
Olympiads in Informatics, 2015, Vol. 9, 39–44
DOI: http://dx.doi.org/10.15388/ioi.2015.04

39

Efficient Range Minimum Queries
using Binary Indexed Trees

Mircea DIMA1, Rodica CETERCHI 2

1 Hickery, Martir Closca st., 600206 Bacau, Romania
2 University of Bucharest, Faculty of Mathematics and Computer Science
 14 Academiei st., 010014 Bucharest, Romania
e-mail: mircea@hickery.net, rceterchi@gmail.com

Abstract. We present new results on Binary Indexed Trees in order to efficiently solve Range
Minimum Queries. We introduce a way of using the Binary Indexed Trees so that we can answer
different types of queries, e.g. the range minimum query, in  O (log N )  time complexity per opera-
tion, outperforming in speed similar data structures like Segment/Range Trees or the Sparse Table
Algorithm.

Keywords: binary indexed tree (BIT), least significant non-zero bit (LSB), range minimum query
(RMQ).

1. Introduction

The Binary Indexed Tree, introduced by Peter M. Fenwick in (Fenwick, 1994), is a data
structure that maintains a sequence of elements (e.g. numbers) and is capable of com-
puting the cumulative sum of consecutive elements, between any two given indexes, in
time complexity  O (log N )  and also update the value at a given index.

We show how to use the structure of the Binary Indexed Tree so that it will support
other types of operations besides summation, e.g. range minimum query, maintaining the
same time complexity of  O (log N ) .

2. Binary Indexed Trees

2.1. Problem Presentation

Consider an array  A  indexed from  1  with  N  integers and the following types of ope-
rations:

Update – change the value at an index 1.	 i, (e.g.  A [ i ] = v ).
Query – find the value of min(A2.	  [ i ], A [ i + 1 ], ... , A [ j ]), for  1 ≤ i ≤ j ≤ N.

M. Dima, R. Ceterchi40

The Binary Indexed Tree, as presented by Peter Fenwick, cannot efficiently an-
swer these kinds of queries, because, for determining the sum of  A [ i ... j ], it needs to
compute the difference between the sum of the first j elements and the sum of the first
i – 1  elements.

2.2. Defining the BIT

A BIT is not a Binary Tree, the name “Binary Indexed” comes from the fact that the
nodes are indexed from  1  to  N  with labels written in binary, and it uses this binary
representation to define the parent node for each node.

BITs are in fact the binomial trees of (Cormen et al., 1990). We construct them in-
ductively, starting with B0, a tree with a single node. We will construct two varieties, the
left and the right binomial tree. The left binomial tree  Bk + 1  is obtained from two copies
of left binomial trees  Bk, by attaching the first of them as the leftmost child of the root of
the second one. The right binomial tree is obtained in a mirror-like fashion, by attaching
the second  Bk  as a right child of the root of the first  Bk.

Starting from the array  A, from its set of indexes, we build a left binomial tree BIT1
(Fig. 2.1) and a right binomial tree BIT2 (Fig. 2.2).

The binomial tree  Bk  (either left or right) has precisely  2k  nodes and height  k. If
we write the array indexes in binary, in the left binomial tree BIT1 we have  parent ( i ) =
i + 2LSB(i), and in the right binomial tree BIT2 we have  parent ( i ) = i – 2LSB(i). This enables
us to climb up either tree in  O (log N ).

Each node will keep aggregated data for all the nodes in its subtree. For instance in
the first tree (Fig. 2.1) node  12  keeps the minimum value of nodes  9, 10, 11  and  12
which is the subarray  A [9 ... 12]. Similarly, in the second tree (Fig. 2.2) node  12  keeps
the minimum value the subarray  A [12 ... 15].

Since the parent of a node can be computed with a formula, we can store the trees in
two arrays:

BIT11.	  [ i ] = minimum value of subarray  A [ i – 2LSB(i) + 1, i ].
BIT22.	  [ i ] = minimum value of subarray  A [ i, i + 2LSB(i) – 1].

Computing these two arrays can be done in  O (N )  with a bottom-up algorithm.
Let us consider the following array  A  with  15  positive integers:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ai 1 0 2 1 1 3 0 4 2 5 2 2 3 1 0

You can see below how we computed the data stored in node 12:
BIT1 [12] = min ( A [9], A [10], A [11], A [12] ) = min (2, 5, 2, 2) = 2
BIT2 [12] = min ( A [12], A [13], A [14], A[15] ) = min (2, 3, 1, 0) = 0
In the following figures Fig. 1 and Fig. 2, the number inside a node is the index as-

sociated with that node. The number below the node is the aggregated minimum value
of its subtree.

