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Abstract. Multiple Criteria Decision Making (MCDM) is applied in a variety of areas, including 
education. Informatics Olympiads, problem solving contests for high school students, is the area 
where MCDM methods can also be applied. The case of the Lithuanian Informatics Olympiad 
is analysed in this paper. There are several aspects occuring while maintaining the contest that 
requires decision making. The work of each contestant is evaluated in terms of several criteria, 
where each criterion is measured according to its own scale (but the same scale for each contes-
tant). Several jury members are involved in the evaluation. Thus we get a problem: how to calcu-
late the aggregated score for whole submission in the above mentioned situation. Another similar 
problem is making decision on national team selection for other international contests where each 
candidate is evaluated in terms of several criteria. The chosen methodology for solving this prob-
lem is multiple criteria decision analysis (MCDA). The outcome of this paper is the score aggrega-
tion method proposed to be applied in LitIO developed using MCDA approaches.

Keywords: Informatics Olympiads, programming contests, evaluation, grading, multiple criteria 
decision analysis.

1. Introduction

The field of multiple criteria decision analysis (MCDA) is also termed as a multiple 
criteria decision aid or multiple criteria decision making (MCDM). Its target is to help 
reach a consensus and compromises between conflicting goals (i.e., multiple criteria) in 
complex problems.

In real life it is unusual that the problem is presented to the analyst in a form of a 
clearly defined set of alternatives and criteria (Belton and Stewart, 2003). Problems 
might be complex and confusing and they typically involve a wide range of criteria that 
need to be considered. They might involve conflicting criteria, the conflicts between 
different stakeholders about the importance of criteria in making a decision. It might 
even be required to define criteria as they are not clear at the initial stage of the prob-
lem. The general goal of MCDA is to assist individual or groups of decision makers to 
choose the best alternative.
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MCDA is defined as a collection of formal approaches which seek to take into ac-
count multiple criteria in order to help decision makers to explore different decision 
alternatives (Belton and Stewart, 2003).

Potential problems that MCDA can be applied to solve come from a variety of ar-
eas like business, medicine, banking, marine industry, bioinformatics, public policies or 
education (Aruldoss et al., 2013).

Education is one of the areas where MCDA can be widely applied. These are learning 
content and learning software evaluation problems (Kurilovas and Serikoviene, 2010), 
higher education decision making problems, (resource allocation, performance manage-
ment, budgeting and scheduling) (Ho et al., 2006), using MCDA for accreditation in 
order to evaluate IT skills and qualifications (Siskosa et al., 2007), evaluating factors 
that determine the quality of higher education (Tsinidou et al., 2010), evaluation of the 
quality of e-learning systems (Tzenga et al., 2007) and educational websites (Shee and 
Wang, 2008), pedagogical evaluation of teachers (Filipe et al., 2015), evaluating quality 
of learning objects (Kurilovas et al., 2011).

The majority of research of application of MCDA in education that we discovered 
was related to the evaluation of quality of various educational factors or tools. However, 
we noticed that the choice of MCDA approaches highly depends upon the category of 
the problem under consideration.

Four broad categories of MCDA problems have been proposed (Roy, 1996):
The choice problematique.  ● Problems fall into this category if there is a need to 
make a choice from a set of alternatives. However the set of alternatives might be 
either finite or infinite.
The sorting problematique.  ● In this case the given alternatives have to be sorted 
into several categories, such as “definitely acceptable”, “possibly acceptable”, 
“definitely unacceptable”.
The ranking problematique. ●  The alternatives have to be ranked in some order of 
preference.
The description problematique. ●  Possible alternatives and their consequences 
have to be described formally in a systematic way so that the decision makers 
could evaluate the alternatives.

Variations or amendments to this classification are also possible (Belton and Stew-
art, 2003).

Another classification of MCDA problems is one-off versus repeated problems. 
In some cases, a decision has to be made only once as the problem is unique. This is 
a one-off problem and the process is oriented towards arriving at a specific decision. 
In the case of repeated problems the same problem is recurring a few times or peri-
odically. Then MCDA is oriented towards creating a procedure to be used in decision 
making.

An MCDA problem can also be classified either as a single decision making or group 
decision making problem. In the case of a group decision making problem, several deci-
sion makers are involved and they can have different values and opinions how to address 
the problem. In order to approve the decision, the consensus and compromise among 
different decision makers has to be reached.
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Different authors suggest different stages of the MCDA process. (Val, 2002) propos-
es a scheme consisting of four stages in particular, problem structuring (decomposed 
into five sub-stages), preference elicitation, recommended decision, and sensitivity 
analysis. (Oberti, 2004) suggests four stages of the MCDA process, i.e., beginning of 
the study, evaluation of actions, multiple criteria modelling, multiple criteria process-
ing, and recommendations.

Each stage consists of two or three sub-stages. (Belton and Stewart, 2003) offer 
three stages: problem identification and structuring, model building, and using a model 
to inform and challenge thinking. The scheme based on (Belton and Stewart, 2003) is 
presented in Fig. 1.

These stages reflect a variety of approaches to MCDA, however, they confirm that 
an extensive problem analysis and structuring are vital before mathematical algorithms 
can be applied. In all those approaches the stages are iterative and interactive, i.e., they 
foresee a return to previous stage, review and update its outcome.

Even though mathematical MCDA algorithms help to arrive at some acceptable al-
ternative, many authors emphasize that MCDA cannot be used to arrive at the “right” 
answer and it cannot provide a fully objective analysis and totally eliminate subjectivity 
(Belton and Stewart, 2003). The process of MCDA is emphasised more than the decision 
it helps to arrive at (Keeney and Raiffa, 1976; Roy, 1996; Zeleny, 1982). The process 
involves not only the application of mathematical algorithms to come up to the final 
decision, but also learning about the problem, identifying the key concerns, priorities, 
uncertainties, values, exploring and generating different alternatives. This should lead to 
better explainable and justifiable decisions.

