4. Our Approach to Teaching Dynamic Programming

In this final section we give a detailed presentation of how we suggest to teach dynamic
programming. For each task used we clearly state and highlight the new concepts it in-
troduces, and we argue why our way of introducing them works.

Note that we intentionally start with the top-down version of dynamic programming,
i.e., by adding memoization to recursive functions. This is intentional and very signifi-
cant. The main purpose of this choice is to show the students how to break up the design
of an efficient solution into multiple steps:

Implement a recursive algorithm that examines all possible solutions.1.	
Use the algorithm to discover a recursive relation between various subproblems 2.	
of the given problem.
Add memoization to improve the time complexity, often substantially.3.	
Optionally, convert the solution into an iterative bottom-up solution.4.	

The more traditional approach that starts with iterative DP requires students to do
steps 2 and 4 at the same time, without giving them good tools to do the analysis and
to discover the optimal substructure. In our approach, step 1 gives them such a tool:
once we have the recursive solution, the arguments of the recursive function define
the subproblems, and we can examine whether the function gets called multiple times
with the same arguments. If it does, we know that the problem does exhibit the optimal
substructure, and in step 3 we mechanically convert our inefficient solution into an
efficient one.

Lesson 1: Fibonacci numbers

Goals: Observe a recursive function with an exponential time complexity. Discover the
source of inefficiency: the function executes the same recursive call many times.

Fibonacci numbers have a well-known recurrence: 

A common way to address this issue is to modify the problem: instead of
computing the exact value of the n-th Fibonacci number we aim to compute
its value modulo some small integer. (E.g., if the modulus is 109, we are in fact
computing the last 9 decimal digits of Fn.) Here we would just like to remark that
the Fibonacci sequence modulo anym is necessarily periodic and this observation
leads to asymptotically more efficient algorithms.

4 Our approach to teaching dynamic programming

In this final section we give a detailed presentation of how we suggest to teach
dynamic programming. For each task used we clearly state and highlight the new
concepts it introduces, and we argue why our way of introducing them works.

Note that we intentionally start with the top-down version of dynamic pro-
gramming, i.e., by adding memoization to recursive functions. This is intentional
and very significant. The main purpose of this choice is to show the students
how to break up the design of an efficient solution into multiple steps:

1. Implement a recursive algorithm that examines all possible solutions.
2. Use the algorithm to discover a recursive relation between various subprob-
lems of the given problem.

3. Add memoization to improve the time complexity, often substantially.
4. Optionally, convert the solution into an iterative bottom-up solution.

The more traditional approach that starts with iterative DP requires students
to do steps 2 and 4 at the same time, without giving them good tools to do
the analysis and to discover the optimal substructure. In our approach, step
1 gives them such a tool: once we have the recursive solution, the arguments
of the recursive function define the subproblems, and we can examine whether
the function gets called multiple times with the same arguments. If it does, we
know that the problem does exhibit the optimal substructure, and in step 3 we
mechanically convert our inefficient solution into an efficient one.

Lesson 1: Fibonacci numbers

Goals: Observe a recursive function with an exponential time complexity. Dis-
cover the source of inefficiency: the function executes the same recursive call
many times.

Fibonacci numbers have a well-known recurrence: F0 = 0, F1 = 1, and
∀n > 1 : Fn = Fn−1 + Fn−2. In our presentation we use the following Python
implementation:

def F(n):

if n==1 or n==2:

return 1

else:

return F(n-1) + F(n-2)

, and 

A common way to address this issue is to modify the problem: instead of
computing the exact value of the n-th Fibonacci number we aim to compute
its value modulo some small integer. (E.g., if the modulus is 109, we are in fact
computing the last 9 decimal digits of Fn.) Here we would just like to remark that
the Fibonacci sequence modulo anym is necessarily periodic and this observation
leads to asymptotically more efficient algorithms.

4 Our approach to teaching dynamic programming

In this final section we give a detailed presentation of how we suggest to teach
dynamic programming. For each task used we clearly state and highlight the new
concepts it introduces, and we argue why our way of introducing them works.

Note that we intentionally start with the top-down version of dynamic pro-
gramming, i.e., by adding memoization to recursive functions. This is intentional
and very significant. The main purpose of this choice is to show the students
how to break up the design of an efficient solution into multiple steps:

1. Implement a recursive algorithm that examines all possible solutions.
2. Use the algorithm to discover a recursive relation between various subprob-
lems of the given problem.

3. Add memoization to improve the time complexity, often substantially.
4. Optionally, convert the solution into an iterative bottom-up solution.

The more traditional approach that starts with iterative DP requires students
to do steps 2 and 4 at the same time, without giving them good tools to do
the analysis and to discover the optimal substructure. In our approach, step
1 gives them such a tool: once we have the recursive solution, the arguments
of the recursive function define the subproblems, and we can examine whether
the function gets called multiple times with the same arguments. If it does, we
know that the problem does exhibit the optimal substructure, and in step 3 we
mechanically convert our inefficient solution into an efficient one.

Lesson 1: Fibonacci numbers

Goals: Observe a recursive function with an exponential time complexity. Dis-
cover the source of inefficiency: the function executes the same recursive call
many times.

Fibonacci numbers have a well-known recurrence: F0 = 0, F1 = 1, and
∀n > 1 : Fn = Fn−1 + Fn−2. In our presentation we use the following Python
implementation:

def F(n):

if n==1 or n==2:

return 1

else:

return F(n-1) + F(n-2)

. In our presentation we use the following Python imple-
mentation:

Towards a Better Way to Teach Dynamic Programming 51

def F(n):
if n==1 or n==2:

return 1
else:

return F(n-1) + F(n-2)

Note that this implementation neglects the case   = 0  and uses   = 1  and   = 2  as
the base case. This is intentional, the purpose is a more elegant analysis later.

We can now run this program and have it compute consecutive values of the Fibo-
nacci sequence:

for n in range(1,100): print(n, F(n))

The first few rows of input will appear instantly but already around   = 35  the pro-
gram will slow down to a crawl. We can empirically measure that each next value takes
about 16 times longer to compute than the previous one.

What is going on here? The easiest way to see it is to log each recursive call:

def F(n):
print('calling F(' + str(n) + ')')
...

Already for small values like   = 6  we quickly discover that the same function
call is made multiple times. Here it is instructional to show the entire recursion tree
for   = 6, we omit the picture here to conserve space.

Here, a suitable homework is to leave the students analyse how many times 

Note that this implementation neglects the case n = 0 and uses n = 1 and
n = 2 as the base case. This is intentional, the purpose is a more elegant analysis
later.

We can now run this program and have it compute consecutive values of the
Fibonacci sequence:

for n in range(1,100): print(n, F(n))

The first few rows of input will appear instantly but already around n = 35
the program will slow down to a crawl. We can empirically measure that each
next value takes about 1.6 times longer to compute than the previous one.

What is going on here? The easiest way to see it is to log each recursive call:

def F(n):

print(’calling F(’ + str(n) + ’)’)

...

Already for small values like n = 6 we quickly discover that the same function
call is made multiple times. Here it is instructional to show the entire recursion
tree for n = 6, we omit the picture here to conserve space.

Here, a suitable homework is to leave the students analyse how many times
F (n − k) gets called during the computation of F (n). For our version of the
implementation the answer to this question are again precisely the Fibonacci
numbers.

Alternately, we can just directly estimate the whole time complexity: when
computing F (n), each leaf of the recursion tree contributes 1 to the final result.
(This is the rationale for our choice to use n = 1 and n = 2 as base cases.) Hence,
there are precisely F (n) leaves and thus precisely F (n) − 1 inner nodes in the
recursion tree. In other words, the running time of the computation of F (n) is
clearly proportional to the value of F (n), which is known to grow exponentially.

Lesson 2: Memoization

Goals: Learn about memoization and conditions when it can be applied.
One of the points that is woefully neglected in traditional textbooks is the

difference between functions in the mathematical sense and in the program-
ming sense. The output of a mathematical function only depends on its inputs:
cos(π/3) today is the same value as cos(π/3) tomorrow. For a function in a com-
puter program, two consecutive calls with the same arguments may often return
different values. There are lots of different reasons why this may happen. For
instance, the output of the function may depend on global variables, on environ-
ment variables (such as the current locale settings), on pseudorandom numbers,
on the input from a user, etc. (Listing these is actually a lovely exercise for
students!)

Given the above observation, memoization is a very straightforward concept
for students: we simply want to avoid computing the same thing twice. And it
should now be clear that any function in our program that is also a function in

 
gets called during the computation of 

Note that this implementation neglects the case n = 0 and uses n = 1 and
n = 2 as the base case. This is intentional, the purpose is a more elegant analysis
later.

We can now run this program and have it compute consecutive values of the
Fibonacci sequence:

for n in range(1,100): print(n, F(n))

The first few rows of input will appear instantly but already around n = 35
the program will slow down to a crawl. We can empirically measure that each
next value takes about 1.6 times longer to compute than the previous one.

What is going on here? The easiest way to see it is to log each recursive call:

def F(n):

print(’calling F(’ + str(n) + ’)’)

...

Already for small values like n = 6 we quickly discover that the same function
call is made multiple times. Here it is instructional to show the entire recursion
tree for n = 6, we omit the picture here to conserve space.

Here, a suitable homework is to leave the students analyse how many times
F (n − k) gets called during the computation of F (n). For our version of the
implementation the answer to this question are again precisely the Fibonacci
numbers.

Alternately, we can just directly estimate the whole time complexity: when
computing F (n), each leaf of the recursion tree contributes 1 to the final result.
(This is the rationale for our choice to use n = 1 and n = 2 as base cases.) Hence,
there are precisely F (n) leaves and thus precisely F (n) − 1 inner nodes in the
recursion tree. In other words, the running time of the computation of F (n) is
clearly proportional to the value of F (n), which is known to grow exponentially.

Lesson 2: Memoization

Goals: Learn about memoization and conditions when it can be applied.
One of the points that is woefully neglected in traditional textbooks is the

difference between functions in the mathematical sense and in the program-
ming sense. The output of a mathematical function only depends on its inputs:
cos(π/3) today is the same value as cos(π/3) tomorrow. For a function in a com-
puter program, two consecutive calls with the same arguments may often return
different values. There are lots of different reasons why this may happen. For
instance, the output of the function may depend on global variables, on environ-
ment variables (such as the current locale settings), on pseudorandom numbers,
on the input from a user, etc. (Listing these is actually a lovely exercise for
students!)

Given the above observation, memoization is a very straightforward concept
for students: we simply want to avoid computing the same thing twice. And it
should now be clear that any function in our program that is also a function in

. For our version of the implementation the
answer to this question are again precisely the Fibonacci numbers.

Alternately, we can just directly estimate the whole time complexity: when comput-
ing 

Note that this implementation neglects the case n = 0 and uses n = 1 and
n = 2 as the base case. This is intentional, the purpose is a more elegant analysis
later.

We can now run this program and have it compute consecutive values of the
Fibonacci sequence:

for n in range(1,100): print(n, F(n))

The first few rows of input will appear instantly but already around n = 35
the program will slow down to a crawl. We can empirically measure that each
next value takes about 1.6 times longer to compute than the previous one.

What is going on here? The easiest way to see it is to log each recursive call:

def F(n):

print(’calling F(’ + str(n) + ’)’)

...

Already for small values like n = 6 we quickly discover that the same function
call is made multiple times. Here it is instructional to show the entire recursion
tree for n = 6, we omit the picture here to conserve space.

Here, a suitable homework is to leave the students analyse how many times
F (n − k) gets called during the computation of F (n). For our version of the
implementation the answer to this question are again precisely the Fibonacci
numbers.

Alternately, we can just directly estimate the whole time complexity: when
computing F (n), each leaf of the recursion tree contributes 1 to the final result.
(This is the rationale for our choice to use n = 1 and n = 2 as base cases.) Hence,
there are precisely F (n) leaves and thus precisely F (n) − 1 inner nodes in the
recursion tree. In other words, the running time of the computation of F (n) is
clearly proportional to the value of F (n), which is known to grow exponentially.

Lesson 2: Memoization

Goals: Learn about memoization and conditions when it can be applied.
One of the points that is woefully neglected in traditional textbooks is the

difference between functions in the mathematical sense and in the program-
ming sense. The output of a mathematical function only depends on its inputs:
cos(π/3) today is the same value as cos(π/3) tomorrow. For a function in a com-
puter program, two consecutive calls with the same arguments may often return
different values. There are lots of different reasons why this may happen. For
instance, the output of the function may depend on global variables, on environ-
ment variables (such as the current locale settings), on pseudorandom numbers,
on the input from a user, etc. (Listing these is actually a lovely exercise for
students!)

Given the above observation, memoization is a very straightforward concept
for students: we simply want to avoid computing the same thing twice. And it
should now be clear that any function in our program that is also a function in

, each leaf of the recursion tree contributes 1 to the final result.
(This is the rationale for our choice to use   = 1  and   = 2  as base cases.) Hence,

there are precisely 

Note that this implementation neglects the case n = 0 and uses n = 1 and
n = 2 as the base case. This is intentional, the purpose is a more elegant analysis
later.