Efficient Range Minimum Queries using Binary Indexed Trees 41

We shall exemplify the Least Significant Bit for better understanding:
LSB(216) = LSB(11011000) = 00001000 = 8  because there are  3  zeros at the end.

2.3. Query operation

For two given indexes  i  and  j  of the array  1 ≤ i ≤ j ≤ N, we want to answer the ques-
tion: What is the minimum value among  A [ i ], A [ i + 1], ... , A [ j ] ?

We start from node  i  in the first tree (Fig. 2.1) and climb the tree through its parent
as long as the node index is less than or equal to  j. We do the same thing in the second
tree starting from node  j and climbing the tree through the parent. In both cases we
reach the same node and it splits  A [ i ... j ] in subarrays that are found either in BIT1,
BIT2 or the value of the common stop node.

Let us exemplify by doing the query operation for the subarray  A [5 ... 13].
We start from node  5  and we climb the first tree (Fig. 2.1) while the current node’s

index is less than or equal to  13. We stop at node 8 because the next node, the parent of
8, is  16 which is greater than  13 and contains in its subtree the nodes  14,  15  and  16
which are not included in our subarray  A [5 ... 13]. So far we passed by the nodes  5,  6
and  8. We take the minimum values corresponding to nodes  5  and  6  from the second
tree found in BIT2. Looking in Fig. 2.2, node  5  keeps the minimum value for  A [5]  and
node  6  keeps the minimum value for  A [6 ... 7].

Similarly, we start from node  13  and climb the second tree (Fig. 2.2), passing by
nodes  13,  12  and  8. We take the minimum values corresponding to nodes  13  and  12
from the first tree. Looking in Fig. 2.1, node  12  keeps the minimum value for  A [9 ... 12]
and node  13  keeps the minimum value for  A [13].

Fig. 2.1 Binomial Tree corresponding to BIT1 (node 16 is fictive) (Fenwick, 1994).

Fig. 2.2 Binomial Tree corresponding to BIT2 (node 0 is fictive) (Fenwick, 1994).

M. Dima, R. Ceterchi42

We can observe that  A [5 ... 13]  is now partitioned in the following subarrays:
A [5 ... 5], A [6 ... 7], A [8], A [9 ... 12], A [13].
An important thing is that we get to the same node  8  for both traversals. We prove

this happens every time:
Consider the subarray  A [ i ... j ]  we want to make the query on. We know that  i < j

and, because the order on integers is the same as the lexicographic order on their binary
representation, we can write the indexes in binary like this (we consider that the indexes
can be represented with  n  bits and  p + 1  is the first bit on which  i  and  j  differ):

i = c1 c2 ... cp 0 ip+2 ... in

j = c1 c2 ... cp 1 jp+2 ... jn

When we iteratively add  2LSB  to  i  we will get at some point to  k = c1 c2 ... cp 10 ... 0
and if we iteratively subtract  2LSB  from  j  we will get to the same  k. This is the common
node where we stop.

Because the query climbs the two trees by following the parent link and because the
height of a binomial tree with  2K  nodes is  K, the time complexity of the query opera-
tion for a subarray is  O (log N )  where  N  is the size of the subarray.

2.4. Update Operation

Suppose we need to update the array at index  p  with the value  v  (A [ p ] = v).
We have to update all the tree nodes that have  p  in their subtree. We start from node

p  in the first tree (Fig. 2.1) and climb the tree until we reach the root (an index greater
than  N ). For each node  i  we pass by, we consider its associated interval that defines
its subtree: [ i – 2LSB(i) + 1, i ] (e.g. [9,12] is the associated interval of node  12). We can
observe that the generated intervals include the index  p  because the parent’s subtree
expands and includes the node’s subtree.

We want to update the minimum value of the associated interval of a node, be it
[ x, y ], where  y = x + 2LSB(x) – 1. If the minimum value of that interval is at an index  q,
x ≤ q ≤ y, different from  p, then we update the interval by taking the minimum value
between  v  and  A [ q ]. If the minimum value is at index  p, then we have to take the
minimum values of intervals  [ x, p – 1]  and  [ p + 1, y ].

If we compute the minimum values using two queries, the time complexity of the
update will be  O (log2 N ).

We make the following observation: when we generate the associated intervals of
the nodes we pass by, we can cover the whole interval  [ p + 1, y ]  by starting from node
p + 1  and climbing the first tree (Fig. 2.1). So instead of doing a query for every node we
update, we compute the results of the queries on the fly by climbing the tree once.