2. Submission (Contestant) Ranking in LitIO as an MCDA Problem

The Lithuanian Informatics Olympiad (LitIO) is a state supported algorithmic prob-
lem solving competition for students in secondary education. The contestants are given 
algorithmic tasks and have to solve them in four or five hour contest sessions. They 
have to design and implement the algorithm in order to solve the task. The task may 
also require to submit reasoning for algorithm design or a set of test cases. The material 

Fig. 1. Basic stages of the MCDA process.
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submitted for evaluation by a contestant is called a submission. After the submission has 
been evaluated in terms of separate criteria where each criterion is measured according 
to its own scale (but the same scale for each contestant), the aggregated score has to be 
calculated so that the submissions can be ranked with respect to other submissions for 
the same task. Measuring the distance between contestants is also important. 

If the contest also serves as team selection event, then the decision has to be made 
which contest participants will be invited to represent country in a regional or interna-
tional contest. In the long term practice several criteria for this selection were used and 
the decision is made by the Scientific Commitee of LitIO.

Evaluation in LitIO as such can be treated as an MCDA problem, and the work 
presented in (Skūpienė, 2010) corresponds to the first stage of the MCDA process, i.e., 
problem structuring. The outcome of problem structuring is an explicit list of criteria and 
alternatives. The task that has to be explored in this paper is ranking of submissions once 
the submisions have been evaluated in terms of separate criteria. Note, that in practice, 
the overall ranking has to be based on the scores of several tasks. However, in this paper, 
we limit our research to determining a score for one task only.

Team selection in LitIO can also be treated as an MCDA problem. The list of selec-
tion criteria, as well as the procedure how to evaluate a contestant aginst each criterion 
has been decided many years ago. The criterion are: score of the final round of LitIO in 
the current year; score of the regional contest in the current year (if applicable); awards 
received in regional and international competitions (there’s been approved a concrete list 
of such competitions); competitor’s grade in the current year. There is a consensus over 
that among the decision makers.

However the criterion are not directly comparable and the understading of the goals 
of the team selection varies. Therefore the discussions and the search for the algorithm 
for the team selection continues. The overall problem - determining the ranking based 
on the criteria can also be treated as as MCDA problem.

Three major roles can be identified in MCDA. They are decision maker, decision 
analyst and stakeholder (Val, 2002).

The scientific part of LitIO is managed by the scientific committee. The scientific 
committee is responsible for all the scientific decisions, i.e., approving the syllabus of 
the contest, designing tasks and tests, approving the evaluation procedure, performing 
the evaluation, approving ranking and declaring winners and selecting teams to represent 
Lithuanian in regional and international contests. In 2015 the scientific committee of 
LitIO consisted of 22 members (Sci, 2015). The scientific committee is the only decision 
maker in this context. The role of decision analyst is played by the author of this paper.

The most important stakeholders are interested programming and algorithmics stu-
dents in secondary education from all over Lithuania, as well as the community of infor-
matics teachers. This community of stakeholders is affected directly by each decision or 
change in the evaluation scheme. The scientific committee of LitIO is also a stakeholder, 
because possible changes in the evaluation scheme might change their working proce-
dures, time spend on task design and evaluation.

The model of relationship between the different roles in the decision analysis process 
in the problem under consideration is presented in Fig. 2.
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There were suggested several ways how to classify MCDA problems (Belton and 
Stewart, 2003; Roy, 1996). Submission (contestant) ranking problem is the ranking 
problematique as the final outcome of the evaluation is a ranked list of contestants based 
on which the awards will be distributed or team selected.

Based on another type of classification, the submission ranking problem is a repeated 
problem, therefore the focus of this research is on constructing the ranking procedure 
which could be applied annually in LitIO.

It is a group decision making problem, because the role of decision maker is played 
by the members of the LitIO scientific committee and the opinions of all of those mem-
bers who are involved in the evaluation of submissions of a particular task has to be 
taken into account.

3. Decision Matrix

Once the list of alternatives and criteria for an MCDA problem is determined, the fol-
lowing step is to construct a decision matrix. In this section we present the decision 
matrix constructed both previously described situation, i.e. for the submission ranking 
problem and for the contestant ranking problem.

Let 

3. Decision Matrix

Once the list of alternatives and criteria for an MCDA problem is determined, the following

step is to construct a decision matrix. In this section we present the decision matrix con-

structed both previously described situation, i.e. for the submission ranking problem and

for the contestant ranking problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives (i.e., submissions or contestants),

C = {C1, C2, · · ·Cm} be a finite set of criteria (i.e., evaluation criteria or team selection

criteria), and P = {P1, P2, · · · , Pq) be a finite set of decision makers (i.e., scientific commitee

members).

Assume that all the decision makers are involved into defining relative weights and de-

termining performance of each alternative in terms of each criterion.

Let wk
j be a relative weight of criteria j (j = 1, 2, . . .m) given by decision maker Pk

(k = 1, 2, . . . q).

Let xk
ij be the performance of alternative Ai (i = 1, 2, · · · , n) in terms of criteria Cj

(j = 1, 2, · · · ,m) assigned by decision maker Pk (k = 1, 2, . . . q).

Note that if the criterion is measured subjectively, i.e. the decision makers assess the

performance of an alternative i in terms of criterion j manually, then the value of xk
ij is
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Then the submission ranking problem can be expressed by the following decision matrix:

Dk = (xk
ij)n×m×q =

C1 C2 · · · Cm

wk
1 wk

2 · · · wk
m

A1 xk
11 xk

12 · · · xk
1m

A2 xk
21 xk

22 · · · xk
2m

· · · · · · · · · · · · · · ·
An xk

n1 xk
n2 · · · xk

nm

(1)

where k = 1, 2, . . . q.

Note, that the classical MCDA algorithms, assume the single decision maker problem,

i.e. they assume that q = 1.
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Fig. 2. Model of relationship between different roles in decision analysis in the analysed problem.
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4. Application of Fuzzy Numbers for Quantifying Linguistic Variables

Some of the proposed evaluation in LitIO criteria are measured manually using linguis-
tic variables. Linguistic variables are variables whose values are linguistic terms and not 
numbers. They are used to express results of subjective qualitative evaluation. Linguistic 
variables were introduced and described by (Zadeh, 1975a,b,c). Triangular and trapezoi-
dal fuzzy numbers are used for quantifying linguistic variables.

