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Abstract. In this article experimental results are provided for a very-large-scale integration 
(VLSI) floorplan design problem. Given is a set of modules to be placed non-overlapping on a 
2-dimensional rectangular plane. We use ant system simulation as a heuristics to produce feasible 
layouts in order to minimize the total unused area. The algorithm differs from many others in that 
fact that it produces non-slicing floorplan. Our experimental results show comparable results of 
previous methods using ant colony optimization (ACO) in VLSI design. For this purpose we de-
fine the “interior” structure for a geometrical computation of module positions.
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1. Introduction

At the present time there are several known methods to solve the floor planning problem 
in VLSI circuit design using ACO heuristics (the main algorithm’s described in Dorigo 
et al., 1996): 

With a temperature-aware constraint (Luo and Sun, 2007).1)	
With a clustering constraint (Chiang, 2009). 2)	
With a non-overlapping constraint (Alupoaei and Katkoori, 2004). 3)	

The last method also provides a solution that removes overlaps of placed modules 
and reduces the total area and wire length. Our method uses a similarly incremental ap-
proach to build constraint graphs and place modules in vertical (to the bottom) or hori-
zontal direction (to the right). This method utilizes the interior structure in order to find a 
relative placement of the module. In our problem the placement has a single constraint: 
modules do not overlap each other. We will use a mathematical notation to represent a 
target function in order to minimize the total unoccupied empty space, which is further 
defined as a dead space.

The optimization methods using ACO heuristics are widely discussed in recent 
publications:

For circuit partitioning in VLSI design (Arora and Lall, 2013).
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For routing optimization with tabu search(Yoshikawa and Otani, 2010).
Our method mainly differs in the definition of visibility and distance functions used 

in original algorithm (it is better described in Section 3) from the algorithms above 
which in fact are driven models with modified core functions.

1.1. Problem Definition

The floor planning problem consists of a set of modules on an integral circuit to be ar-
ranged on a planar area in such a way that they will not overlap each other while the oc-
cupied areas’ measurements, which are given by their formulas, are to be optimized. We 
solve the problem where the total space unoccupied by the modules is minimized with a 
non-overlapping constraint by an experimental algorithm. The minimization function is 
given as a ratio. This can be better defined with an equation:
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where M is a set of placed modules and R is a rectangle bounding the placement. The 
function Area (m) is the total area occupied by the module m, whereas the Area (R) is 
the total area of the rectangular board. In our problem the module is given by its bound-
ing box, here it does not actually matter what is the physical shape of the element. We 
also consider the total area to be the area of the bounding box containing all the placed 
modules. The minimization of the function (1) is achieved by minimizing the total dead 
space, which in experimental purposes is measured as a percentage ratio of the part of 
the bounding box containing all the modules. In can be better represented as:

Area (R) : R = Bounding Box ( Union {each m in M}) ),			          (2)

Target function (1) → min, iff “Dead space” (%) → min,			          (3)

1.2. Known Solutions

There are number of methods to generate a feasible placement for the given set of mod-
ules. Most of the methods use specific structures like a B-Tree (Sivaranjani and Kawya, 
2013), polish notation or Corner Intersection Sequence (CIS) (Hoo et al., 2013) to in-
ternally represent a valid placement. These structures can represent a slicing floorplan 
where the rectangular area of placement can be recursively divided into two parts by a 
horizontal or vertical line, while each of the modules is within the bounds of the final 
rectangles produced by an algorithm (Fig. 1). 

Our method differs from listed above in fact that it produces non-slicing floorplan. 
The main difference is also in type of structures used in algorithm. They will be dis-
cussed in the next section.
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2. Data Structures Used in Algorithm

The algorithm uses two types of data structures in order to solve the optimization task 
– interior and constraint graph. These structures are of planar geometric (interior) and 
abstract (constraint graph) type. We present simple algorithms to construct them. This 
generally does not limit the variety of type of data structures which could replace interior 
and constraint graph for their main purpose to place the module and minimize the value 
of function (1).

The purpose of interior structure is to store the modules’ placement. The non-over-
lapping condition is to hold true. Using this structure we have to answer queries to find 
the coordinates of the side projections on vertical or horizontal axis.

The constraint graph structure is to represent the abstract order of module placement 
relative to the horizontal or vertical axis. The graph is to be acyclic. Using this structure 
we put all the modules in the placement in abstract topological order. This is necessary to 
pack the modules after the new module is placed. This structure is to answer the queries 
to find the placement coordinates of the leftmost bottom corner (x- and y-coordinate for 
side projections) of the module as if they would be packed without overlapping each 
other by a physical power vector coming from outermost space on a plane (i.e. the most 
upper right area).