We can now run this program and have it compute consecutive values of the
Fibonacci sequence:

for n in range(1,100): print(n, F(n))

The first few rows of input will appear instantly but already around n = 35
the program will slow down to a crawl. We can empirically measure that each
next value takes about 1.6 times longer to compute than the previous one.

What is going on here? The easiest way to see it is to log each recursive call:

def F(n):

print(’calling F(’ + str(n) + ’)’)

...

Already for small values like n = 6 we quickly discover that the same function
call is made multiple times. Here it is instructional to show the entire recursion
tree for n = 6, we omit the picture here to conserve space.

Here, a suitable homework is to leave the students analyse how many times
F (n − k) gets called during the computation of F (n). For our version of the
implementation the answer to this question are again precisely the Fibonacci
numbers.

Alternately, we can just directly estimate the whole time complexity: when
computing F (n), each leaf of the recursion tree contributes 1 to the final result.
(This is the rationale for our choice to use n = 1 and n = 2 as base cases.) Hence,
there are precisely F (n) leaves and thus precisely F (n) − 1 inner nodes in the
recursion tree. In other words, the running time of the computation of F (n) is
clearly proportional to the value of F (n), which is known to grow exponentially.

Lesson 2: Memoization

Goals: Learn about memoization and conditions when it can be applied.
One of the points that is woefully neglected in traditional textbooks is the

difference between functions in the mathematical sense and in the program-
ming sense. The output of a mathematical function only depends on its inputs:
cos(π/3) today is the same value as cos(π/3) tomorrow. For a function in a com-
puter program, two consecutive calls with the same arguments may often return
different values. There are lots of different reasons why this may happen. For
instance, the output of the function may depend on global variables, on environ-
ment variables (such as the current locale settings), on pseudorandom numbers,
on the input from a user, etc. (Listing these is actually a lovely exercise for
students!)

Given the above observation, memoization is a very straightforward concept
for students: we simply want to avoid computing the same thing twice. And it
should now be clear that any function in our program that is also a function in

  leaves and thus precisely 

Note that this implementation neglects the case n = 0 and uses n = 1 and
n = 2 as the base case. This is intentional, the purpose is a more elegant analysis
later.

We can now run this program and have it compute consecutive values of the
Fibonacci sequence:

for n in range(1,100): print(n, F(n))

The first few rows of input will appear instantly but already around n = 35
the program will slow down to a crawl. We can empirically measure that each
next value takes about 1.6 times longer to compute than the previous one.

What is going on here? The easiest way to see it is to log each recursive call:

def F(n):

print(’calling F(’ + str(n) + ’)’)

...

Already for small values like n = 6 we quickly discover that the same function
call is made multiple times. Here it is instructional to show the entire recursion
tree for n = 6, we omit the picture here to conserve space.

Here, a suitable homework is to leave the students analyse how many times
F (n − k) gets called during the computation of F (n). For our version of the
implementation the answer to this question are again precisely the Fibonacci
numbers.

Alternately, we can just directly estimate the whole time complexity: when
computing F (n), each leaf of the recursion tree contributes 1 to the final result.
(This is the rationale for our choice to use n = 1 and n = 2 as base cases.) Hence,
there are precisely F (n) leaves and thus precisely F (n) − 1 inner nodes in the
recursion tree. In other words, the running time of the computation of F (n) is
clearly proportional to the value of F (n), which is known to grow exponentially.

Lesson 2: Memoization

Goals: Learn about memoization and conditions when it can be applied.
One of the points that is woefully neglected in traditional textbooks is the

difference between functions in the mathematical sense and in the program-
ming sense. The output of a mathematical function only depends on its inputs:
cos(π/3) today is the same value as cos(π/3) tomorrow. For a function in a com-
puter program, two consecutive calls with the same arguments may often return
different values. There are lots of different reasons why this may happen. For
instance, the output of the function may depend on global variables, on environ-
ment variables (such as the current locale settings), on pseudorandom numbers,
on the input from a user, etc. (Listing these is actually a lovely exercise for
students!)

Given the above observation, memoization is a very straightforward concept
for students: we simply want to avoid computing the same thing twice. And it
should now be clear that any function in our program that is also a function in

  inner nodes in the recur-
sion tree. In other words, the running time of the computation of 

Note that this implementation neglects the case n = 0 and uses n = 1 and
n = 2 as the base case. This is intentional, the purpose is a more elegant analysis
later.

We can now run this program and have it compute consecutive values of the
Fibonacci sequence:

for n in range(1,100): print(n, F(n))

The first few rows of input will appear instantly but already around n = 35
the program will slow down to a crawl. We can empirically measure that each
next value takes about 1.6 times longer to compute than the previous one.

What is going on here? The easiest way to see it is to log each recursive call:

def F(n):

print(’calling F(’ + str(n) + ’)’)

...

Already for small values like n = 6 we quickly discover that the same function
call is made multiple times. Here it is instructional to show the entire recursion
tree for n = 6, we omit the picture here to conserve space.

Here, a suitable homework is to leave the students analyse how many times
F (n − k) gets called during the computation of F (n). For our version of the
implementation the answer to this question are again precisely the Fibonacci
numbers.

Alternately, we can just directly estimate the whole time complexity: when
computing F (n), each leaf of the recursion tree contributes 1 to the final result.
(This is the rationale for our choice to use n = 1 and n = 2 as base cases.) Hence,
there are precisely F (n) leaves and thus precisely F (n) − 1 inner nodes in the
recursion tree. In other words, the running time of the computation of F (n) is
clearly proportional to the value of F (n), which is known to grow exponentially.

Lesson 2: Memoization

Goals: Learn about memoization and conditions when it can be applied.
One of the points that is woefully neglected in traditional textbooks is the

difference between functions in the mathematical sense and in the program-
ming sense. The output of a mathematical function only depends on its inputs:
cos(π/3) today is the same value as cos(π/3) tomorrow. For a function in a com-
puter program, two consecutive calls with the same arguments may often return
different values. There are lots of different reasons why this may happen. For
instance, the output of the function may depend on global variables, on environ-
ment variables (such as the current locale settings), on pseudorandom numbers,
on the input from a user, etc. (Listing these is actually a lovely exercise for
students!)

Given the above observation, memoization is a very straightforward concept
for students: we simply want to avoid computing the same thing twice. And it
should now be clear that any function in our program that is also a function in

  is clearly pro-
portional to the value of 

Note that this implementation neglects the case n = 0 and uses n = 1 and
n = 2 as the base case. This is intentional, the purpose is a more elegant analysis
later.

We can now run this program and have it compute consecutive values of the
Fibonacci sequence:

for n in range(1,100): print(n, F(n))

The first few rows of input will appear instantly but already around n = 35
the program will slow down to a crawl. We can empirically measure that each
next value takes about 1.6 times longer to compute than the previous one.

What is going on here? The easiest way to see it is to log each recursive call:

def F(n):

print(’calling F(’ + str(n) + ’)’)

...

Already for small values like n = 6 we quickly discover that the same function
call is made multiple times. Here it is instructional to show the entire recursion
tree for n = 6, we omit the picture here to conserve space.

Here, a suitable homework is to leave the students analyse how many times
F (n − k) gets called during the computation of F (n). For our version of the
implementation the answer to this question are again precisely the Fibonacci
numbers.

Alternately, we can just directly estimate the whole time complexity: when
computing F (n), each leaf of the recursion tree contributes 1 to the final result.
(This is the rationale for our choice to use n = 1 and n = 2 as base cases.) Hence,
there are precisely F (n) leaves and thus precisely F (n) − 1 inner nodes in the
recursion tree. In other words, the running time of the computation of F (n) is
clearly proportional to the value of F (n), which is known to grow exponentially.

Lesson 2: Memoization

Goals: Learn about memoization and conditions when it can be applied.
One of the points that is woefully neglected in traditional textbooks is the

difference between functions in the mathematical sense and in the program-
ming sense. The output of a mathematical function only depends on its inputs:
cos(π/3) today is the same value as cos(π/3) tomorrow. For a function in a com-
puter program, two consecutive calls with the same arguments may often return
different values. There are lots of different reasons why this may happen. For
instance, the output of the function may depend on global variables, on environ-
ment variables (such as the current locale settings), on pseudorandom numbers,
on the input from a user, etc. (Listing these is actually a lovely exercise for
students!)

Given the above observation, memoization is a very straightforward concept
for students: we simply want to avoid computing the same thing twice. And it
should now be clear that any function in our program that is also a function in

, which is known to grow exponentially.

Lesson 2: Memoization

Goals: Learn about memoization and conditions when it can be applied.

One of the points that is woefully neglected in traditional textbooks is the difference
between functions in the mathematical sense and in the programming sense. The out-
put of a mathematical function only depends on its inputs:

Note that this implementation neglects the case n = 0 and uses n = 1 and
n = 2 as the base case. This is intentional, the purpose is a more elegant analysis
later.

We can now run this program and have it compute consecutive values of the
Fibonacci sequence:

for n in range(1,100): print(n, F(n))

The first few rows of input will appear instantly but already around n = 35
the program will slow down to a crawl. We can empirically measure that each
next value takes about 1.6 times longer to compute than the previous one.

What is going on here? The easiest way to see it is to log each recursive call:

def F(n):

print(’calling F(’ + str(n) + ’)’)

...

Already for small values like n = 6 we quickly discover that the same function
call is made multiple times. Here it is instructional to show the entire recursion
tree for n = 6, we omit the picture here to conserve space.

Here, a suitable homework is to leave the students analyse how many times
F (n − k) gets called during the computation of F (n). For our version of the
implementation the answer to this question are again precisely the Fibonacci
numbers.

Alternately, we can just directly estimate the whole time complexity: when
computing F (n), each leaf of the recursion tree contributes 1 to the final result.
(This is the rationale for our choice to use n = 1 and n = 2 as base cases.) Hence,
there are precisely F (n) leaves and thus precisely F (n) − 1 inner nodes in the
recursion tree. In other words, the running time of the computation of F (n) is
clearly proportional to the value of F (n), which is known to grow exponentially.

Lesson 2: Memoization

Goals: Learn about memoization and conditions when it can be applied.
One of the points that is woefully neglected in traditional textbooks is the

difference between functions in the mathematical sense and in the program-
ming sense. The output of a mathematical function only depends on its inputs:
cos(π/3) today is the same value as cos(π/3) tomorrow. For a function in a com-
puter program, two consecutive calls with the same arguments may often return
different values. There are lots of different reasons why this may happen. For
instance, the output of the function may depend on global variables, on environ-
ment variables (such as the current locale settings), on pseudorandom numbers,
on the input from a user, etc. (Listing these is actually a lovely exercise for
students!)

Given the above observation, memoization is a very straightforward concept
for students: we simply want to avoid computing the same thing twice. And it
should now be clear that any function in our program that is also a function in

  today is the same
value as 

Note that this implementation neglects the case n = 0 and uses n = 1 and
n = 2 as the base case. This is intentional, the purpose is a more elegant analysis
later.

We can now run this program and have it compute consecutive values of the
Fibonacci sequence:

for n in range(1,100): print(n, F(n))

The first few rows of input will appear instantly but already around n = 35
the program will slow down to a crawl. We can empirically measure that each
next value takes about 1.6 times longer to compute than the previous one.

What is going on here? The easiest way to see it is to log each recursive call:

def F(n):

print(’calling F(’ + str(n) + ’)’)

...

Already for small values like n = 6 we quickly discover that the same function
call is made multiple times. Here it is instructional to show the entire recursion
tree for n = 6, we omit the picture here to conserve space.

Here, a suitable homework is to leave the students analyse how many times
F (n − k) gets called during the computation of F (n). For our version of the
implementation the answer to this question are again precisely the Fibonacci
numbers.

Alternately, we can just directly estimate the whole time complexity: when
computing F (n), each leaf of the recursion tree contributes 1 to the final result.
(This is the rationale for our choice to use n = 1 and n = 2 as base cases.) Hence,
there are precisely F (n) leaves and thus precisely F (n) − 1 inner nodes in the
recursion tree. In other words, the running time of the computation of F (n) is
clearly proportional to the value of F (n), which is known to grow exponentially.

Lesson 2: Memoization

Goals: Learn about memoization and conditions when it can be applied.
One of the points that is woefully neglected in traditional textbooks is the

difference between functions in the mathematical sense and in the program-
ming sense. The output of a mathematical function only depends on its inputs:
cos(π/3) today is the same value as cos(π/3) tomorrow. For a function in a com-
puter program, two consecutive calls with the same arguments may often return
different values. There are lots of different reasons why this may happen. For
instance, the output of the function may depend on global variables, on environ-
ment variables (such as the current locale settings), on pseudorandom numbers,
on the input from a user, etc. (Listing these is actually a lovely exercise for
students!)

Given the above observation, memoization is a very straightforward concept
for students: we simply want to avoid computing the same thing twice. And it
should now be clear that any function in our program that is also a function in

  tomorrow. For a function in a computer program, two consecutive
calls with the same arguments may often return different values. There are lots of diffe-
rent reasons why this may happen. For instance, the output of the function may depend
on global variables, on environment variables (such as the current locale settings), on
pseudorandom numbers, on the input from a user, etc. (Listing these is actually a lovely
exercise for students!)