Next we shortly present the related concepts of fuzzy logic based on (Lee, 2005; 
Triantaphyllou, 2000).

Fuzzy set. A Fuzzy set is any set that allows its members to have different grades of 
membership (membership function) in the interval 
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Many conversion scales have been created for transforming linguistic terms into 

fuzzy numbers. (Chen et al., 1992) proposed eight conversion scales with different num-
bers of linguistic terms which are commonly used. An example pretty standard fuzzy 
set theory nine-item scale is presented in Table 1 and Fig. 3 (Sule, 2001). The choice 
of a concrete scale from the available ones is intuitive and left to the responsibility of 
the decision maker. Note that the same linguistic term in different conversion scales can 
have different crisp values.

Thus, all the linguistic terms, are converted to fuzzy numbers using the chosen scales, 
and after this the decision matrix will contain only numeric (crisp or fuzzy) values. In 
this paper we will not suggest the concrete scales, because the scales are chosen intui-
tively and we believe that the jury members also have to be involved in the decision. 
Only after the piloting of the evaluation scheme it might be possible to make a final deci-
sion about the scales.

Table 1
Weights of a trapezoidal distribution of a linguistic scale (Sule, 2001)

Item of linguistic scale Numerical weights

Very poor (VP) (0, 0, 0, 0.2)
Between poor and very poor (BPV) (0, 0.2, 0.2, 0.4)
Poor (P) (0, 0.2, 0.2, 0.4)
Between poor and fair (BPF) (0, 0.2, 0.5, 0.7)
Fair (F) (0.3, 0.5, 0.5, 0.7)
Between fair and good (BFG) (0.3, 0.5, 0.8, 1)
Good (G) (0.6, 0.8, 0.8, 1)
Between good and very good (BGV) (0.6, 0.8, 0.8, 1)
Very good (VG) (0.8, 1, 1, 1)

Fig. 3. Trapezoidal fuzzy numbers are used to quantify nine-item  
linguistic scale (Sule, 2001).
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5. Submission Ranking Problem Constraints

The decision context of our problem is rather specific. The problem belongs to the rank-
ing problematique category and is a group decision making problem. Moreover, the 
chosen method will have to be applied in an educational informatics contest situation. 
Therefore it is highly important that the approach would be accepted by the community 
of informatics contests. (Belton and Stewart, 2003) emphasize that the ability to explain 
the chosen to approach to a variety of backgrounds is an important factor in the choice 
of MCDA approach.

The score aggregation and team selection procedures contains parts which are re-
vealed to the contestants, but it also contains the hidden parts. For example, the scores 
assigned by individual jury members during manual evaluation are not revealed to the 
contestants, only  the aggregated score is. We emphasise that the parts of the scoring 
function which are revealed to the contestants must be easily understandable and trans-
parent. More complicated techniques could be applied to the hidden parts.

It must be noted that our problem is a repeated problem. This means that the pro-
cess of ranking submissions and contestants will have to be repeated each time a LitIO 
contest session takes place, though on different submissions possibly of different con-
testants. Therefore it is very important to achieve that the stakeholders would accept and 
understand the method.

Even though the problem is described as ranking problematique, it is not enough to 
present ranking to the contestants. The jury (during medal allocation procedure) and the 
contestants are interested not only in the position in the ranking table, but also in the 
score differences among a group of contestants.

It is commonly accepted in LitIO that a score aggregation function mapping the 
performances for separate attributes (groups of criteria) into real numbers is defined and 
announced to the contestants in advance.

Therefore we will focus on MCDA approaches which foresee defining score ag-
gregation function and partial score functions, inducing a ratio scale, and the ranking is 
made after the aggregated scores for each alternative have been calculated.

6. Choice of MCDA Approach

Many different MCDA approaches are presented and categorised in (Belton and Stewart, 
2003; Carlsson and Fullér, 1996; Chen et al., 1992; Kahraman, 2008; Triantaphyllou, 
2000). Instead of focusing of separate MCDA methods, we will first look at the major 
families of MCDA methods. (Belton and Stewart, 2003) distinguish three major families 
of MCDA approaches:

Value measurement theory  ● (Keeney and Raiffa, 1976). The main idea of this ap-
proach is to construct a value function which would associate each alternative with 
a real number in order to produce ranking of alternatives. The main idea of this 
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theory correspond the intentions and reasoning for our problem. Therefore we will 
include it for further consideration.
Satisficing (or Goal programming)  ● (Simon, 1976). This approach instead of cre-
ating one value function operates on partial value functions. By partial value func-
tion we mean a value function which maps performance of alternatives in terms 
of a certain criteria to real number. The main idea of the approach is that the most 
important criterion is identified and the acceptable level of it is determined. Then 
the alternatives are eliminated until all the remaining alternatives achieve the ac-
ceptable level. At this point the second most important alternative together with 
its satisfactory level is identified. The alternatives which do not reach satisfactory 
level of the second criteria are eliminated again.

This approach is not suitable for our problem as it does not assume score 
aggregation at all.
Outranking  ● (Roy, 1996). Outranking methods also operate with partial value func-
tions and involve pair-wise comparisons of alternatives. An alternative is domi-
nated by another alternative if the other alternative performs better in terms of one 
or more criteria and equals in the remaining criteria. The concept of outranking is 
introduced.

The outranking relationship of two alternatives describes that even though the 
two alternatives do not dominate each other mathematically, the decision maker 
accepts the risk of regarding one alternative almost surely better than the other.

We consider this approach also unacceptable in our situation because it again 
deals with preferences in terms of separate criteria and does not foresee score ag-
gregation using single value function. The concept of outranking, i.e. allowing the 
decision maker to take the risk of considering one alternative better than the other 
is not acceptable in a contest community where scoring is a sensitive issue.

Out of three major MCDA families, only one foresees a construction value function, 
which is required in ranking submissions problem as well. Therefore further we focus on 
algorithms of value measurement theory.

Besides the main families of MCDA approaches, fuzzy logic is often considered to 
be applied for MCDA problems. Fuzzy logic is used in group decision making which is 
our case. However, fuzzy logic is not a separate methodology, but a tool that can be ap-
plied within other MCDA approaches including the ones described above. Therefore we 
assume that fuzzy logic might be applicable in case of this problem and we will look at 
the concepts of fuzzy logic as well.