On the Fig. 2, the packing scheme is presented, the vectors are denoted as P(X) and 
P(Y), for vertical and horizontal direction respectively.
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Fig. 1. An example of a slicing floorplan.
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Fig. 2. The packing scheme.
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2.1. Constraint Graph

A constraint graph is the structure we use to represent the floorplan as an acyclic directed 
graph. The constraint graph represent the order of modules’ placement relatively to the 
horizontal or vertical axis. Thus the constraint graph can be either horizontal or vertical. 
This can be better illustrated if we would draw these graphs for a module placement on 
Fig. 1 (Fig. 3).

Here the “0”-mark stands for the artificial starting element which in fact is a parental 
node having no incoming edges. Physically on a plane this means that the leftmost or the 
most bottom modules are to be connected to this parental node as it can be seen on the 
example diagrams (Fig. 3).

2.2. Interior Structure

The interior of the current feasible placement may be described as a set of vertical or 
horizontal ranges representing the projections of modules taking into account their rela-
tive order. To better understand the structure of interior study the example in Fig. 4.

This structure can be effectively used to build constraint graphs or to detect the rela-
tive position of the placing module.
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Fig. 3. An example horizontal and vertical constraint graphs.
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Fig. 4. Example of placement modules and their vertical R(V) and horizontal R(H) interiors.
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The interior structure is an ordered list of ranges which may also be used in con-
straint graph detection. This is mainly because of that fact that each element of this list is 
a segment on the X- or Y-plane with Z-axis as the other (minor) coordinate. This can best 
be seen in Fig. 4 in the red line. To build the graph we have to detect if the interior’s “red 
line” intersects the next item which is to the left or at the top according to parameter Z. 
If yes, then there would be a relation between the modules represented by segments in 
a constraint graph. This relation has direction according to the Z-axis. The axis may be 
either vertical or horizontal according to the constraint graph type. These types split the 
process of extracting the x- and y-coordinate for the module.

Mathematical Description of Interior Structure
The interior structure was designed to find a position of a module mi ∈  M / MFinal to 

be added to the right or bottom without overlapping an arbitrary element which is al-
ready included in the final placement MFinal. More precisely, the interior can be viewed 
as an outermost horizontal or vertical line lying on the edges of modules in placement, 
viewed from right or bottom side on a plane. Because the algorithm iteratively produces 
the feasible placement, the interior structure needs to be updated. The interior I can be 
represented as a set of segments given by a vector of four values:

I = {(Li, Ri, Zi, mi) : I = 1..n, mi ∈ M},					            (4)

where Li, Ri are left and right coordinates of the segment on a linear vertical or 
horizontal axis (this depends on the type of interior which can be either horizontal or 
vertical),

Zi is a distance between the segment and parallel axis,
mi is a module which covers the segment by its right or bottom edge.
Fig. 5, as is, gives an example of this structure on a geometric plane.
Below is an algorithm to update the interior structure according to the new module 

to be placed.
Please note, Zi is a pre-determined value which does not change. For the X-interior 

it is obviously a Y-value of the bottom corner of the module and vice versa for the 
Y-interior.
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Fig. 5. View of an interior on a geometric plane.
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3. Ant System

In (Dorigo et al., 1996) there is a proposed solution for a Traveller-Salesman Problem 
(TSP) problem using ant agents’ simulation. This algorithm uses the measurement 
functions in order to get the probabilities of transitions between towns given on a 
planar area:

taui,j(t) is an intensity of trail on edge (i, j) at time t.

The trail intensity is to be updated according to the following formula:

taui,j(t+n) = rho * taui,j(t) + ∆taui,j,					            (5)

where rho is a coefficient such that (1 - rho) represents the evaporation of trail be-
tween time t and t + n.

∆taui,j = SUM {∆tau ki,j | k = 1..[Ants]},					            (6)

where ∆tau ki,j is the quantity per unit of length of trail substance (pheromone in real 
ants) laid on edge (i, j) by the k-th ant between time t and t + n; these values is non-zero 
if ant uses edge (i, j) on his tour and equals value:

∆tau ki,j = Q / Lk,							              (7)

where Q is a constant and Lk is the tour length of the k-th ant.
The visibility etai,j is defined as a quantity 1 / di,j, where di,j is a distance between 

towns i and j.
The transition probability from town i to town j for the k-th ant is defined as:

p ki,j(t) = (taui,j (t)*etai,j) / SUM { taui,k (t)*etai,k | k is allowed to be used in a tour},     (8)

Algorithm 1. Update interior structure.

The interior structure is an ordered list of ranges which may also be used in constraint graph detection. This is 
mainly because of that fact that each element of this list is a segment on the X- or Y-plane with Z-axis as the other 
(minor) coordinate. This can best be seen in Fig. 4 in the red line. To build the graph we have to detect if the 
interior’s "red line" intersects the next item which is to the left or at the top according to parameter Z. If yes, then 
there would be a relation between the modules represented by segments in a constraint graph. This relation has 
direction according to the Z-axis. The axis may be either vertical or horizontal according to the constraint graph 
type. These types split the process of extracting the x- and y-coordinate for the module. 