Analogously, we can update all the intervals of the form  [ x, p – 1]  by starting from
node  p – 1  and climbing the second tree (Fig. 2.2). The same algorithm is applied for
updating both trees.

Since we are climbing each tree three times and the height of a binomial tree with  2K
nodes is  K, the amortized time complexity of the Update operation is  O (log N ).

Efficient Range Minimum Queries using Binary Indexed Trees 43

2.5. Experiments and Results

We wanted to find out how the Binary Indexed Tree compares to a similar data structure
called Segment Tree (also known as Range Tree), since it supports both update and
query operations in the same time complexity of  O (log N ).

We implemented these two data structures in C++ and ran them on a 3.5 GHz Intel
Xeon-Haswell server with 8 GB of RAM on Ubuntu 14 operating system with gcc 4.8
compiler.

The initial array had  100K  random integers and we ran  10M  random updates and
10M  random queries. In Table 1 is what we found (times are in seconds):

While there is not a big difference on the Build step, we see a 47% reduced time for
updates and 77% reduced time on queries.

3. Conclusions

In the current paper we intended to adapt the Binary Indexed Tree so that we can solve
different types of operations, using as an example the Range Minimum Query problem,
and maintaining the original time complexity of  O (log N ). The RMQ can be solved us-
ing a Segment Tree or other data structures like quadtree, but the Binary Indexed Tree
proved to be 2–4 times faster in practice due to its simple iterative implementation.

Due to the structure of the Binary Indexed Tree, it can be extended in multithreading
and distributed environments obtaining  O (log (log N ))�����������������������������  ���������������������������� time complexities per opera-
tions  (Elhabashy et al., 2009). Also the data can be distributed among multiple nodes.
This data structure can be used as indexes for databases in a distributed manner.

In conclusion, the Binary Indexed Tree has the following advantages:
Is faster than other data structures that allow the same types of operations.●●
Can be adapted for a large number of distinct operations: sum, minimum, maxi-●●
mum, greatest common divisor (gcd), greatest common factor (gcf), etc.
Can be extended on multi-core and distributed platforms.●●

Acknowledgements

We thank dr. Florin Manea from the University of Bucharest and the University of Kiel
for fruitful discussions and insightful comments on the topic of this paper.

Table 1

Operation Type Segment(Range) Tree time Binary Indexed Tree time

Build 100K array 0.0009 s 0.0006 s
10M Updates 1.274 s 0.672 s
10M Queries 2.397 s 0.551 s

M. Dima, R. Ceterchi44

References

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C. (1990). Introduction to Algorithms. MIT Press, McGraw-
Hill, 1st edition.

Demaine, E., Sen, S., Lindy, J. Advanced Data Structures. Massachusetts Institute of Technology 6.897.
Elhabashy, A., Mohamed, A., Mohamad, A. (2009). An enhanced distributed system to improve thetime com-

plexity of binary indexed trees. World Academy of Science, Engineering and Technology, 3(6), 121–126.
http://waset.org/publications/5410/an-enhanced-distributed-system-to-
improve-thetime-complexity-of-binary-indexed-trees

van Emde Boas, P., Kaas, R., Zijlstra, E. (1977). Design and implementation of an efficient priority queue.
Mathematical Systems Theory, 10, 99–127.

Fenwick, P.M. (1994). A new data structure for cumulative frequency table, Software-Practice and Experience,
24(3), 327–336.

Fischer, J., Heunn, V. (2006). Theoretical and practical improvements on the RMQ-problem, with applications
to LCA and LCE. In: CPM’06 Proceedings of the 17th Annual conference on Combinatorial Pattern Match-
ing. Heidelberg, Springer-Verlag Berlin, 36-48.

Topcoder Inc. (2014a). Binary Indexed Trees. https://www.topcoder.com/community/data-
science/data-science-tutorials/binary-indexed-trees/

Topcoder Inc. (2014b). Range Minimum Query and Lowest Common Ancestor.
https://www.topcoder.com/community/data-science/data-science-tutorials/
range-minimum-query-and-lowest-common-ancestor/

M. Dima (1989) – Co-Founder of Hickery.net, Senior Software En-
gineer, Former Software Engineer Intern at Facebook, Invited Host
Scientific Committee Member at IOI 2013 Australia, problem setter at
Romanian Olympiads, Programming Contest Veteran

R. Ceterchi (1953) – Associate Professor at the Faculty of Mathemat-
ics and Computer Science, University of Bucharest specialized on Al-
gorithms and Data Structures, author of over 40 papers in national and
international journals.