7. Choice of Value Measurement Theory Method

Value measurement theory was mainly started by Keeney and Raiffa (Keeney and Raif-
fa, 1976). More on it can be found in (French, 1988; Roberts, 1979).

The main idea of this theory is that a real number (“value”) is associated with each 
alternative in order to produce ranking of alternatives. The value function is defined as a 
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function assigning a non-negative number to each alternative indicating the desirability 
(or preference) of the alternative.

The value function has to satisfy the following requirements: an alternative 
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indifferent (Ai1 ∼ Ai2) if and only if V (Ai1) = V (Ai2). Note, that the value function must

induce complete order.

Value measurement approach introduces partial value functions vj(Ai). They are con-

structed for separate criteria and partial value functions hold the essential features (i.e.

induces complete order) of value functions in terms of separate criteria.
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popular ones are Weighted Sum Model and Weighted Product Model. We would also as-
sign Topsis algorithm (we will present it later) to the same category of algorithms. Note 
that those algorithms are constructed for single decision maker problems.

Weighted Sum Model (WSM) is the most commonly used method for single deci-
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formula:
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V (Ai) =
m

j=1
wjvj(Ai) (3)

where i = 1, 2, · · ·n and j = 1, 2, · · ·m.

One of the reasons of wide acceptance of this model is its simplicity, i.e. it can be easily

explained by the decision makers to a variety of backgrounds (Belton and Stewart, 2003).

Note that the requirement preferential independence has to be satisfied so that the WSM

model could be applied (Belton and Stewart, 2003). Suppose that two alternatives Ai1 and

Ai2 differ only on a set of criteria R ⊂ C (R is a proper subset of C) and values of partial

functions are equal on all other criteria. Then it is possible to decide the relationship of Ai1

and Ai2 (i.e. Ai2  Ai1 or Ai1  Ai2 or Ai1 ∼ Ai2) knowing their performances on criteria

from R only, i.e. irrespective of values of their performances on all the other criteria.

However among the submission evaluation criteria there are several dependent criteria,

e.g. quality of programming style is related either to the performance of an algorithm-code

complex or to its efforts to solve the task (Skūpienė, 2010). Thus the partial independence

of criteria is violated.

We suggest that this does not eliminate WSM from applying it for score aggregation

in LitIO. WSM still can be applied for aggregating those criteria that are preferentially

independent. Special functions have to be introduced for aggregating scores of dependent

criteria.

In the team selection problem the partial independence requirement is fully satisfied.

Another requirement is to use the same scale of measurement for all the criteria. Per-

formance of submissions as well as performance of contestants are measured using different

scales. However we intend to unify the scales by constructing the corresponding partial

value functions.
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which is required in ranking submissions problem as well. Therefore further we focus on

algorithms of value measurement theory.

Besides the main families of MCDA approaches, fuzzy logic is often considered to be

applied for MCDA problems. Fuzzy logic is used in group decision making which is our

case. However, fuzzy logic is not a separate methodology, but a tool that can be applied

within other MCDA approaches including the ones described above. Therefore we assume

that fuzzy logic might be applicable in case of this problem and we will look at the concepts

of fuzzy logic as well.

7. Choice of Value Measurement Theory Method
Value measurement theory was mainly started by Keeney and Raiffa (Keeney and Raiffa,

1976). More on it can be found in (French, 1988; Roberts, 1979).

The main idea of this theory is that a real number (“value”) is associated with each

alternative in order to produce ranking of alternatives. The value function is defined as a

function assigning a non-negative number to each alternative indicating the desirability (or

preference) of the alternative.

The value function has to satisfy the following requirements: an alternative Ai1 is pre-

ferred to alternative Ai2 (Ai1  Ai2) if and only if V (Ai1) > V (Ai2); the alternatives are

indifferent (Ai1 ∼ Ai2) if and only if V (Ai1) = V (Ai2). Note, that the value function must

induce complete order.

Value measurement approach introduces partial value functions vj(Ai). They are con-

structed for separate criteria and partial value functions hold the essential features (i.e.

induces complete order) of value functions in terms of separate criteria.
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V (Ai) =
m

j=1
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where i = 1, 2, · · ·n and j = 1, 2, · · ·m.

One of the reasons of wide acceptance of this model is its simplicity, i.e. it can be easily

explained by the decision makers to a variety of backgrounds (Belton and Stewart, 2003).

Note that the requirement preferential independence has to be satisfied so that the WSM

model could be applied (Belton and Stewart, 2003). Suppose that two alternatives Ai1 and

Ai2 differ only on a set of criteria R ⊂ C (R is a proper subset of C) and values of partial

functions are equal on all other criteria. Then it is possible to decide the relationship of Ai1

and Ai2 (i.e. Ai2  Ai1 or Ai1  Ai2 or Ai1 ∼ Ai2) knowing their performances on criteria

from R only, i.e. irrespective of values of their performances on all the other criteria.

However among the submission evaluation criteria there are several dependent criteria,

e.g. quality of programming style is related either to the performance of an algorithm-code

complex or to its efforts to solve the task (Skūpienė, 2010). Thus the partial independence

of criteria is violated.

We suggest that this does not eliminate WSM from applying it for score aggregation

in LitIO. WSM still can be applied for aggregating those criteria that are preferentially

independent. Special functions have to be introduced for aggregating scores of dependent

criteria.

In the team selection problem the partial independence requirement is fully satisfied.

Another requirement is to use the same scale of measurement for all the criteria. Per-

formance of submissions as well as performance of contestants are measured using different

scales. However we intend to unify the scales by constructing the corresponding partial

value functions.
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4. Application of Fuzzy Numbers for Quantifying Lin-
guistic Variables
Some of the proposed evaluation in LitIO criteria are measured manually using linguis-

tic variables. Linguistic variables are variables whose values are linguistic terms and not

numbers. They are used to express results of subjective qualitative evaluation. Linguistic

variables were introduced and described by (Zadeh, 1975a,b,c). Triangular and trapezoidal

fuzzy numbers are used for quantifying linguistic variables.