M. Forišek52

Given the above observation, memoization is a very straightforward concept for stu-
dents: we simply want to avoid computing the same thing twice. And it should now be
clear that any function in our program that is also a function in the mathematical sense
can be memoized. (Such functions are sometimes called pure functions.)

An interesting historical note: memoization is not only useful when it comes to im-
proving the asymptotic time complexity. For instance, many early programs that pro-
duced computer graphics used precomputed tables of sines and cosines because table
lookup was faster than the actual evaluation of a floating-point-valued function.

Lesson 3: Fibonacci numbers revisited

Goals: See the stunning effect memoization can have.

By applying memoization (using a simple array) to the Fibonacci function, each of
the values 

the mathematical sense can be memoized. (Such functions are sometimes called
pure functions.)

An interesting historical note: memoization is not only useful when it comes
to improving the asymptotic time complexity. For instance, many early programs
that produced computer graphics used precomputed tables of sines and cosines
because table lookup was faster than the actual evaluation of a floating-point-
valued function.

Lesson 3: Fibonacci numbers revisited

Goals: See the stunning effect memoization can have.
By applying memoization (using a simple array) to the Fibonacci function,

each of the values F (1) through F (n) is only computed once, using a single addi-
tion. Therefore, we suddenly have a program that only performs Θ(n) additions
to compute the value F (n): quite an improvement over the original exponential
time. The above Python program can now easily compute F (1000).

(Note that Python operates with arbitrarily large integers. The n-th Fi-
bonacci number is exponential in n and therefore has Θ(n) digits. In the RAM
model, the actual time complexity of the above algorithm is O(n2), as each
addition of two O(n)-digit numbers takes O(n) steps.)

Here it is important to highlight the contrast: exponential time without vs.
polynomial time with memoization. It is also instructional to draw a new, col-
lapsed version of the entire recursion tree for n = 6.

Lesson 4: Maximum weighted independent set on a line

Goals: Encounter the first problem solvable using dynamic programming. Learn
how to write a brute force solution in a good way, and how to use memoization
to “magically” turn it into an efficient algorithm.

Statement: Given is a sequence of n bottles, their volumes are v0 through
vn−1. Drink as much as you can, given that you cannot drink from any two
adjacent bottles.

This problem has a very short and simple statement and only requires a
simple one-dimensional array to store the input. But the main reason why we
elected to use this as the first example will become apparent once we implement
and examine a brute force solution for this problem.

Our goal is to implement a recursive solution that generates all valid sets
of bottles and chooses the best among them. Such a recursive solution can be
based on a simple observation: either we choose the last bottle or we don’t. If
we don’t, we want to find the best solution from among the first n − 1 bottles.
If we do, we are not allowed to take the penultimate bottle and therefore we are
looking for the best solution among the first n− 2 bottles.

v = [3, 1, 4, 1, 5, 9, 2, 6]

def solve(k):

  through 

Note that this implementation neglects the case n = 0 and uses n = 1 and
n = 2 as the base case. This is intentional, the purpose is a more elegant analysis
later.

We can now run this program and have it compute consecutive values of the
Fibonacci sequence:

for n in range(1,100): print(n, F(n))

The first few rows of input will appear instantly but already around n = 35
the program will slow down to a crawl. We can empirically measure that each
next value takes about 1.6 times longer to compute than the previous one.

What is going on here? The easiest way to see it is to log each recursive call:

def F(n):

print(’calling F(’ + str(n) + ’)’)

...

Already for small values like n = 6 we quickly discover that the same function
call is made multiple times. Here it is instructional to show the entire recursion
tree for n = 6, we omit the picture here to conserve space.

Here, a suitable homework is to leave the students analyse how many times
F (n − k) gets called during the computation of F (n). For our version of the
implementation the answer to this question are again precisely the Fibonacci
numbers.

Alternately, we can just directly estimate the whole time complexity: when
computing F (n), each leaf of the recursion tree contributes 1 to the final result.
(This is the rationale for our choice to use n = 1 and n = 2 as base cases.) Hence,
there are precisely F (n) leaves and thus precisely F (n) − 1 inner nodes in the
recursion tree. In other words, the running time of the computation of F (n) is
clearly proportional to the value of F (n), which is known to grow exponentially.

Lesson 2: Memoization

Goals: Learn about memoization and conditions when it can be applied.
One of the points that is woefully neglected in traditional textbooks is the

difference between functions in the mathematical sense and in the program-
ming sense. The output of a mathematical function only depends on its inputs:
cos(π/3) today is the same value as cos(π/3) tomorrow. For a function in a com-
puter program, two consecutive calls with the same arguments may often return
different values. There are lots of different reasons why this may happen. For
instance, the output of the function may depend on global variables, on environ-
ment variables (such as the current locale settings), on pseudorandom numbers,
on the input from a user, etc. (Listing these is actually a lovely exercise for
students!)

Given the above observation, memoization is a very straightforward concept
for students: we simply want to avoid computing the same thing twice. And it
should now be clear that any function in our program that is also a function in

  is only computed once, using a single addition. There-
fore, we suddenly have a program that only performs 

the mathematical sense can be memoized. (Such functions are sometimes called
pure functions.)

An interesting historical note: memoization is not only useful when it comes
to improving the asymptotic time complexity. For instance, many early programs
that produced computer graphics used precomputed tables of sines and cosines
because table lookup was faster than the actual evaluation of a floating-point-
valued function.

Lesson 3: Fibonacci numbers revisited

Goals: See the stunning effect memoization can have.
By applying memoization (using a simple array) to the Fibonacci function,

each of the values F (1) through F (n) is only computed once, using a single addi-
tion. Therefore, we suddenly have a program that only performs Θ(n) additions
to compute the value F (n): quite an improvement over the original exponential
time. The above Python program can now easily compute F (1000).

(Note that Python operates with arbitrarily large integers. The n-th Fi-
bonacci number is exponential in n and therefore has Θ(n) digits. In the RAM
model, the actual time complexity of the above algorithm is O(n2), as each
addition of two O(n)-digit numbers takes O(n) steps.)

Here it is important to highlight the contrast: exponential time without vs.
polynomial time with memoization. It is also instructional to draw a new, col-
lapsed version of the entire recursion tree for n = 6.

Lesson 4: Maximum weighted independent set on a line

Goals: Encounter the first problem solvable using dynamic programming. Learn
how to write a brute force solution in a good way, and how to use memoization
to “magically” turn it into an efficient algorithm.

Statement: Given is a sequence of n bottles, their volumes are v0 through
vn−1. Drink as much as you can, given that you cannot drink from any two
adjacent bottles.

This problem has a very short and simple statement and only requires a
simple one-dimensional array to store the input. But the main reason why we
elected to use this as the first example will become apparent once we implement
and examine a brute force solution for this problem.

Our goal is to implement a recursive solution that generates all valid sets
of bottles and chooses the best among them. Such a recursive solution can be
based on a simple observation: either we choose the last bottle or we don’t. If
we don’t, we want to find the best solution from among the first n − 1 bottles.
If we do, we are not allowed to take the penultimate bottle and therefore we are
looking for the best solution among the first n− 2 bottles.

v = [3, 1, 4, 1, 5, 9, 2, 6]

def solve(k):

  additions to compute the
value 

Note that this implementation neglects the case n = 0 and uses n = 1 and
n = 2 as the base case. This is intentional, the purpose is a more elegant analysis
later.

We can now run this program and have it compute consecutive values of the
Fibonacci sequence:

for n in range(1,100): print(n, F(n))

The first few rows of input will appear instantly but already around n = 35
the program will slow down to a crawl. We can empirically measure that each
next value takes about 1.6 times longer to compute than the previous one.

What is going on here? The easiest way to see it is to log each recursive call:

def F(n):

print(’calling F(’ + str(n) + ’)’)

...

Already for small values like n = 6 we quickly discover that the same function
call is made multiple times. Here it is instructional to show the entire recursion
tree for n = 6, we omit the picture here to conserve space.

Here, a suitable homework is to leave the students analyse how many times
F (n − k) gets called during the computation of F (n). For our version of the
implementation the answer to this question are again precisely the Fibonacci
numbers.

Alternately, we can just directly estimate the whole time complexity: when
computing F (n), each leaf of the recursion tree contributes 1 to the final result.
(This is the rationale for our choice to use n = 1 and n = 2 as base cases.) Hence,
there are precisely F (n) leaves and thus precisely F (n) − 1 inner nodes in the
recursion tree. In other words, the running time of the computation of F (n) is
clearly proportional to the value of F (n), which is known to grow exponentially.

Lesson 2: Memoization

Goals: Learn about memoization and conditions when it can be applied.
One of the points that is woefully neglected in traditional textbooks is the

difference between functions in the mathematical sense and in the program-
ming sense. The output of a mathematical function only depends on its inputs:
cos(π/3) today is the same value as cos(π/3) tomorrow. For a function in a com-
puter program, two consecutive calls with the same arguments may often return
different values. There are lots of different reasons why this may happen. For
instance, the output of the function may depend on global variables, on environ-
ment variables (such as the current locale settings), on pseudorandom numbers,
on the input from a user, etc. (Listing these is actually a lovely exercise for
students!)

Given the above observation, memoization is a very straightforward concept
for students: we simply want to avoid computing the same thing twice. And it
should now be clear that any function in our program that is also a function in

: quite an improvement over the original exponential time. The above Py-
thon program can now easily compute 

the mathematical sense can be memoized. (Such functions are sometimes called
pure functions.)

An interesting historical note: memoization is not only useful when it comes
to improving the asymptotic time complexity. For instance, many early programs
that produced computer graphics used precomputed tables of sines and cosines
because table lookup was faster than the actual evaluation of a floating-point-
valued function.

Lesson 3: Fibonacci numbers revisited

Goals: See the stunning effect memoization can have.
By applying memoization (using a simple array) to the Fibonacci function,

each of the values F (1) through F (n) is only computed once, using a single addi-
tion. Therefore, we suddenly have a program that only performs Θ(n) additions
to compute the value F (n): quite an improvement over the original exponential
time. The above Python program can now easily compute F (1000).

(Note that Python operates with arbitrarily large integers. The n-th Fi-
bonacci number is exponential in n and therefore has Θ(n) digits. In the RAM
model, the actual time complexity of the above algorithm is O(n2), as each
addition of two O(n)-digit numbers takes O(n) steps.)

Here it is important to highlight the contrast: exponential time without vs.
polynomial time with memoization. It is also instructional to draw a new, col-
lapsed version of the entire recursion tree for n = 6.

Lesson 4: Maximum weighted independent set on a line

Goals: Encounter the first problem solvable using dynamic programming. Learn
how to write a brute force solution in a good way, and how to use memoization
to “magically” turn it into an efficient algorithm.

Statement: Given is a sequence of n bottles, their volumes are v0 through
vn−1. Drink as much as you can, given that you cannot drink from any two
adjacent bottles.

This problem has a very short and simple statement and only requires a
simple one-dimensional array to store the input. But the main reason why we
elected to use this as the first example will become apparent once we implement
and examine a brute force solution for this problem.

Our goal is to implement a recursive solution that generates all valid sets
of bottles and chooses the best among them. Such a recursive solution can be
based on a simple observation: either we choose the last bottle or we don’t. If
we don’t, we want to find the best solution from among the first n − 1 bottles.
If we do, we are not allowed to take the penultimate bottle and therefore we are
looking for the best solution among the first n− 2 bottles.

v = [3, 1, 4, 1, 5, 9, 2, 6]

def solve(k):

.
(Note that Python operates with arbitrarily large integers. The  -th  Fibonacci num-

ber is exponential in    and therefore has 

the mathematical sense can be memoized. (Such functions are sometimes called
pure functions.)

An interesting historical note: memoization is not only useful when it comes
to improving the asymptotic time complexity. For instance, many early programs
that produced computer graphics used precomputed tables of sines and cosines
because table lookup was faster than the actual evaluation of a floating-point-
valued function.

Lesson 3: Fibonacci numbers revisited

Goals: See the stunning effect memoization can have.
By applying memoization (using a simple array) to the Fibonacci function,

each of the values F (1) through F (n) is only computed once, using a single addi-
tion. Therefore, we suddenly have a program that only performs Θ(n) additions
to compute the value F (n): quite an improvement over the original exponential
time. The above Python program can now easily compute F (1000).

(Note that Python operates with arbitrarily large integers. The n-th Fi-
bonacci number is exponential in n and therefore has Θ(n) digits. In the RAM
model, the actual time complexity of the above algorithm is O(n2), as each
addition of two O(n)-digit numbers takes O(n) steps.)

Here it is important to highlight the contrast: exponential time without vs.
polynomial time with memoization. It is also instructional to draw a new, col-
lapsed version of the entire recursion tree for n = 6.