2.2.1 Mathematical Description of Interior Structure 

The interior structure was designed to find a position of a module 𝑚 ∈ 𝑀/𝑀�𝑖𝑛𝑎�  to be added to the right or bottom 
without overlapping an arbitrary element which is already included in the final placement MFinal. More precisely, the 
interior can be viewed as an outermost horizontal or vertical line lying on the edges of modules in placement, 
viewed from right or bottom side on a plane. Because the algorithm iteratively produces the feasible placement, the 
interior structure needs to be updated. The interior I can be represented as a set of segments given by a vector of four 
values: 

𝐼 = {(𝐿𝑖 ,𝑅𝑖,𝑍𝑖 ,𝑚𝑖): 𝑖 = 1. .𝑛,𝑚𝑖 ∈ 𝑀}, (4) 
where Li, Ri are left and right coordinates of the segment on a linear vertical or horizontal axis (this depends on 

the type of interior which can be either horizontal or vertical), 
Zi is a distance between the segment and parallel axis, 
mi is a module which covers the segment by its right or bottom edge. 

Fig. 5, as is, gives an example of this structure on a geometric plane. 
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Fig. 5. View of an interior on a geometric plane 

Below is an algorithm to update the interior structure according to the new module to be placed. 
Algorithm 1. Update interior 

structure 

Please note, Zi is a pre-determined 
value which does not change. For the 
X-interior it is obviously a Y-value of 
the bottom corner of the module and 
vice versa for the Y-interior. 

3. Ant System 

In [1] there is a proposed solution for 
a Traveller-Salesman Problem (TSP) 

problem using ant agents’ simulation. This algorithm uses the measurement functions in order to get the 
probabilities of transitions between towns given on a planar area: 

taui,j(t) is an intensity of trail on edge (i, j) at time t. 
The trail intensity is to be updated according to the following formula: 

taui,j(t+n)= rho * taui,j(t) + ∆taui,j,  (5) 

Initial values: I = {}. 
Input: The new module 𝑚���. 
Output: Interior I. 
for each segment 𝑎 ∈ 𝐼: 
 if projection of 𝑎 intersects edge of 𝑚���: 
  𝑏 = intersection result of 𝑎 and 𝑚���; 
  if 𝑎. 𝐿 < 𝑏. 𝐿 then 𝐼 = 𝐼 ∪ {(𝑎. 𝐿, 𝑏. 𝐿, 𝑎.𝑍, 𝑎.𝑚)}; 
  if 𝑏.𝑅 < 𝑎.𝑅 then 𝐼 = 𝐼 ∪ {(𝑏.𝑅, 𝑎.𝑅, 𝑎.𝑍, 𝑎.𝑚)}; 
  𝐼 = 𝐼/{𝑎}; 
 end if 
end for 
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Please note: the functions (5)–(8) are core functions required to create a base for 
simulation model which uses results of computation to make a decision.

Our method differs only in the definition of visibility and distance functions:

Viz (a, b) = “Total Module Area” / “Total Area”;				          (9)

Distance (a, b) = Beta / Viz (a, b),					          (10)

where the total module area is a cumulative sum of corresponding modules and 
total area represents the rectangular placement bounding box. The visibility function 
Viz (a, b) between modules a and b is a “visibility” used in the TSP algorithm. The 
distance function Distance (a, b) is a measure of divergence between modules a and 
b. This function is also used in this algorithm. Beta is defined as “Q” in Dorigo et al., 
1996 (equation (3)), in this paper it is equation (7). It is used as a constant of any posi-
tive value. In our algorithm it always equals one.

4. Basic Algorithm

The matrix of trained ants’ probability values to search the best placement is repre-
sented as a product of dimensions 2N × 2N × P, where P is a set of values – {BOT-
TOM, RIGHT}. We use this notation in order to include the possible flipped (sides of 
a module rotated 90 degrees) orientation of the corresponding module. In this case the 
module index is multiplied by two. The set P represents the possible relative place-
ment of modules. Thus, the pheromone matrix (Dorigo et al., 1996) in our algorithm is 
a multi-dimensional array. In order to take into account that fact that the new module 
can be placed to the right or to the bottom, the dimension degree is increased by using 
a set P accordingly. The dimension of the rectangular matrix is also increased (in fact 
it is multiplied by two) with respect to that fact that the modules can be rotated. For the 
indexes 1..2N the following is assumed:

Indexes in form of 2(1)	 k + 1 (2k + 1 <= 2N) are original modules.  
Example: 1, 3, 5, ...
Indexes in form of 2(2)	 k (2k <= 2N) are rotated modules.  
Example: 2, 4, 6, ...