Next we shortly present the related concepts of fuzzy logic based on (Lee, 2005; Trianta-

phyllou, 2000).

Fuzzy set. A Fuzzy set is any set that allows its members to have different grades of

membership (membership function) in the interval [0, 1], i.e. for any subset A of a universe

X it is possible to define a membership function of a fuzzy set: µA : X → [0, 1].

A crisp set is a separate case of fuzzy set and to make distinctions between crisp and

fuzzy sets we will use A notation for fuzzy sets.

Operations on Fuzzy sets (Lee, 2005; Triantaphyllou, 2000; Zadeh, 1965):

• Negation: µ ̄A(x) = 1 − µA(x),∀x ∈ X,

• Union: µA∪B(x) = Max [µA(x), µB(x)],∀x ∈ X,

• Intersection: µA∩B(x) = Min [µA(x), µB(x)],∀x ∈ X.

Fuzzy number. A fuzzy set is called a fuzzy number if the fuzzy set is convex, normalised,

its membership function is defined in R and is piecewise continuous.

Trapezoidal fuzzy number. A trapezoidal fuzzy number is a fuzzy number represented

with four points as follows: A = (a1, a2, a3, a4) and this representation is interpreted in the

following way:

µA(x) =




0, x < a1
x−a1
a2−a1

, a1 ≤ x ≤ a2

1, a2 ≤ x ≤ a3
a4−x
a4−a3

, a3 ≤ x ≤ a4

0, x > a4

(2)

When a2 = a3, the trapezoidal number coincides with a triangular fuzzy number.

Many conversion scales have been created for transforming linguistic terms into fuzzy

numbers. (Chen et al., 1992) proposed eight conversion scales with different numbers of
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different scales. However we intend to unify the scales by constructing the correspond-
ing partial value functions.

WSM can be potentially applied for score aggregation in LitIO, though the above 
mentioned condition has to be observed.

Weighted Product Model (WPM). WPM can be described using the following 
formula:

WSM can be potentially applied for score aggregation in LitIO, though the above men-

tioned condition has to be observed.

Weighted Product Model (WPM). WPM can be described using the following formula:

V (Ai) =
m

j=1
[vj(Ai)]wj (4)

where i = 1, 2, · · · , n and j = 1, 2, · · · ,m.

There have been suggested arguments that preferences are often perceived in ratio scale

terms therefore product is more natural than sum (Lootsma, 1997; Triantaphyllou, 2000).

The consequence of trade an additive approach into multiplicative approach is that partial

value functions have to satisfy ratio scale properties instead of interval scale properties

Simplicity of the approach is a high priority in the choice of score aggregation algorithm.

We conclude that the WSM algorithm would be more suitable than WPM for the submission

ranking problem as it is simpler and better understandable to the wide audience. Otherwise

they seem to be identical in terms of the problem under consideration.

For the team selection process WPM can be considered as an option, because the overall

number of stakeholder is much smaller. Usually there are not more than 10 candidates

among which the selection is performed.

Topsis (Technique for Order Preference by Similarity to Ideal Solution) (Saghafian and

Hejazi, 2005; Triantaphyllou, 2000). We did not find it explicitly stated that Topsis belongs

to Value measurement theory approaches, nor to other specific family of MCDA approaches.

However, as it involves calculating value of closeness coefficient and ranking based on the

values of the coefficient, we suggest that it is appropriate to consider it here.

Topsis introduces concepts of hypothetical solutions, i.e. positive ideal solution and

negative ideal solution. The positive ideal solution is calculated as a function from the

best performance values of the concrete decision matrix in terms of each criteria: A∗ =

{v1∗, v2∗, · · · , vm∗}, where vj∗ = max
i

(vj(Ai)), i = 1, · · · , n.

The negative ideal solution is calculated as a function from the worst performance values

in terms of each criteria: A− = {v1−, v2−, · · · , vm−}, where vj− = min
i

(vj(Ai)), i = 1, · · · , n.

For each alternative the Euclidean distance from ideal positive solution and ideal negative

solution is calculated: Si∗ =
m

j=1(vj(Ai) − vj∗), and
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, and Si− =
m

j=1(vj(Ai) − vj−). Finally, the relative closeness coefficient to the ideal positive

solution is calculated: Fi∗ = Si∗
Si∗+Si−

.

The alternatives are ranked based on the value of the relative closeness coefficient to

the ideal solution of each alternative. This method from mathematical point of view is

interesting and appealing however, it gives in to WSM due to the simplicity of the latter.

Moreover, the score of one submission is dependant upon the quality of the submissions.

There were cases where such approach was applied in large informatics contests. However,

LitIO contestants also compete in small groups and there are cases where just few (i.e. fewer

than 10) submissions per task are presented. If the score is dependant upon the submissions

in such case, then it might become too biased.

In case of team selection, the number of alternatives is allways low (i.e. 5 to 12), however

we might consider this method, because the contestant evaluation scores play different role

in team selection than in submission evaluation. In submission evaluation the contestants

are interested in the absolute score, i.e. how good the contestant is performing in terms of

a concrete task. However in the team selection process the main question that matters is

how good the contestant is in comparison to other contestants.

After looking at several value measurement theory associated methods, we came to the

conclusion, that as simplicity and the ability of wide audience to accept the evaluation

scheme plays significant role in the choice of approaches, the WSM approach suits best to

solving evaluation in LitIO problem. Though certain requirements have to be observed. We

did not find any evidence that other methods would be more suitable than WSM.

The situation is different with team selection problem. The overall number of stake-

holders is much lower (not more than 12 contestants, their teachers and parents), relative

ranking is more important than performance in terms of a separate criterion, hidden and

revealed parts of the selection process differ form that of submission evaluation. Therefore at

this stage all the three methods, i.e. WSM, WPM and Topsis, can be presented for further

consideration.

We decided on the score aggregation methods, however they assume a single decision

maker and therefore we have to look for the extension to be applicable for group decision

problems.
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The alternatives are ranked based on the value of the relative closeness coefficient to 
the ideal solution of each alternative. This method from mathematical point of view is 
interesting and appealing however, it gives in to WSM due to the simplicity of the latter.