Lesson 4: Maximum weighted independent set on a line

Goals: Encounter the first problem solvable using dynamic programming. Learn
how to write a brute force solution in a good way, and how to use memoization
to “magically” turn it into an efficient algorithm.

Statement: Given is a sequence of n bottles, their volumes are v0 through
vn−1. Drink as much as you can, given that you cannot drink from any two
adjacent bottles.

This problem has a very short and simple statement and only requires a
simple one-dimensional array to store the input. But the main reason why we
elected to use this as the first example will become apparent once we implement
and examine a brute force solution for this problem.

Our goal is to implement a recursive solution that generates all valid sets
of bottles and chooses the best among them. Such a recursive solution can be
based on a simple observation: either we choose the last bottle or we don’t. If
we don’t, we want to find the best solution from among the first n − 1 bottles.
If we do, we are not allowed to take the penultimate bottle and therefore we are
looking for the best solution among the first n− 2 bottles.

v = [3, 1, 4, 1, 5, 9, 2, 6]

def solve(k):

  digits. In the RAM model, the actual
time complexity of the above algorithm is 

the mathematical sense can be memoized. (Such functions are sometimes called
pure functions.)

An interesting historical note: memoization is not only useful when it comes
to improving the asymptotic time complexity. For instance, many early programs
that produced computer graphics used precomputed tables of sines and cosines
because table lookup was faster than the actual evaluation of a floating-point-
valued function.

Lesson 3: Fibonacci numbers revisited

Goals: See the stunning effect memoization can have.
By applying memoization (using a simple array) to the Fibonacci function,

each of the values F (1) through F (n) is only computed once, using a single addi-
tion. Therefore, we suddenly have a program that only performs Θ(n) additions
to compute the value F (n): quite an improvement over the original exponential
time. The above Python program can now easily compute F (1000).

(Note that Python operates with arbitrarily large integers. The n-th Fi-
bonacci number is exponential in n and therefore has Θ(n) digits. In the RAM
model, the actual time complexity of the above algorithm is O(n2), as each
addition of two O(n)-digit numbers takes O(n) steps.)

Here it is important to highlight the contrast: exponential time without vs.
polynomial time with memoization. It is also instructional to draw a new, col-
lapsed version of the entire recursion tree for n = 6.

Lesson 4: Maximum weighted independent set on a line

Goals: Encounter the first problem solvable using dynamic programming. Learn
how to write a brute force solution in a good way, and how to use memoization
to “magically” turn it into an efficient algorithm.

Statement: Given is a sequence of n bottles, their volumes are v0 through
vn−1. Drink as much as you can, given that you cannot drink from any two
adjacent bottles.

This problem has a very short and simple statement and only requires a
simple one-dimensional array to store the input. But the main reason why we
elected to use this as the first example will become apparent once we implement
and examine a brute force solution for this problem.

Our goal is to implement a recursive solution that generates all valid sets
of bottles and chooses the best among them. Such a recursive solution can be
based on a simple observation: either we choose the last bottle or we don’t. If
we don’t, we want to find the best solution from among the first n − 1 bottles.
If we do, we are not allowed to take the penultimate bottle and therefore we are
looking for the best solution among the first n− 2 bottles.

v = [3, 1, 4, 1, 5, 9, 2, 6]

def solve(k):

, as each addition of two 

the mathematical sense can be memoized. (Such functions are sometimes called
pure functions.)

An interesting historical note: memoization is not only useful when it comes
to improving the asymptotic time complexity. For instance, many early programs
that produced computer graphics used precomputed tables of sines and cosines
because table lookup was faster than the actual evaluation of a floating-point-
valued function.

Lesson 3: Fibonacci numbers revisited

Goals: See the stunning effect memoization can have.
By applying memoization (using a simple array) to the Fibonacci function,

each of the values F (1) through F (n) is only computed once, using a single addi-
tion. Therefore, we suddenly have a program that only performs Θ(n) additions
to compute the value F (n): quite an improvement over the original exponential
time. The above Python program can now easily compute F (1000).

(Note that Python operates with arbitrarily large integers. The n-th Fi-
bonacci number is exponential in n and therefore has Θ(n) digits. In the RAM
model, the actual time complexity of the above algorithm is O(n2), as each
addition of two O(n)-digit numbers takes O(n) steps.)

Here it is important to highlight the contrast: exponential time without vs.
polynomial time with memoization. It is also instructional to draw a new, col-
lapsed version of the entire recursion tree for n = 6.

Lesson 4: Maximum weighted independent set on a line

Goals: Encounter the first problem solvable using dynamic programming. Learn
how to write a brute force solution in a good way, and how to use memoization
to “magically” turn it into an efficient algorithm.

Statement: Given is a sequence of n bottles, their volumes are v0 through
vn−1. Drink as much as you can, given that you cannot drink from any two
adjacent bottles.

This problem has a very short and simple statement and only requires a
simple one-dimensional array to store the input. But the main reason why we
elected to use this as the first example will become apparent once we implement
and examine a brute force solution for this problem.

Our goal is to implement a recursive solution that generates all valid sets
of bottles and chooses the best among them. Such a recursive solution can be
based on a simple observation: either we choose the last bottle or we don’t. If
we don’t, we want to find the best solution from among the first n − 1 bottles.
If we do, we are not allowed to take the penultimate bottle and therefore we are
looking for the best solution among the first n− 2 bottles.

v = [3, 1, 4, 1, 5, 9, 2, 6]

def solve(k):

-digit
numbers takes 

the mathematical sense can be memoized. (Such functions are sometimes called
pure functions.)

An interesting historical note: memoization is not only useful when it comes
to improving the asymptotic time complexity. For instance, many early programs
that produced computer graphics used precomputed tables of sines and cosines
because table lookup was faster than the actual evaluation of a floating-point-
valued function.

Lesson 3: Fibonacci numbers revisited

Goals: See the stunning effect memoization can have.
By applying memoization (using a simple array) to the Fibonacci function,

each of the values F (1) through F (n) is only computed once, using a single addi-
tion. Therefore, we suddenly have a program that only performs Θ(n) additions
to compute the value F (n): quite an improvement over the original exponential
time. The above Python program can now easily compute F (1000).

(Note that Python operates with arbitrarily large integers. The n-th Fi-
bonacci number is exponential in n and therefore has Θ(n) digits. In the RAM
model, the actual time complexity of the above algorithm is O(n2), as each
addition of two O(n)-digit numbers takes O(n) steps.)

Here it is important to highlight the contrast: exponential time without vs.
polynomial time with memoization. It is also instructional to draw a new, col-
lapsed version of the entire recursion tree for n = 6.

Lesson 4: Maximum weighted independent set on a line

Goals: Encounter the first problem solvable using dynamic programming. Learn
how to write a brute force solution in a good way, and how to use memoization
to “magically” turn it into an efficient algorithm.

Statement: Given is a sequence of n bottles, their volumes are v0 through
vn−1. Drink as much as you can, given that you cannot drink from any two
adjacent bottles.

This problem has a very short and simple statement and only requires a
simple one-dimensional array to store the input. But the main reason why we
elected to use this as the first example will become apparent once we implement
and examine a brute force solution for this problem.

Our goal is to implement a recursive solution that generates all valid sets
of bottles and chooses the best among them. Such a recursive solution can be
based on a simple observation: either we choose the last bottle or we don’t. If
we don’t, we want to find the best solution from among the first n − 1 bottles.
If we do, we are not allowed to take the penultimate bottle and therefore we are
looking for the best solution among the first n− 2 bottles.

v = [3, 1, 4, 1, 5, 9, 2, 6]

def solve(k):

  steps.)
Here it is important to highlight the contrast: exponential time without vs. polyno-

mial time with memoization. It is also instructional to draw a new, collapsed version of
the entire recursion tree for   = 6.

Lesson 4: Maximum weighted independent set on a line

Goals: Encounter the first problem solvable using dynamic programming. Learn how to
write a brute force solution in a good way, and how to use memoization to “magically”
turn it into an efficient algorithm.

Statement: Given is a sequence of    bottles, their volumes are 

the mathematical sense can be memoized. (Such functions are sometimes called
pure functions.)

An interesting historical note: memoization is not only useful when it comes
to improving the asymptotic time complexity. For instance, many early programs
that produced computer graphics used precomputed tables of sines and cosines
because table lookup was faster than the actual evaluation of a floating-point-
valued function.

Lesson 3: Fibonacci numbers revisited

Goals: See the stunning effect memoization can have.
By applying memoization (using a simple array) to the Fibonacci function,

each of the values F (1) through F (n) is only computed once, using a single addi-
tion. Therefore, we suddenly have a program that only performs Θ(n) additions
to compute the value F (n): quite an improvement over the original exponential
time. The above Python program can now easily compute F (1000).

(Note that Python operates with arbitrarily large integers. The n-th Fi-
bonacci number is exponential in n and therefore has Θ(n) digits. In the RAM
model, the actual time complexity of the above algorithm is O(n2), as each
addition of two O(n)-digit numbers takes O(n) steps.)

Here it is important to highlight the contrast: exponential time without vs.
polynomial time with memoization. It is also instructional to draw a new, col-
lapsed version of the entire recursion tree for n = 6.

Lesson 4: Maximum weighted independent set on a line

Goals: Encounter the first problem solvable using dynamic programming. Learn
how to write a brute force solution in a good way, and how to use memoization
to “magically” turn it into an efficient algorithm.

Statement: Given is a sequence of n bottles, their volumes are v0 through
vn−1. Drink as much as you can, given that you cannot drink from any two
adjacent bottles.

This problem has a very short and simple statement and only requires a
simple one-dimensional array to store the input. But the main reason why we
elected to use this as the first example will become apparent once we implement
and examine a brute force solution for this problem.

Our goal is to implement a recursive solution that generates all valid sets
of bottles and chooses the best among them. Such a recursive solution can be
based on a simple observation: either we choose the last bottle or we don’t. If
we don’t, we want to find the best solution from among the first n − 1 bottles.
If we do, we are not allowed to take the penultimate bottle and therefore we are
looking for the best solution among the first n− 2 bottles.

v = [3, 1, 4, 1, 5, 9, 2, 6]

def solve(k):

  through 

the mathematical sense can be memoized. (Such functions are sometimes called
pure functions.)

An interesting historical note: memoization is not only useful when it comes
to improving the asymptotic time complexity. For instance, many early programs
that produced computer graphics used precomputed tables of sines and cosines
because table lookup was faster than the actual evaluation of a floating-point-
valued function.

Lesson 3: Fibonacci numbers revisited

Goals: See the stunning effect memoization can have.
By applying memoization (using a simple array) to the Fibonacci function,

each of the values F (1) through F (n) is only computed once, using a single addi-
tion. Therefore, we suddenly have a program that only performs Θ(n) additions
to compute the value F (n): quite an improvement over the original exponential
time. The above Python program can now easily compute F (1000).

(Note that Python operates with arbitrarily large integers. The n-th Fi-
bonacci number is exponential in n and therefore has Θ(n) digits. In the RAM
model, the actual time complexity of the above algorithm is O(n2), as each
addition of two O(n)-digit numbers takes O(n) steps.)

Here it is important to highlight the contrast: exponential time without vs.
polynomial time with memoization. It is also instructional to draw a new, col-
lapsed version of the entire recursion tree for n = 6.

Lesson 4: Maximum weighted independent set on a line

Goals: Encounter the first problem solvable using dynamic programming. Learn
how to write a brute force solution in a good way, and how to use memoization
to “magically” turn it into an efficient algorithm.

Statement: Given is a sequence of n bottles, their volumes are v0 through
vn−1. Drink as much as you can, given that you cannot drink from any two
adjacent bottles.

This problem has a very short and simple statement and only requires a
simple one-dimensional array to store the input. But the main reason why we
elected to use this as the first example will become apparent once we implement
and examine a brute force solution for this problem.

Our goal is to implement a recursive solution that generates all valid sets
of bottles and chooses the best among them. Such a recursive solution can be
based on a simple observation: either we choose the last bottle or we don’t. If
we don’t, we want to find the best solution from among the first n − 1 bottles.
If we do, we are not allowed to take the penultimate bottle and therefore we are
looking for the best solution among the first n− 2 bottles.

v = [3, 1, 4, 1, 5, 9, 2, 6]

def solve(k):

.
Drink as much as you can, given that you cannot drink from any two adjacent bottles.

This problem has a very short and simple statement and only requires a simple one-
dimensional array to store the input. But the main reason why we elected to use this as
the first example will become apparent once we implement and examine a brute force
solution for this problem.

Our goal is to implement a recursive solution that generates all valid sets of bottles
and chooses the best among them. Such a recursive solution can be based on a simple
observation: either we choose the last bottle or we don’t. If we don’t, we want to find the
best solution from among the first   – 1  bottles.

If we do, we are not allowed to take the penultimate bottle and therefore we are look-
ing for the best solution among the first   – 2  bottles.

v = [3, 1, 4, 1, 5, 9, 2, 6]
def solve(k):

Towards a Better Way to Teach Dynamic Programming 53

''' returns the best solution for the first k bottles '''
if k == 1: return v[0]
if k == 2: return max(v[0], v[1])
return max(solve(k-1), v[k-1] + solve(k-2))

It should now be obvious that the time complexity of this program is exponential – in
fact, the number of recursive calls needed to evaluate  ()  is precisely the same as
the number of calls needed to evaluate 

Note that this implementation neglects the case n = 0 and uses n = 1 and
n = 2 as the base case. This is intentional, the purpose is a more elegant analysis
later.