The algorithm is similar to the ant colony best path search simulation described in 
(Dorigo et al., 1996). On every step the new module can be placed either to the right or 
bottom relatively to any module from the set built using ant simulation. The new module 
is to be placed according to the minimal value of the distance function. I.e., from all the 
distance values we choose the module corresponding to the minimal value. To solve the 
problem of placement on the plane the interior structure is used which on every step 
determines the position of the new module. This can be done in log (N) number of opera-
tions using a binary search.
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When the placement is created, an additional operation is applied. We call it packing 
and it uses the constraint graphs of the placement to rebuild it according to the topo-
logical structure of the graph. More precisely, the constraint graph is used to rebuild 
the placement in order to pack it. This is achieved by computing the values of X- and Y-
coordinates of the modules according to the graph structure (horizontal or vertical). This 
can be done using a Breadth-first search (BFS). Thus the possible residual dead space is 
excluded from area occupied by the newly placed modules.

The complexity of the solution is O (NC NAnt N3 log (N)), where NC is the number of 
outer iterations, NAnt – number of artificial ants and N – the number of modules in final 
placement.

5. Experimental Results

In this section we give the graphical plot of the obtained results using the described 
method of ant colony optimization of modules to be arranged with no overlaps. The 
benchmark tests included test cases from CompaSS software package (CompaSS, 2004–
2005). Below are graphical plots of the algorithm results for the cases AMI33 and AMI49 
presented on Fig. 6 and Fig. 7 respectively.

The practical observations show that algorithm gives better results if the number of 
artificial ants and number of outer iterations is increased. This can be better analysed 
from the results presented in Table 1.

On the diagram below (Fig. 8) the results are visualized for each iteration (one line 
for each value). The ants count values are on horizontal axis by 5 ants per unit and dead 
space percentage values are on vertical axis.

 

Fig. 6. Physical placement of AMI33, Unused area = 6.888%.

 

Fig. 7. Physical placement of AMI49, Unused area = 10.621%.
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Table 1
Experimental results for AMI33 with varying parameters

Module Number of 
iterations

Number of ants Dead Space (%) Running time

AMI33   5   5 32,24%             890 ms
10 12,20%   1 sec. 389 ms
15   6,89%   1 sec. 988 ms
20 17,25%   2 sec. 645 ms
25   6,89%   3 sec. 145 ms

10   5 28,72%   1 sec. 795 ms
10 12,20%   2 sec. 948 ms
15   6,89%   4 sec. 260 ms
20   6,89%   5 sec. 184 ms
25   6,89%   6 sec. 392 ms

15   5 21,00%   2 sec. 473 ms
10 17,25%   4 sec. 643 ms
15   6,89%   6 sec. 303 ms
20    7 sec.
25  6,89%   9 sec. 811 ms

20   5 12,20%   3 sec. 567 ms
10   6,89%   6 sec. 21 ms
15 12,20%   8 sec. 177 ms
20   6,89% 10 sec. 831 ms
25   6,89% 12 sec. 513 ms

25   5 19,86%   4 sec. 407 ms
10 13,66%   7 sec. 447 ms
15 12,20%   9 sec. 682 ms
20   6,89% 13 sec. 118 ms
25   6,89% 16 sec. 321 ms
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Fig. 8. The visualization of results in Table 1
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5.1. Generalizing Algorithm

By the generalization of the described algorithm we mean the application of heuristics 
plan for a large data set (estimated as more than 10K nodes). These data sets were pro-
posed for the contest held at the International Symposium on Physical Design (ISPD, 
2005). Practically, the algorithm can be maintained effectively even for large data sets 
if we apply the clustering paradigm. This paradigm includes the following steps to be 
applied:

Select a set of clusters to divide the entire list of modules independently:1.	

     C: Union {each c in C} = C & Intersection (each a in C, each b in C | a ! = b) 
			          = {};					          (11)

Apply locally the ACO algorithm for each cluster using the set of modules in 2.	
cluster as an input data:

     Local Placement = Union {ACO (each c in C)};			        (12)

For the list of placements obtained from step 2 create a list of bounding boxes:3.	

     Global List = Union {“Bounding Box” (each p in “Local Placement”)};	     (13)

Apply the ACO algorithm globally:4.	

     Global Placement = Union {ACO (each p in “Global List”)};		       (14)

These steps can be applied recursively to large data sets, if we would use the algo-
rithm for the clusters as the input data, which in turn may be a result of ACO algorithm 
for the other clusters. These clusters at their finite hierarchy are modules representing the 
input data for the global algorithm.

5.2. Conclusion and Further Work

The working algorithm produces better results when the number of ants is increased. 
The further work includes the study of the application of clustering method to handle 
large amounts of data. This is not limited to the experiments when the list of constraints 
is extended as well as the list of semantic rules, for which the placement satisfies (for 
example, the final placement rectangle’s size and shape constraint).
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