Moreover, the score of one submission is dependant upon the quality of the submis-
sions. There were cases where such approach was applied in large informatics contests. 
However, LitIO contestants also compete in small groups and there are cases where just 
few (i.e. fewer than 10) submissions per task are presented. If the score is dependant 
upon the submissions in such case, then it might become too biased.

In case of team selection, the number of alternatives is allways low (i.e. 5 to 12), 
however we might consider this method, because the contestant evaluation scores play 
different role in team selection than in submission evaluation. In submission evalua-
tion the contestants are interested in the absolute score, i.e. how good the contestant is 
performing in terms of a concrete task. However in the team selection process the main 
question that matters is how good the contestant is in comparison to other contestants.

After looking at several value measurement theory associated methods, we came to 
the conclusion, that as simplicity and the ability of wide audience to accept the evalu-
ation scheme plays significant role in the choice of approaches, the WSM approach 
suits best to solving evaluation in LitIO problem. Though certain requirements have to 
be observed. We did not find any evidence that other methods would be more suitable 
than WSM.

The situation is different with team selection problem. The overall number of stake-
holders is much lower (not more than 12 contestants, their teachers and parents), relative 
ranking is more important than performance in terms of a separate criterion, hidden and 
revealed parts of the selection process differ form that of submission evaluation. There-
fore at this stage all the three methods, i.e. WSM, WPM and Topsis, can be presented for 
further consideration.

We decided on the score aggregation methods, however they assume a single deci-
sion maker and therefore we have to look for the extension to be applicable for group 
decision problems.

8. Group Decision Making

Group decision making (GDM) can be defined as decision making process based on 
the opinions of several individuals. The goal of GDM is to arrive at a satisfactory group 
solution, rather than to the best solution which almost does not exist (Lu et al., 2007). 
There are available various methods for group decision making from mathematical to 
psychological and social.

Among MCDA approaches explicitly meant for solving group decision making 
problems there are techniques which foresee negotiation theory, working with group 
dynamics, etc. References to that can be found in (Carlsson and Fullér, 1996; Lu et al., 
2007). Those approaches have been experienced in LitIO many times. Investigation 
of their suitability in the LitIO evaluation problem would require much investigations 
from other sciences, in particular management and psychology. For example, most 
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meetings are conducted online (as members of the scientific committee are associated 
with different universities in different cities and even countries), some members are 
reluctant to discuss issues on-line, less experienced tend to vote as more experienced 
members, etc. These aspects should have been investigated if the above mentioned 
direction was taken.

Our choice is to focus on mathematical group decision making methods which as-
sume eliciting concrete information from decision makers and using it in a mathematical 
algorithm, but do not require interaction and negotiation between decision makers.

There are different ways to implement group decision making. Many references can 
be found at (Lu et al., 2007; Rao, 2007). Many common GDM methods (e.g. authority 
rule, majority rule, negative minority rule) are not suitable because they are intended for 
the choice problematique (i.e. determining the best alternative), but not for the ranking 
problematique problems.

(Lu et al., 2007) distinguishes three factors which influence GDM:
The weights of the decision makers. Among the decision makers there might be 

those who play more important roles in the decision making. In this case, the decision 
makers should be assigned different weights and that should be reflected in the group 
decision making process.

Weights of criteria. The decision makers may have different views, attitudes, expe-
rience and therefore propose different weights to the criteria.

Preferences of decision makers for alternatives. If the performance of an alterna-
tive is evaluated subjectively, then different decision makers can have different under-
standing, different experiences and can evaluate performance of the same alternative in 
a different way.

It is common in GDM that the weight of a decision maker, the suggested weights 
for evaluation criteria, and the performances of alternatives suggested by the decision 
makers are expressed by linguistic terms, since linguistic terms reflect uncertainty, inac-
curacy, and fuzziness of the decision makers (Lu et al., 2007). We also assume that the 
information, provided by each decision maker is consistent and non-conflicting.

The linguistic scale presented in presented in Table 1 and Fig. 3 is not suitable for 
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4. Application of Fuzzy Numbers for Quantifying Lin-
guistic Variables
Some of the proposed evaluation in LitIO criteria are measured manually using linguis-

tic variables. Linguistic variables are variables whose values are linguistic terms and not

numbers. They are used to express results of subjective qualitative evaluation. Linguistic

variables were introduced and described by (Zadeh, 1975a,b,c). Triangular and trapezoidal

fuzzy numbers are used for quantifying linguistic variables.

Next we shortly present the related concepts of fuzzy logic based on (Lee, 2005; Trianta-

phyllou, 2000).

Fuzzy set. A Fuzzy set is any set that allows its members to have different grades of

membership (membership function) in the interval [0, 1], i.e. for any subset A of a universe

X it is possible to define a membership function of a fuzzy set: µA : X → [0, 1].

A crisp set is a separate case of fuzzy set and to make distinctions between crisp and

fuzzy sets we will use A notation for fuzzy sets.

Operations on Fuzzy sets (Lee, 2005; Triantaphyllou, 2000; Zadeh, 1965):

• Negation: µ ̄A(x) = 1 − µA(x),∀x ∈ X,

• Union: µA∪B(x) = Max [µA(x), µB(x)],∀x ∈ X,

• Intersection: µA∩B(x) = Min [µA(x), µB(x)],∀x ∈ X.

Fuzzy number. A fuzzy set is called a fuzzy number if the fuzzy set is convex, normalised,

its membership function is defined in R and is piecewise continuous.

Trapezoidal fuzzy number. A trapezoidal fuzzy number is a fuzzy number represented

with four points as follows: A = (a1, a2, a3, a4) and this representation is interpreted in the

following way:
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


0, x < a1
x−a1
a2−a1

, a1 ≤ x ≤ a2

1, a2 ≤ x ≤ a3
a4−x
a4−a3
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0, x > a4

(2)

When a2 = a3, the trapezoidal number coincides with a triangular fuzzy number.