We can now run this program and have it compute consecutive values of the
Fibonacci sequence:

for n in range(1,100): print(n, F(n))

The first few rows of input will appear instantly but already around n = 35
the program will slow down to a crawl. We can empirically measure that each
next value takes about 1.6 times longer to compute than the previous one.

What is going on here? The easiest way to see it is to log each recursive call:

def F(n):

print(’calling F(’ + str(n) + ’)’)

...

Already for small values like n = 6 we quickly discover that the same function
call is made multiple times. Here it is instructional to show the entire recursion
tree for n = 6, we omit the picture here to conserve space.

Here, a suitable homework is to leave the students analyse how many times
F (n − k) gets called during the computation of F (n). For our version of the
implementation the answer to this question are again precisely the Fibonacci
numbers.

Alternately, we can just directly estimate the whole time complexity: when
computing F (n), each leaf of the recursion tree contributes 1 to the final result.
(This is the rationale for our choice to use n = 1 and n = 2 as base cases.) Hence,
there are precisely F (n) leaves and thus precisely F (n) − 1 inner nodes in the
recursion tree. In other words, the running time of the computation of F (n) is
clearly proportional to the value of F (n), which is known to grow exponentially.

Lesson 2: Memoization

Goals: Learn about memoization and conditions when it can be applied.
One of the points that is woefully neglected in traditional textbooks is the

difference between functions in the mathematical sense and in the program-
ming sense. The output of a mathematical function only depends on its inputs:
cos(π/3) today is the same value as cos(π/3) tomorrow. For a function in a com-
puter program, two consecutive calls with the same arguments may often return
different values. There are lots of different reasons why this may happen. For
instance, the output of the function may depend on global variables, on environ-
ment variables (such as the current locale settings), on pseudorandom numbers,
on the input from a user, etc. (Listing these is actually a lovely exercise for
students!)

Given the above observation, memoization is a very straightforward concept
for students: we simply want to avoid computing the same thing twice. And it
should now be clear that any function in our program that is also a function in

  in our first lesson.
A key observation to make here is that solve can be considered a pure function.

Even though it does access the global variable  v, its contents remain the same through-
out the execution of the program. Hence, we may apply memoization to solve in order
to reduce the time complexity from 

’’’ returns the best solution for the first k bottles ’’’

if k == 1: return v[0]

if k == 2: return max(v[0], v[1])

return max(solve(k-1), v[k-1] + solve(k-2))

It should now be obvious that the time complexity of this program is expo-
nential – in fact, the number of recursive calls needed to evaluate solve(n) is
precisely the same as the number of calls needed to evaluate F (n) in our first
lesson.

A key observation to make here is that solve can be considered a pure func-
tion. Even though it does access the global variable v, its contents remain the
same throughout the execution of the program. Hence, we may apply memoiza-
tion to solve in order to reduce the time complexity from Θ(φn) to Θ(n).

(Note that solve can easily be turned into a true pure function if we pass a
constant reference to v to solve as a second argument.)

Lesson 5: An iterative solution to the previous problem

Goals: Learn about the duality between the top-down and the bottom-up ap-
proach.

The subproblems solved by the memoized recursive solution can be naturally
ordered by size. The same recurrence can now be used to write an iterative
solution. A side-by-side comparison of both programs helps highlight parts that
remained the same / only changed syntactically.

Optional lesson 6: Paths in a grid

Goals: Developing a bottom-up solution directly.
Statement: Given is a grid. Count all shortest paths along the grid from (0, 0)

to (a, b).
The answer is obviously the binomial coefficient

�
a+b
a


, but the path-based

point of view allows a natural formulation of a recurrence relation: Let P (x, y)
be the number of ways to reach (x, y). Each path that reaches (a, b) goes either
through (a−1, b) or through (a, b−1). Hence, P (a, b) = P (a−1, b)+P (a, b−1).

Statement 2: Now some grid points are blocked by some obstacles. Count all
paths that go from (0, 0) to (a, b) in a+ b steps and avoid all obstacles.

The recurrence remains the same, only now the blocked grid points have
P (x, y) = 0. It is instructional to solve small instances on this problem on paper
– in fact, many of our students are familiar with this problem from earlier Math
classes.

Lesson 7: Longest common subsequence

Goals: Investigating the differences between the top-down and the bottom-up
approach.

  to 

the mathematical sense can be memoized. (Such functions are sometimes called
pure functions.)

An interesting historical note: memoization is not only useful when it comes
to improving the asymptotic time complexity. For instance, many early programs
that produced computer graphics used precomputed tables of sines and cosines
because table lookup was faster than the actual evaluation of a floating-point-
valued function.

Lesson 3: Fibonacci numbers revisited

Goals: See the stunning effect memoization can have.
By applying memoization (using a simple array) to the Fibonacci function,

each of the values F (1) through F (n) is only computed once, using a single addi-
tion. Therefore, we suddenly have a program that only performs Θ(n) additions
to compute the value F (n): quite an improvement over the original exponential
time. The above Python program can now easily compute F (1000).

(Note that Python operates with arbitrarily large integers. The n-th Fi-
bonacci number is exponential in n and therefore has Θ(n) digits. In the RAM
model, the actual time complexity of the above algorithm is O(n2), as each
addition of two O(n)-digit numbers takes O(n) steps.)

Here it is important to highlight the contrast: exponential time without vs.
polynomial time with memoization. It is also instructional to draw a new, col-
lapsed version of the entire recursion tree for n = 6.

Lesson 4: Maximum weighted independent set on a line

Goals: Encounter the first problem solvable using dynamic programming. Learn
how to write a brute force solution in a good way, and how to use memoization
to “magically” turn it into an efficient algorithm.

Statement: Given is a sequence of n bottles, their volumes are v0 through
vn−1. Drink as much as you can, given that you cannot drink from any two
adjacent bottles.

This problem has a very short and simple statement and only requires a
simple one-dimensional array to store the input. But the main reason why we
elected to use this as the first example will become apparent once we implement
and examine a brute force solution for this problem.

Our goal is to implement a recursive solution that generates all valid sets
of bottles and chooses the best among them. Such a recursive solution can be
based on a simple observation: either we choose the last bottle or we don’t. If
we don’t, we want to find the best solution from among the first n − 1 bottles.
If we do, we are not allowed to take the penultimate bottle and therefore we are
looking for the best solution among the first n− 2 bottles.

v = [3, 1, 4, 1, 5, 9, 2, 6]

def solve(k):

.
(Note that solve can easily be turned into a true pure function if we pass a constant

reference to v to solve as a second argument.)

Lesson 5: An iterative solution to the previous problem

Goals: Learn about the duality between the top-down and the bottom-up approach.

The subproblems solved by the memoized recursive solution can be naturally or-
dered by size. The same recurrence can now be used to write an iterative solution.
A side-by-side comparison of both programs helps highlight parts that remained the
same / only changed syntactically.

Optional lesson 6: Paths in a grid

Goals: Developing a bottom-up solution directly.

Statement: Given is a grid. Count all shortest paths along the grid from 

’’’ returns the best solution for the first k bottles ’’’

if k == 1: return v[0]

if k == 2: return max(v[0], v[1])

return max(solve(k-1), v[k-1] + solve(k-2))

It should now be obvious that the time complexity of this program is expo-
nential – in fact, the number of recursive calls needed to evaluate solve(n) is
precisely the same as the number of calls needed to evaluate F (n) in our first
lesson.

A key observation to make here is that solve can be considered a pure func-
tion. Even though it does access the global variable v, its contents remain the
same throughout the execution of the program. Hence, we may apply memoiza-
tion to solve in order to reduce the time complexity from Θ(φn) to Θ(n).

(Note that solve can easily be turned into a true pure function if we pass a
constant reference to v to solve as a second argument.)

Lesson 5: An iterative solution to the previous problem

Goals: Learn about the duality between the top-down and the bottom-up ap-
proach.

The subproblems solved by the memoized recursive solution can be naturally
ordered by size. The same recurrence can now be used to write an iterative
solution. A side-by-side comparison of both programs helps highlight parts that
remained the same / only changed syntactically.

Optional lesson 6: Paths in a grid

Goals: Developing a bottom-up solution directly.
Statement: Given is a grid. Count all shortest paths along the grid from (0, 0)

to (a, b).
The answer is obviously the binomial coefficient

�
a+b
a


, but the path-based

point of view allows a natural formulation of a recurrence relation: Let P (x, y)
be the number of ways to reach (x, y). Each path that reaches (a, b) goes either
through (a−1, b) or through (a, b−1). Hence, P (a, b) = P (a−1, b)+P (a, b−1).

Statement 2: Now some grid points are blocked by some obstacles. Count all
paths that go from (0, 0) to (a, b) in a+ b steps and avoid all obstacles.

The recurrence remains the same, only now the blocked grid points have
P (x, y) = 0. It is instructional to solve small instances on this problem on paper
– in fact, many of our students are familiar with this problem from earlier Math
classes.

Lesson 7: Longest common subsequence

Goals: Investigating the differences between the top-down and the bottom-up
approach.

  to 

’’’ returns the best solution for the first k bottles ’’’

if k == 1: return v[0]

if k == 2: return max(v[0], v[1])

return max(solve(k-1), v[k-1] + solve(k-2))

It should now be obvious that the time complexity of this program is expo-
nential – in fact, the number of recursive calls needed to evaluate solve(n) is
precisely the same as the number of calls needed to evaluate F (n) in our first
lesson.

A key observation to make here is that solve can be considered a pure func-
tion. Even though it does access the global variable v, its contents remain the
same throughout the execution of the program. Hence, we may apply memoiza-
tion to solve in order to reduce the time complexity from Θ(φn) to Θ(n).

(Note that solve can easily be turned into a true pure function if we pass a
constant reference to v to solve as a second argument.)

Lesson 5: An iterative solution to the previous problem

Goals: Learn about the duality between the top-down and the bottom-up ap-
proach.

The subproblems solved by the memoized recursive solution can be naturally
ordered by size. The same recurrence can now be used to write an iterative
solution. A side-by-side comparison of both programs helps highlight parts that
remained the same / only changed syntactically.

Optional lesson 6: Paths in a grid

Goals: Developing a bottom-up solution directly.
Statement: Given is a grid. Count all shortest paths along the grid from (0, 0)

to (a, b).
The answer is obviously the binomial coefficient

�
a+b
a


, but the path-based

point of view allows a natural formulation of a recurrence relation: Let P (x, y)
be the number of ways to reach (x, y). Each path that reaches (a, b) goes either
through (a−1, b) or through (a, b−1). Hence, P (a, b) = P (a−1, b)+P (a, b−1).

Statement 2: Now some grid points are blocked by some obstacles. Count all
paths that go from (0, 0) to (a, b) in a+ b steps and avoid all obstacles.

The recurrence remains the same, only now the blocked grid points have
P (x, y) = 0. It is instructional to solve small instances on this problem on paper
– in fact, many of our students are familiar with this problem from earlier Math
classes.

Lesson 7: Longest common subsequence

Goals: Investigating the differences between the top-down and the bottom-up
approach.

.

The answer is obviously the binomial coefficient 

’’’ returns the best solution for the first k bottles ’’’

if k == 1: return v[0]

if k == 2: return max(v[0], v[1])

return max(solve(k-1), v[k-1] + solve(k-2))

It should now be obvious that the time complexity of this program is expo-
nential – in fact, the number of recursive calls needed to evaluate solve(n) is
precisely the same as the number of calls needed to evaluate F (n) in our first
lesson.

A key observation to make here is that solve can be considered a pure func-
tion. Even though it does access the global variable v, its contents remain the
same throughout the execution of the program. Hence, we may apply memoiza-
tion to solve in order to reduce the time complexity from Θ(φn) to Θ(n).

(Note that solve can easily be turned into a true pure function if we pass a
constant reference to v to solve as a second argument.)

Lesson 5: An iterative solution to the previous problem

Goals: Learn about the duality between the top-down and the bottom-up ap-
proach.

The subproblems solved by the memoized recursive solution can be naturally
ordered by size. The same recurrence can now be used to write an iterative
solution. A side-by-side comparison of both programs helps highlight parts that
remained the same / only changed syntactically.

Optional lesson 6: Paths in a grid

Goals: Developing a bottom-up solution directly.
Statement: Given is a grid. Count all shortest paths along the grid from (0, 0)

to (a, b).
The answer is obviously the binomial coefficient

�
a+b
a


, but the path-based

point of view allows a natural formulation of a recurrence relation: Let P (x, y)
be the number of ways to reach (x, y). Each path that reaches (a, b) goes either
through (a−1, b) or through (a, b−1). Hence, P (a, b) = P (a−1, b)+P (a, b−1).