Many conversion scales have been created for transforming linguistic terms into fuzzy

numbers. (Chen et al., 1992) proposed eight conversion scales with different numbers of
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Absolutely unimportant (0, 0, 1/6)
Unimportant (0, 1/6, 1/3)
Less important (1/6, 1/3, 1/2)
Important (1/3, 1/2, 2/3)
More important (1/2, 2/3, 5/6)
Strongly important (2/3, 5/6, 1)
Absolutely important (5/6, 1, 1)



J. Skūpienė186

9. Score Aggregation Method for Submission Ranking and Team Selection

We already concluded that the WSM approach best suits the submission ranking prob-
lem. All three analysed methods (WSM, WPM and Topsis) can be considered for team 
selection. However in this paper we focus on WSM, leaving application of the other two 
methods for a separate research.

We were looking for an extension of WSM to GDM, such that it would allow fuzzy 
numbers in the decision marix, but would use crisp number for partial scores for the 
attributes and for the final ranking, i.e. its public parts would be acceptable by the com-
munity of LitIO.

Many fuzzy GDM algorithms (e.g. an intelligent FMCGDM method (Lu et al., 2007) 
or the one described in (Sule, 2001)) assume aggregating fuzzy numbers and only then 
deriving the final ranking. There was performed a systematic and critical study of the 
existing fuzzy MCDA methods. It arrived at the conclusion, that the majority of cur-
rently existing fuzzy MCDA approaches involve complicated calculations, require all 
the elements of decision matrix to be presented in a fuzzy format (though some of them 
might be crisp), and are not suitable for solving problems with more than ten alternatives 
associated with more than ten criteria (Chen et al., 1992; Rao, 2007).

The method presented by Chen et al., 1992 is considered to be the one which avoids the 
above mentioned problems (Rao, 2007; Zhang, 2004). It consists of the following phases:

Linguistic terms (if such are used) are converted to fuzzy numbers. ●
Fuzzy numbers are converted into crisp scores. ●
Classical MCDA approaches, which assume crisp values, are applied. ●

Now we have to find a classical GDM method which assumes crisp matrix. Such 
method is The group decision support algorithm suggested by Csáki et al., 1995.

Therefore we have to combining the group decision support algorithm with the ap-
proach of (Chen et al., 1992). Thus we obtain a GDM algorithm suitable to apply in Li-
tIO evaluation and the team selection problem. Further we use the notations introduced 
in the third section.

The linguistic terms are converted to fuzzy numbers as it was previously described. 
The crisp score of a fuzzy number 
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Conversion of a fuzzy number to crisp value is illustrated in Fig. 4.
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Figure 4: Conversion of triangular fuzzy number to crisp value

The values of the nine-item linguistic scale presented in Table 1 converted to crisp values

are presented in Table 3. The values of the seven-item linguistic importance scale presented

in Table 2 converted to crisp values are presented in Table 4. Note that the same linguistic

term in different conversion scales can have different crisp values.

The algorithm for converting fuzzy numbers to crisp values might be hardly understand-

able to the wide audience, however its application will remain invisible for the contestants.

It will only be applied for dealing with group decisions and linguistic evaluation. If a cri-

terion requires manual evaluation, the linguistic scores and the scores of individual jury

19
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Table 3
Calculating crisp values of the nine-item linguistic scale given in Table 1
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(2)

When a2 = a3, the trapezoidal number coincides with a triangular fuzzy number.

Many conversion scales have been created for transforming linguistic terms into fuzzy

numbers. (Chen et al., 1992) proposed eight conversion scales with different numbers of
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Item of linguistic scale Fuzzy number A µR( A) µL( A) µT ( A)

Very poor (0, 0, 0, 0.2) 1 0.17 0.08
Between poor and very poor (0, 0.2, 0.2, 0.4) 0.83 0.33 0.25
Poor (0, 0.2, 0.2, 0.4) 0.83 0.33 0.25
Between poor and fair (0, 0.2, 0.5, 0.7) 0.83 0.58 0.38
Fair (0.3, 0.5, 0.5, 0.7) 0.58 0.58 0.50
Between fair and good (0.3, 0.5, 0.8, 1) 0.58 0.83 0.63
Good (0.6, 0.8, 0.8, 1) 0.33 0.83 0.75
Between good and very good (0.6, 0.8, 0.8, 1) 0.33 0.83 0.75
Very good (0.8, 1, 1, 1) 0.17 1 0.92

Table 3: Calculating crisp values of the nine-item linguistic scale given in Table 1
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Table 4: Calculating crisp values of the seven-item linguistic importance scale
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for the criterion is announced. Thus, if fuzzy techniques are used to aggregate scores of 
several jury members, they remain behind the curtains and do not become the source of 
discussions and doubts for the contestants.

The final step is to apply the group decision support algorithm (Csáki et al., 1995) to 
the crisp decision matrix.

The application slightly differs for the evaluation and for the team selection pro-
blems. We will start from the evaluation problem.

Let 

3. Decision Matrix

Once the list of alternatives and criteria for an MCDA problem is determined, the following

step is to construct a decision matrix. In this section we present the decision matrix con-

structed both previously described situation, i.e. for the submission ranking problem and

for the contestant ranking problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives (i.e., submissions or contestants),

C = {C1, C2, · · ·Cm} be a finite set of criteria (i.e., evaluation criteria or team selection

criteria), and P = {P1, P2, · · · , Pq) be a finite set of decision makers (i.e., scientific commitee

members).

Assume that all the decision makers are involved into defining relative weights and de-

termining performance of each alternative in terms of each criterion.

Let wk
j be a relative weight of criteria j (j = 1, 2, . . .m) given by decision maker Pk

(k = 1, 2, . . . q).

Let xk
ij be the performance of alternative Ai (i = 1, 2, · · · , n) in terms of criteria Cj

(j = 1, 2, · · · ,m) assigned by decision maker Pk (k = 1, 2, . . . q).

Note that if the criterion is measured subjectively, i.e. the decision makers assess the

performance of an alternative i in terms of criterion j manually, then the value of xk
ij is

linguistic. Otherwise the value of xk
ij is numeric and x1

ij = x2
ij = · · · = xq

ij .

In the case of team selection problem the value of xk
ij is always numeric.