Statement 2: Now some grid points are blocked by some obstacles. Count all
paths that go from (0, 0) to (a, b) in a+ b steps and avoid all obstacles.

The recurrence remains the same, only now the blocked grid points have
P (x, y) = 0. It is instructional to solve small instances on this problem on paper
– in fact, many of our students are familiar with this problem from earlier Math
classes.

Lesson 7: Longest common subsequence

Goals: Investigating the differences between the top-down and the bottom-up
approach.

, but the path-based point of
view allows a natural formulation of a recurrence relation: Let 

’’’ returns the best solution for the first k bottles ’’’

if k == 1: return v[0]

if k == 2: return max(v[0], v[1])

return max(solve(k-1), v[k-1] + solve(k-2))

It should now be obvious that the time complexity of this program is expo-
nential – in fact, the number of recursive calls needed to evaluate solve(n) is
precisely the same as the number of calls needed to evaluate F (n) in our first
lesson.

A key observation to make here is that solve can be considered a pure func-
tion. Even though it does access the global variable v, its contents remain the
same throughout the execution of the program. Hence, we may apply memoiza-
tion to solve in order to reduce the time complexity from Θ(φn) to Θ(n).

(Note that solve can easily be turned into a true pure function if we pass a
constant reference to v to solve as a second argument.)

Lesson 5: An iterative solution to the previous problem

Goals: Learn about the duality between the top-down and the bottom-up ap-
proach.

The subproblems solved by the memoized recursive solution can be naturally
ordered by size. The same recurrence can now be used to write an iterative
solution. A side-by-side comparison of both programs helps highlight parts that
remained the same / only changed syntactically.

Optional lesson 6: Paths in a grid

Goals: Developing a bottom-up solution directly.
Statement: Given is a grid. Count all shortest paths along the grid from (0, 0)

to (a, b).
The answer is obviously the binomial coefficient

�
a+b
a


, but the path-based

point of view allows a natural formulation of a recurrence relation: Let P (x, y)
be the number of ways to reach (x, y). Each path that reaches (a, b) goes either
through (a−1, b) or through (a, b−1). Hence, P (a, b) = P (a−1, b)+P (a, b−1).

Statement 2: Now some grid points are blocked by some obstacles. Count all
paths that go from (0, 0) to (a, b) in a+ b steps and avoid all obstacles.

The recurrence remains the same, only now the blocked grid points have
P (x, y) = 0. It is instructional to solve small instances on this problem on paper
– in fact, many of our students are familiar with this problem from earlier Math
classes.

Lesson 7: Longest common subsequence

Goals: Investigating the differences between the top-down and the bottom-up
approach.

  be the number
of ways to reach 

’’’ returns the best solution for the first k bottles ’’’

if k == 1: return v[0]

if k == 2: return max(v[0], v[1])

return max(solve(k-1), v[k-1] + solve(k-2))

It should now be obvious that the time complexity of this program is expo-
nential – in fact, the number of recursive calls needed to evaluate solve(n) is
precisely the same as the number of calls needed to evaluate F (n) in our first
lesson.

A key observation to make here is that solve can be considered a pure func-
tion. Even though it does access the global variable v, its contents remain the
same throughout the execution of the program. Hence, we may apply memoiza-
tion to solve in order to reduce the time complexity from Θ(φn) to Θ(n).

(Note that solve can easily be turned into a true pure function if we pass a
constant reference to v to solve as a second argument.)

Lesson 5: An iterative solution to the previous problem

Goals: Learn about the duality between the top-down and the bottom-up ap-
proach.

The subproblems solved by the memoized recursive solution can be naturally
ordered by size. The same recurrence can now be used to write an iterative
solution. A side-by-side comparison of both programs helps highlight parts that
remained the same / only changed syntactically.

Optional lesson 6: Paths in a grid

Goals: Developing a bottom-up solution directly.
Statement: Given is a grid. Count all shortest paths along the grid from (0, 0)

to (a, b).
The answer is obviously the binomial coefficient

�
a+b
a


, but the path-based

point of view allows a natural formulation of a recurrence relation: Let P (x, y)
be the number of ways to reach (x, y). Each path that reaches (a, b) goes either
through (a−1, b) or through (a, b−1). Hence, P (a, b) = P (a−1, b)+P (a, b−1).

Statement 2: Now some grid points are blocked by some obstacles. Count all
paths that go from (0, 0) to (a, b) in a+ b steps and avoid all obstacles.

The recurrence remains the same, only now the blocked grid points have
P (x, y) = 0. It is instructional to solve small instances on this problem on paper
– in fact, many of our students are familiar with this problem from earlier Math
classes.

Lesson 7: Longest common subsequence

Goals: Investigating the differences between the top-down and the bottom-up
approach.

. Each path that reaches 

’’’ returns the best solution for the first k bottles ’’’

if k == 1: return v[0]

if k == 2: return max(v[0], v[1])

return max(solve(k-1), v[k-1] + solve(k-2))

It should now be obvious that the time complexity of this program is expo-
nential – in fact, the number of recursive calls needed to evaluate solve(n) is
precisely the same as the number of calls needed to evaluate F (n) in our first
lesson.

A key observation to make here is that solve can be considered a pure func-
tion. Even though it does access the global variable v, its contents remain the
same throughout the execution of the program. Hence, we may apply memoiza-
tion to solve in order to reduce the time complexity from Θ(φn) to Θ(n).

(Note that solve can easily be turned into a true pure function if we pass a
constant reference to v to solve as a second argument.)

Lesson 5: An iterative solution to the previous problem

Goals: Learn about the duality between the top-down and the bottom-up ap-
proach.

The subproblems solved by the memoized recursive solution can be naturally
ordered by size. The same recurrence can now be used to write an iterative
solution. A side-by-side comparison of both programs helps highlight parts that
remained the same / only changed syntactically.

Optional lesson 6: Paths in a grid

Goals: Developing a bottom-up solution directly.
Statement: Given is a grid. Count all shortest paths along the grid from (0, 0)

to (a, b).
The answer is obviously the binomial coefficient

�
a+b
a


, but the path-based

point of view allows a natural formulation of a recurrence relation: Let P (x, y)
be the number of ways to reach (x, y). Each path that reaches (a, b) goes either
through (a−1, b) or through (a, b−1). Hence, P (a, b) = P (a−1, b)+P (a, b−1).

Statement 2: Now some grid points are blocked by some obstacles. Count all
paths that go from (0, 0) to (a, b) in a+ b steps and avoid all obstacles.

The recurrence remains the same, only now the blocked grid points have
P (x, y) = 0. It is instructional to solve small instances on this problem on paper
– in fact, many of our students are familiar with this problem from earlier Math
classes.

Lesson 7: Longest common subsequence

Goals: Investigating the differences between the top-down and the bottom-up
approach.

  goes either through 

’’’ returns the best solution for the first k bottles ’’’

if k == 1: return v[0]

if k == 2: return max(v[0], v[1])

return max(solve(k-1), v[k-1] + solve(k-2))

It should now be obvious that the time complexity of this program is expo-
nential – in fact, the number of recursive calls needed to evaluate solve(n) is
precisely the same as the number of calls needed to evaluate F (n) in our first
lesson.

A key observation to make here is that solve can be considered a pure func-
tion. Even though it does access the global variable v, its contents remain the
same throughout the execution of the program. Hence, we may apply memoiza-
tion to solve in order to reduce the time complexity from Θ(φn) to Θ(n).

(Note that solve can easily be turned into a true pure function if we pass a
constant reference to v to solve as a second argument.)

Lesson 5: An iterative solution to the previous problem

Goals: Learn about the duality between the top-down and the bottom-up ap-
proach.

The subproblems solved by the memoized recursive solution can be naturally
ordered by size. The same recurrence can now be used to write an iterative
solution. A side-by-side comparison of both programs helps highlight parts that
remained the same / only changed syntactically.

Optional lesson 6: Paths in a grid

Goals: Developing a bottom-up solution directly.
Statement: Given is a grid. Count all shortest paths along the grid from (0, 0)

to (a, b).
The answer is obviously the binomial coefficient

�
a+b
a


, but the path-based

point of view allows a natural formulation of a recurrence relation: Let P (x, y)
be the number of ways to reach (x, y). Each path that reaches (a, b) goes either
through (a−1, b) or through (a, b−1). Hence, P (a, b) = P (a−1, b)+P (a, b−1).

Statement 2: Now some grid points are blocked by some obstacles. Count all
paths that go from (0, 0) to (a, b) in a+ b steps and avoid all obstacles.

The recurrence remains the same, only now the blocked grid points have
P (x, y) = 0. It is instructional to solve small instances on this problem on paper
– in fact, many of our students are familiar with this problem from earlier Math
classes.

Lesson 7: Longest common subsequence

Goals: Investigating the differences between the top-down and the bottom-up
approach.

  or
through 

’’’ returns the best solution for the first k bottles ’’’

if k == 1: return v[0]

if k == 2: return max(v[0], v[1])

return max(solve(k-1), v[k-1] + solve(k-2))

It should now be obvious that the time complexity of this program is expo-
nential – in fact, the number of recursive calls needed to evaluate solve(n) is
precisely the same as the number of calls needed to evaluate F (n) in our first
lesson.

A key observation to make here is that solve can be considered a pure func-
tion. Even though it does access the global variable v, its contents remain the
same throughout the execution of the program. Hence, we may apply memoiza-
tion to solve in order to reduce the time complexity from Θ(φn) to Θ(n).

(Note that solve can easily be turned into a true pure function if we pass a
constant reference to v to solve as a second argument.)

Lesson 5: An iterative solution to the previous problem

Goals: Learn about the duality between the top-down and the bottom-up ap-
proach.

The subproblems solved by the memoized recursive solution can be naturally
ordered by size. The same recurrence can now be used to write an iterative
solution. A side-by-side comparison of both programs helps highlight parts that
remained the same / only changed syntactically.

Optional lesson 6: Paths in a grid

Goals: Developing a bottom-up solution directly.
Statement: Given is a grid. Count all shortest paths along the grid from (0, 0)

to (a, b).
The answer is obviously the binomial coefficient

�
a+b
a


, but the path-based

point of view allows a natural formulation of a recurrence relation: Let P (x, y)
be the number of ways to reach (x, y). Each path that reaches (a, b) goes either
through (a−1, b) or through (a, b−1). Hence, P (a, b) = P (a−1, b)+P (a, b−1).

Statement 2: Now some grid points are blocked by some obstacles. Count all
paths that go from (0, 0) to (a, b) in a+ b steps and avoid all obstacles.

The recurrence remains the same, only now the blocked grid points have
P (x, y) = 0. It is instructional to solve small instances on this problem on paper
– in fact, many of our students are familiar with this problem from earlier Math
classes.

Lesson 7: Longest common subsequence

Goals: Investigating the differences between the top-down and the bottom-up
approach.

. Hence, 

’’’ returns the best solution for the first k bottles ’’’

if k == 1: return v[0]

if k == 2: return max(v[0], v[1])

return max(solve(k-1), v[k-1] + solve(k-2))

It should now be obvious that the time complexity of this program is expo-
nential – in fact, the number of recursive calls needed to evaluate solve(n) is
precisely the same as the number of calls needed to evaluate F (n) in our first
lesson.

A key observation to make here is that solve can be considered a pure func-
tion. Even though it does access the global variable v, its contents remain the
same throughout the execution of the program. Hence, we may apply memoiza-
tion to solve in order to reduce the time complexity from Θ(φn) to Θ(n).

(Note that solve can easily be turned into a true pure function if we pass a
constant reference to v to solve as a second argument.)

Lesson 5: An iterative solution to the previous problem

Goals: Learn about the duality between the top-down and the bottom-up ap-
proach.

The subproblems solved by the memoized recursive solution can be naturally
ordered by size. The same recurrence can now be used to write an iterative
solution. A side-by-side comparison of both programs helps highlight parts that
remained the same / only changed syntactically.

Optional lesson 6: Paths in a grid

Goals: Developing a bottom-up solution directly.
Statement: Given is a grid. Count all shortest paths along the grid from (0, 0)

to (a, b).
The answer is obviously the binomial coefficient

�
a+b
a


, but the path-based

point of view allows a natural formulation of a recurrence relation: Let P (x, y)
be the number of ways to reach (x, y). Each path that reaches (a, b) goes either
through (a−1, b) or through (a, b−1). Hence, P (a, b) = P (a−1, b)+P (a, b−1).

Statement 2: Now some grid points are blocked by some obstacles. Count all
paths that go from (0, 0) to (a, b) in a+ b steps and avoid all obstacles.

The recurrence remains the same, only now the blocked grid points have
P (x, y) = 0. It is instructional to solve small instances on this problem on paper
– in fact, many of our students are familiar with this problem from earlier Math
classes.

Lesson 7: Longest common subsequence

Goals: Investigating the differences between the top-down and the bottom-up
approach.

.

Statement: Now some grid points are blocked by some obstacles. Count all paths that
go from  

’’’ returns the best solution for the first k bottles ’’’

if k == 1: return v[0]

if k == 2: return max(v[0], v[1])

return max(solve(k-1), v[k-1] + solve(k-2))

It should now be obvious that the time complexity of this program is expo-
nential – in fact, the number of recursive calls needed to evaluate solve(n) is
precisely the same as the number of calls needed to evaluate F (n) in our first
lesson.

A key observation to make here is that solve can be considered a pure func-
tion. Even though it does access the global variable v, its contents remain the
same throughout the execution of the program. Hence, we may apply memoiza-
tion to solve in order to reduce the time complexity from Θ(φn) to Θ(n).

(Note that solve can easily be turned into a true pure function if we pass a
constant reference to v to solve as a second argument.)

Lesson 5: An iterative solution to the previous problem

Goals: Learn about the duality between the top-down and the bottom-up ap-
proach.

The subproblems solved by the memoized recursive solution can be naturally
ordered by size. The same recurrence can now be used to write an iterative
solution. A side-by-side comparison of both programs helps highlight parts that
remained the same / only changed syntactically.

Optional lesson 6: Paths in a grid

Goals: Developing a bottom-up solution directly.
Statement: Given is a grid. Count all shortest paths along the grid from (0, 0)

to (a, b).
The answer is obviously the binomial coefficient

�
a+b
a


, but the path-based

point of view allows a natural formulation of a recurrence relation: Let P (x, y)
be the number of ways to reach (x, y). Each path that reaches (a, b) goes either
through (a−1, b) or through (a, b−1). Hence, P (a, b) = P (a−1, b)+P (a, b−1).

Statement 2: Now some grid points are blocked by some obstacles. Count all
paths that go from (0, 0) to (a, b) in a+ b steps and avoid all obstacles.

The recurrence remains the same, only now the blocked grid points have
P (x, y) = 0. It is instructional to solve small instances on this problem on paper
– in fact, many of our students are familiar with this problem from earlier Math
classes.

Lesson 7: Longest common subsequence

Goals: Investigating the differences between the top-down and the bottom-up
approach.

  to 

’’’ returns the best solution for the first k bottles ’’’

if k == 1: return v[0]

if k == 2: return max(v[0], v[1])

return max(solve(k-1), v[k-1] + solve(k-2))

It should now be obvious that the time complexity of this program is expo-
nential – in fact, the number of recursive calls needed to evaluate solve(n) is
precisely the same as the number of calls needed to evaluate F (n) in our first
lesson.

A key observation to make here is that solve can be considered a pure func-
tion. Even though it does access the global variable v, its contents remain the
same throughout the execution of the program. Hence, we may apply memoiza-
tion to solve in order to reduce the time complexity from Θ(φn) to Θ(n).

(Note that solve can easily be turned into a true pure function if we pass a
constant reference to v to solve as a second argument.)

Lesson 5: An iterative solution to the previous problem

Goals: Learn about the duality between the top-down and the bottom-up ap-
proach.

The subproblems solved by the memoized recursive solution can be naturally
ordered by size. The same recurrence can now be used to write an iterative
solution. A side-by-side comparison of both programs helps highlight parts that
remained the same / only changed syntactically.

Optional lesson 6: Paths in a grid

Goals: Developing a bottom-up solution directly.
Statement: Given is a grid. Count all shortest paths along the grid from (0, 0)

to (a, b).
The answer is obviously the binomial coefficient

�
a+b
a


, but the path-based

point of view allows a natural formulation of a recurrence relation: Let P (x, y)
be the number of ways to reach (x, y). Each path that reaches (a, b) goes either
through (a−1, b) or through (a, b−1). Hence, P (a, b) = P (a−1, b)+P (a, b−1).

Statement 2: Now some grid points are blocked by some obstacles. Count all
paths that go from (0, 0) to (a, b) in a+ b steps and avoid all obstacles.

The recurrence remains the same, only now the blocked grid points have
P (x, y) = 0. It is instructional to solve small instances on this problem on paper
– in fact, many of our students are familiar with this problem from earlier Math
classes.

Lesson 7: Longest common subsequence

Goals: Investigating the differences between the top-down and the bottom-up
approach.

  in 

’’’ returns the best solution for the first k bottles ’’’

if k == 1: return v[0]

if k == 2: return max(v[0], v[1])

return max(solve(k-1), v[k-1] + solve(k-2))

It should now be obvious that the time complexity of this program is expo-
nential – in fact, the number of recursive calls needed to evaluate solve(n) is
precisely the same as the number of calls needed to evaluate F (n) in our first
lesson.

A key observation to make here is that solve can be considered a pure func-
tion. Even though it does access the global variable v, its contents remain the
same throughout the execution of the program. Hence, we may apply memoiza-
tion to solve in order to reduce the time complexity from Θ(φn) to Θ(n).

(Note that solve can easily be turned into a true pure function if we pass a
constant reference to v to solve as a second argument.)

Lesson 5: An iterative solution to the previous problem

Goals: Learn about the duality between the top-down and the bottom-up ap-
proach.

The subproblems solved by the memoized recursive solution can be naturally
ordered by size. The same recurrence can now be used to write an iterative
solution. A side-by-side comparison of both programs helps highlight parts that
remained the same / only changed syntactically.

Optional lesson 6: Paths in a grid

Goals: Developing a bottom-up solution directly.
Statement: Given is a grid. Count all shortest paths along the grid from (0, 0)

to (a, b).
The answer is obviously the binomial coefficient

�
a+b
a


, but the path-based

point of view allows a natural formulation of a recurrence relation: Let P (x, y)
be the number of ways to reach (x, y). Each path that reaches (a, b) goes either
through (a−1, b) or through (a, b−1). Hence, P (a, b) = P (a−1, b)+P (a, b−1).

Statement 2: Now some grid points are blocked by some obstacles. Count all
paths that go from (0, 0) to (a, b) in a+ b steps and avoid all obstacles.

The recurrence remains the same, only now the blocked grid points have
P (x, y) = 0. It is instructional to solve small instances on this problem on paper
– in fact, many of our students are familiar with this problem from earlier Math
classes.

Lesson 7: Longest common subsequence

Goals: Investigating the differences between the top-down and the bottom-up
approach.

  steps and avoid all obstacles.

The recurrence remains the same, only now the blocked grid points have 

’’’ returns the best solution for the first k bottles ’’’

if k == 1: return v[0]

if k == 2: return max(v[0], v[1])

return max(solve(k-1), v[k-1] + solve(k-2))

It should now be obvious that the time complexity of this program is expo-
nential – in fact, the number of recursive calls needed to evaluate solve(n) is
precisely the same as the number of calls needed to evaluate F (n) in our first
lesson.

A key observation to make here is that solve can be considered a pure func-
tion. Even though it does access the global variable v, its contents remain the
same throughout the execution of the program. Hence, we may apply memoiza-
tion to solve in order to reduce the time complexity from Θ(φn) to Θ(n).

(Note that solve can easily be turned into a true pure function if we pass a
constant reference to v to solve as a second argument.)

Lesson 5: An iterative solution to the previous problem

Goals: Learn about the duality between the top-down and the bottom-up ap-
proach.

The subproblems solved by the memoized recursive solution can be naturally
ordered by size. The same recurrence can now be used to write an iterative
solution. A side-by-side comparison of both programs helps highlight parts that
remained the same / only changed syntactically.

Optional lesson 6: Paths in a grid

Goals: Developing a bottom-up solution directly.
Statement: Given is a grid. Count all shortest paths along the grid from (0, 0)

to (a, b).
The answer is obviously the binomial coefficient

�
a+b
a


, but the path-based

point of view allows a natural formulation of a recurrence relation: Let P (x, y)
be the number of ways to reach (x, y). Each path that reaches (a, b) goes either
through (a−1, b) or through (a, b−1). Hence, P (a, b) = P (a−1, b)+P (a, b−1).

Statement 2: Now some grid points are blocked by some obstacles. Count all
paths that go from (0, 0) to (a, b) in a+ b steps and avoid all obstacles.

The recurrence remains the same, only now the blocked grid points have
P (x, y) = 0. It is instructional to solve small instances on this problem on paper
– in fact, many of our students are familiar with this problem from earlier Math
classes.

Lesson 7: Longest common subsequence

Goals: Investigating the differences between the top-down and the bottom-up
approach.

. It
is instructional to solve small instances on this problem on paper – in fact, many of our
students are familiar with this problem from earlier Math classes.

Lesson 7: Longest common subsequence

Goals: Investigating the differences between the top-down and the bottom-up ap-
proach.

For this problem, we first show the entire process. First, we show a recursive solu-
tion that generates all common subsequences, starting by comparing the last elements
of both sequences. Then, we show that adding memoization improves this solution from

M. Forišek54

a worst-case exponential one into a solution that runs in 

the mathematical sense can be memoized. (Such functions are sometimes called
pure functions.)

An interesting historical note: memoization is not only useful when it comes
to improving the asymptotic time complexity. For instance, many early programs
that produced computer graphics used precomputed tables of sines and cosines
because table lookup was faster than the actual evaluation of a floating-point-
valued function.

Lesson 3: Fibonacci numbers revisited

Goals: See the stunning effect memoization can have.
By applying memoization (using a simple array) to the Fibonacci function,

each of the values F (1) through F (n) is only computed once, using a single addi-
tion. Therefore, we suddenly have a program that only performs Θ(n) additions
to compute the value F (n): quite an improvement over the original exponential
time. The above Python program can now easily compute F (1000).

(Note that Python operates with arbitrarily large integers. The n-th Fi-
bonacci number is exponential in n and therefore has Θ(n) digits. In the RAM
model, the actual time complexity of the above algorithm is O(n2), as each
addition of two O(n)-digit numbers takes O(n) steps.)

Here it is important to highlight the contrast: exponential time without vs.
polynomial time with memoization. It is also instructional to draw a new, col-
lapsed version of the entire recursion tree for n = 6.

Lesson 4: Maximum weighted independent set on a line

Goals: Encounter the first problem solvable using dynamic programming. Learn
how to write a brute force solution in a good way, and how to use memoization
to “magically” turn it into an efficient algorithm.

Statement: Given is a sequence of n bottles, their volumes are v0 through
vn−1. Drink as much as you can, given that you cannot drink from any two
adjacent bottles.

This problem has a very short and simple statement and only requires a
simple one-dimensional array to store the input. But the main reason why we
elected to use this as the first example will become apparent once we implement
and examine a brute force solution for this problem.

Our goal is to implement a recursive solution that generates all valid sets
of bottles and chooses the best among them. Such a recursive solution can be
based on a simple observation: either we choose the last bottle or we don’t. If
we don’t, we want to find the best solution from among the first n − 1 bottles.
If we do, we are not allowed to take the penultimate bottle and therefore we are
looking for the best solution among the first n− 2 bottles.

v = [3, 1, 4, 1, 5, 9, 2, 6]

def solve(k):

.
Finally, we convert the solution into an equivalent iterative one.
Afterwards, we focus on the following points:

Memory complexity. The iterative solution can easily be optimized to use ●●

the mathematical sense can be memoized. (Such functions are sometimes called
pure functions.)

An interesting historical note: memoization is not only useful when it comes
to improving the asymptotic time complexity. For instance, many early programs
that produced computer graphics used precomputed tables of sines and cosines
because table lookup was faster than the actual evaluation of a floating-point-
valued function.

Lesson 3: Fibonacci numbers revisited

Goals: See the stunning effect memoization can have.
By applying memoization (using a simple array) to the Fibonacci function,

each of the values F (1) through F (n) is only computed once, using a single addi-
tion. Therefore, we suddenly have a program that only performs Θ(n) additions
to compute the value F (n): quite an improvement over the original exponential
time. The above Python program can now easily compute F (1000).

(Note that Python operates with arbitrarily large integers. The n-th Fi-
bonacci number is exponential in n and therefore has Θ(n) digits. In the RAM
model, the actual time complexity of the above algorithm is O(n2), as each
addition of two O(n)-digit numbers takes O(n) steps.)

Here it is important to highlight the contrast: exponential time without vs.
polynomial time with memoization. It is also instructional to draw a new, col-
lapsed version of the entire recursion tree for n = 6.

Lesson 4: Maximum weighted independent set on a line

Goals: Encounter the first problem solvable using dynamic programming. Learn
how to write a brute force solution in a good way, and how to use memoization
to “magically” turn it into an efficient algorithm.

Statement: Given is a sequence of n bottles, their volumes are v0 through
vn−1. Drink as much as you can, given that you cannot drink from any two
adjacent bottles.

This problem has a very short and simple statement and only requires a
simple one-dimensional array to store the input. But the main reason why we
elected to use this as the first example will become apparent once we implement
and examine a brute force solution for this problem.

Our goal is to implement a recursive solution that generates all valid sets
of bottles and chooses the best among them. Such a recursive solution can be
based on a simple observation: either we choose the last bottle or we don’t. If
we don’t, we want to find the best solution from among the first n − 1 bottles.
If we do, we are not allowed to take the penultimate bottle and therefore we are
looking for the best solution among the first n− 2 bottles.

v = [3, 1, 4, 1, 5, 9, 2, 6]

def solve(k):

 
memory only, the recursive one cannot.
Execution time. So far, iterative solutions were better as they didn’t perform the ●●
additional work related to function calls. However, in this problem we can easily
find inputs (e.g., two identical sequences) where the recursive solution outper-
forms the iterative one. The lesson here is that the top-down approach only evalu-
ates the subproblems it actually needs, while the iterative approach doesn’t know
which subproblems will be needed later and thus it must always evaluate all of
them.

Lesson 8: Longest increasing subsequence in quadratic time

Goals: Examining the first example where a subproblem isn’t evaluated in constant
time. Understanding how this is reected in the time complexity estimates. Most impor-
tantly, seeing that the subproblems don’t have to be instances of the original problem.

Statement: Given a sequence of numbers, compute the length of its longest increasing
subsequence.

In our opinion, this problem is one of the most important ones in teaching dynamic
programming properly. When compared to previous problems, this one is much harder
for beginners. Here’s the main reason: The subproblems we need to solve aren’t actually
instances of the original problem.

This problem is used by Dasgupta and Skiena. However, Dasgupta just re-
duces it to paths in a DAG without explicitly mentioning the conceptual step where we
change the problem. Skiena treats the problem properly: notably, asking the question
“what information about the first 

For this problem, we first show the entire process. First, we show a recursive
solution that generates all common subsequences, starting by comparing the last
elements of both sequences. Then, we show that adding memoization improves
this solution from a worst-case exponential one into a solution that runs inO(n2).
Finally, we convert the solution into an equivalent iterative one.

Afterwards, we focus on the following points:

– Memory complexity. The iterative solution can easily be optimized to use
O(n) memory only, the recursive one cannot.

– Execution time. So far, iterative solutions were better as they didn’t perform
the additional work related to function calls. However, in this problem we
can easily find inputs (e.g., two identical sequences) where the recursive
solution outperforms the iterative one. The lesson here is that the top-down
approach only evaluates the subproblems it actually needs, while the iterative
approach doesn’t know which subproblems will be needed later and thus it
must always evaluate all of them.

Lesson 8: Longest increasing subsequence in quadratic time

Goals: Examining the first example where a subproblem isn’t evaluated in con-
stant time. Understanding how this is reflected in the time complexity estimates.
Most importantly, seeing that the subproblems don’t have to be instances of the
original problem.

Statement: Given a sequence of numbers, compute the length of its longest
increasing subsequence.

In our opinion, this problem is one of the most important ones in teaching
dynamic programming properly. When compared to previous problems, this one
is much harder for beginners. Here’s the main reason: The subproblems we need
to solve aren’t actually instances of the original problem.

This problem is used by Dasgupta and Skiena. However, Dasgupta just
reduces it to paths in a DAG without explicitly mentioning the conceptual step
where we change the problem. Skiena treats the problem properly: notably,
asking the question “what information about the first n − 1 elements of [the
sequence] would help you find the solution for the entire sequence?” (Still, note
that this question is factually incorrect: you are, in fact, supposed to look for
information about the first n − 1 elements that would help you find the same
information for all n elements.)

We suggest actually emphasizing the redefinition of the problem. First, we
illustrate on an example that knowing the length of longest increasing subse-
quence in the first n− 1 elements is useless for solving the same problem for the
first n elements. Only then we ask the question how to modify the problem in
a way that would be useful. And the question is easily answered by using our
approach: we can easily write a recursive solution that generates all increasing
subsequences by choosing where to end and then going backwards. Converting
this program into an O(n2) one requires just the mechanical step of adding
memoization.

  elements of [the sequence] would help you
find the solution for the entire sequence?” (Still, note that this question is factually
incorrect: you are, in fact, supposed to look for information about the first 

For this problem, we first show the entire process. First, we show a recursive
solution that generates all common subsequences, starting by comparing the last
elements of both sequences. Then, we show that adding memoization improves
this solution from a worst-case exponential one into a solution that runs inO(n2).
Finally, we convert the solution into an equivalent iterative one.

Afterwards, we focus on the following points:

– Memory complexity. The iterative solution can easily be optimized to use
O(n) memory only, the recursive one cannot.

– Execution time. So far, iterative solutions were better as they didn’t perform
the additional work related to function calls. However, in this problem we
can easily find inputs (e.g., two identical sequences) where the recursive
solution outperforms the iterative one. The lesson here is that the top-down
approach only evaluates the subproblems it actually needs, while the iterative
approach doesn’t know which subproblems will be needed later and thus it
must always evaluate all of them.

Lesson 8: Longest increasing subsequence in quadratic time

Goals: Examining the first example where a subproblem isn’t evaluated in con-
stant time. Understanding how this is reflected in the time complexity estimates.
Most importantly, seeing that the subproblems don’t have to be instances of the
original problem.

Statement: Given a sequence of numbers, compute the length of its longest
increasing subsequence.

In our opinion, this problem is one of the most important ones in teaching
dynamic programming properly. When compared to previous problems, this one
is much harder for beginners. Here’s the main reason: The subproblems we need
to solve aren’t actually instances of the original problem.

This problem is used by Dasgupta and Skiena. However, Dasgupta just
reduces it to paths in a DAG without explicitly mentioning the conceptual step
where we change the problem. Skiena treats the problem properly: notably,
asking the question “what information about the first n − 1 elements of [the
sequence] would help you find the solution for the entire sequence?” (Still, note
that this question is factually incorrect: you are, in fact, supposed to look for
information about the first n − 1 elements that would help you find the same
information for all n elements.)

We suggest actually emphasizing the redefinition of the problem. First, we
illustrate on an example that knowing the length of longest increasing subse-
quence in the first n− 1 elements is useless for solving the same problem for the
first n elements. Only then we ask the question how to modify the problem in
a way that would be useful. And the question is easily answered by using our
approach: we can easily write a recursive solution that generates all increasing
subsequences by choosing where to end and then going backwards. Converting
this program into an O(n2) one requires just the mechanical step of adding
memoization.

  ele-
ments that would help you find the same information for all  elements.)

We suggest actually emphasizing the redefinition of the problem. First, we illustrate
on an example that knowing the length of longest increasing subsequence in the first 

For this problem, we first show the entire process. First, we show a recursive
solution that generates all common subsequences, starting by comparing the last
elements of both sequences. Then, we show that adding memoization improves
this solution from a worst-case exponential one into a solution that runs inO(n2).
Finally, we convert the solution into an equivalent iterative one.

Afterwards, we focus on the following points:

– Memory complexity. The iterative solution can easily be optimized to use
O(n) memory only, the recursive one cannot.

– Execution time. So far, iterative solutions were better as they didn’t perform
the additional work related to function calls. However, in this problem we
can easily find inputs (e.g., two identical sequences) where the recursive
solution outperforms the iterative one. The lesson here is that the top-down
approach only evaluates the subproblems it actually needs, while the iterative
approach doesn’t know which subproblems will be needed later and thus it
must always evaluate all of them.

Lesson 8: Longest increasing subsequence in quadratic time

Goals: Examining the first example where a subproblem isn’t evaluated in con-
stant time. Understanding how this is reflected in the time complexity estimates.
Most importantly, seeing that the subproblems don’t have to be instances of the
original problem.

Statement: Given a sequence of numbers, compute the length of its longest
increasing subsequence.

In our opinion, this problem is one of the most important ones in teaching
dynamic programming properly. When compared to previous problems, this one
is much harder for beginners. Here’s the main reason: The subproblems we need
to solve aren’t actually instances of the original problem.

This problem is used by Dasgupta and Skiena. However, Dasgupta just
reduces it to paths in a DAG without explicitly mentioning the conceptual step
where we change the problem. Skiena treats the problem properly: notably,
asking the question “what information about the first n − 1 elements of [the
sequence] would help you find the solution for the entire sequence?” (Still, note
that this question is factually incorrect: you are, in fact, supposed to look for
information about the first n − 1 elements that would help you find the same
information for all n elements.)

We suggest actually emphasizing the redefinition of the problem. First, we
illustrate on an example that knowing the length of longest increasing subse-
quence in the first n− 1 elements is useless for solving the same problem for the
first n elements. Only then we ask the question how to modify the problem in
a way that would be useful. And the question is easily answered by using our
approach: we can easily write a recursive solution that generates all increasing
subsequences by choosing where to end and then going backwards. Converting
this program into an O(n2) one requires just the mechanical step of adding
memoization.

  elements is useless for solving the same problem for the first    elements. Only
then we ask the question how to modify the problem in a way that would be useful. And
the question is easily answered by using our approach: we can easily write a recursive
solution that generates all increasing subsequences by choosing where to end and then
going backwards. Converting this program into an 

the mathematical sense can be memoized. (Such functions are sometimes called
pure functions.)

An interesting historical note: memoization is not only useful when it comes
to improving the asymptotic time complexity. For instance, many early programs
that produced computer graphics used precomputed tables of sines and cosines
because table lookup was faster than the actual evaluation of a floating-point-
valued function.

Lesson 3: Fibonacci numbers revisited

Goals: See the stunning effect memoization can have.
By applying memoization (using a simple array) to the Fibonacci function,

each of the values F (1) through F (n) is only computed once, using a single addi-
tion. Therefore, we suddenly have a program that only performs Θ(n) additions
to compute the value F (n): quite an improvement over the original exponential
time. The above Python program can now easily compute F (1000).

(Note that Python operates with arbitrarily large integers. The n-th Fi-
bonacci number is exponential in n and therefore has Θ(n) digits. In the RAM
model, the actual time complexity of the above algorithm is O(n2), as each
addition of two O(n)-digit numbers takes O(n) steps.)

Here it is important to highlight the contrast: exponential time without vs.
polynomial time with memoization. It is also instructional to draw a new, col-
lapsed version of the entire recursion tree for n = 6.

Lesson 4: Maximum weighted independent set on a line

Goals: Encounter the first problem solvable using dynamic programming. Learn
how to write a brute force solution in a good way, and how to use memoization
to “magically” turn it into an efficient algorithm.

Statement: Given is a sequence of n bottles, their volumes are v0 through
vn−1. Drink as much as you can, given that you cannot drink from any two
adjacent bottles.

This problem has a very short and simple statement and only requires a
simple one-dimensional array to store the input. But the main reason why we
elected to use this as the first example will become apparent once we implement
and examine a brute force solution for this problem.

Our goal is to implement a recursive solution that generates all valid sets
of bottles and chooses the best among them. Such a recursive solution can be
based on a simple observation: either we choose the last bottle or we don’t. If
we don’t, we want to find the best solution from among the first n − 1 bottles.
If we do, we are not allowed to take the penultimate bottle and therefore we are
looking for the best solution among the first n− 2 bottles.

v = [3, 1, 4, 1, 5, 9, 2, 6]

def solve(k):

  one requires just the mecha-
nical step of adding memoization.

Optional follow-up lessons

After the above sequence of problems and expositions the students should have a decent
grasp of the basic techniques and they should be ready to start applying them to new

Towards a Better Way to Teach Dynamic Programming 55

problems. Still, there are more faces to the area of dynamic programming. Here, we sug-
gest some possibilities for additional content of lectures:

Problems where the state is a substring of the input: Edit distance to a palindrome. ●●
Optimal BST.
Problems solvable in pseudopolynomial time: Subset sum, knapsack, coin ●●
change.
Optimalizations of the way how the recurrence is evaluated: Hirschberg’s trick for ●●
LCS in linear memory; Knuth optimization for Optimal BST; improving Longest
increasing subsequence to ( log ) by using a balanced tree to store solutions
to subproblems.

5. Conclusion

Above, we have presented one possible way in which dynamic programming can be in-
troduced to students. Our opinion is that the main improvement we bring is the systematic
decomposition of the learning process into smaller, clearly defined conceptual steps.

References

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C. (2001). Introduction to Algorithms. MIT Press, 2nd
edition.

Dasgupta, S., Papadimitriou, C.H., Vazirani, U.V. (2006). Algorithms. McGraw-Hill.
Hirschberg, D. (1975). A linear space algorithm for computing maximal common subsequences. Communica-

tions of the ACM, 18(6), 341–343.
Hu, T.C., Shing, M.T.(1982). Computation of Matrix Chain Products (part 1). SIAM Journal on Computing,

11(2), 362–373.
Hu, T.C., Shing, M.T. (1984). Computation of Matrix Chain Products (part 2). SIAM Journal on Computing,

13(2), 228–251.
Kleinberg, J., Tardos, É. (2006). Algorithm Design. Addison-Wesley.
Sedgewick, R. (1998). Algorithms in C++. Addison-Wesley, 3rd edition.
Sedgewick, R., Wayne, K. (2011). Algorithms. Addison-Wesley Professional, 4rd edition.
Skiena, S.S. (2008). The Algorithm Design Manual. Springer-Verlag, 2nd edition.

M. Forišek is an assistant professor at the Comenius University in
Slovakia. Since 1999 he has been involved in organizing internatio-
nal programming competitions, including the IOI, CEOI, and ACM
ICPC. He is also the head organizer of the Internet Problem Solving
Contest (IPSC). His research interests include theoretical computer
science (hard problems, computability, complexity) and computer sci-
ence education.