Then the submission ranking problem can be expressed by the following decision matrix:

Dk = (xk
ij)n×m×q =

C1 C2 · · · Cm

wk
1 wk

2 · · · wk
m

A1 xk
11 xk

12 · · · xk
1m

A2 xk
21 xk

22 · · · xk
2m

· · · · · · · · · · · · · · ·
An xk

n1 xk
n2 · · · xk

nm

(1)

where k = 1, 2, . . . q.

Note, that the classical MCDA algorithms, assume the single decision maker problem,

i.e. they assume that q = 1.
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a finite set of criteria. Let 

members are never revealed to the contestants, just the aggregated score for the criterion is

announced. Thus, if fuzzy techniques are used to aggregate scores of several jury members,

they remain behind the curtains and do not become the source of discussions and doubts

for the contestants.

The final step is to apply the group decision support algorithm (Csáki et al., 1995) to

the crisp decision matrix.

The application slightly differs for the evaluation and for the team selection problems.

We will start from the evaluation problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives and C = {C1, C2, · · ·Cm} be a

finite set of criteria. Let D = {D1, D2, · · · , Dq}, q ≥ 2 be a finite set of decision makers.

Each decision maker is assigned a linguistic weight of his/her importance and the linguis-

tic value has been tranformed to a fuzzy number and to its crisp value: p = {p1, p2, · · · , pq}.

Each criterion is assigned a linguistic weight of its importance by each decision maker

and transformed to a fuzzy number and then to its crisp value: wj = {w1
j , w

2
j , · · · , wq

j },

j = 1, 2, · · · ,m.

Let vk
j (Ai) be the values of partial value functions of the performance of alternative Ai in

terms of each criterion Cj by the decision maker Dk, where i = 1, 2, · · · , n, j = 1, 2, · · · ,m,

and k = 1, 2, · · · , q.

First the aggregated group weights for each criterion are calculated:

wj =
t

k=1 w
k
j pkt

k=1 pk

, j = 1, 2, · · · ,m (10)

The values of partial value functions of performance of each alternative in terms of each

criterion are calculated in a similar way:

vj(Ai) =
t

k=1 v
k
j (Ai)pkt

k=1 pk

(11)

The total aggregated values for each alternative are calculated in the following way:

v(Ai) =
m

j=1 vj(Ai)wjm
j=1 wj

(12)

Based on the calculated values, the ranking of the alternatives is performed. The above

holds for submission evaluation problem.
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There were developed several value measurement theory algorithms and the most popular

ones are Weighted Sum Model and Weighted Product Model. We would also assign Topsis

algorithm (we will present it later) to the same category of algorithms. Note that those

algorithms are constructed for single decision maker problems.

Weighted Sum Model (WSM) is the most commonly used method for single decision

maker problems (Triantaphyllou, 2000). It can be described using the following formula:

V (Ai) =
m

j=1
wjvj(Ai) (3)

where i = 1, 2, · · ·n and j = 1, 2, · · ·m.

One of the reasons of wide acceptance of this model is its simplicity, i.e. it can be easily

explained by the decision makers to a variety of backgrounds (Belton and Stewart, 2003).

Note that the requirement preferential independence has to be satisfied so that the WSM

model could be applied (Belton and Stewart, 2003). Suppose that two alternatives Ai1 and

Ai2 differ only on a set of criteria R ⊂ C (R is a proper subset of C) and values of partial

functions are equal on all other criteria. Then it is possible to decide the relationship of Ai1

and Ai2 (i.e. Ai2  Ai1 or Ai1  Ai2 or Ai1 ∼ Ai2) knowing their performances on criteria

from R only, i.e. irrespective of values of their performances on all the other criteria.

However among the submission evaluation criteria there are several dependent criteria,

e.g. quality of programming style is related either to the performance of an algorithm-code

complex or to its efforts to solve the task (Skūpienė, 2010). Thus the partial independence

of criteria is violated.

We suggest that this does not eliminate WSM from applying it for score aggregation

in LitIO. WSM still can be applied for aggregating those criteria that are preferentially

independent. Special functions have to be introduced for aggregating scores of dependent

criteria.

In the team selection problem the partial independence requirement is fully satisfied.

Another requirement is to use the same scale of measurement for all the criteria. Per-

formance of submissions as well as performance of contestants are measured using different

scales. However we intend to unify the scales by constructing the corresponding partial

value functions.
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3. Decision Matrix

Once the list of alternatives and criteria for an MCDA problem is determined, the following

step is to construct a decision matrix. In this section we present the decision matrix con-

structed both previously described situation, i.e. for the submission ranking problem and

for the contestant ranking problem.
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C = {C1, C2, · · ·Cm} be a finite set of criteria (i.e., evaluation criteria or team selection
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termining performance of each alternative in terms of each criterion.

Let wk
j be a relative weight of criteria j (j = 1, 2, . . .m) given by decision maker Pk

(k = 1, 2, . . . q).

Let xk
ij be the performance of alternative Ai (i = 1, 2, · · · , n) in terms of criteria Cj

(j = 1, 2, · · · ,m) assigned by decision maker Pk (k = 1, 2, . . . q).

Note that if the criterion is measured subjectively, i.e. the decision makers assess the

performance of an alternative i in terms of criterion j manually, then the value of xk
ij is

linguistic. Otherwise the value of xk
ij is numeric and x1

ij = x2
ij = · · · = xq

ij .

In the case of team selection problem the value of xk
ij is always numeric.

Then the submission ranking problem can be expressed by the following decision matrix:

Dk = (xk
ij)n×m×q =

C1 C2 · · · Cm

wk
1 wk

2 · · · wk
m

A1 xk
11 xk

12 · · · xk
1m

A2 xk
21 xk

22 · · · xk
2m

· · · · · · · · · · · · · · ·
An xk

n1 xk
n2 · · · xk

nm

(1)

where k = 1, 2, . . . q.

Note, that the classical MCDA algorithms, assume the single decision maker problem,

i.e. they assume that q = 1.
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for the contestants.

The final step is to apply the group decision support algorithm (Csáki et al., 1995) to
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criterion are calculated in a similar way:
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Based on the calculated values, the ranking of the alternatives is performed. The above

holds for submission evaluation problem.
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Table 4
Calculating crisp values of the seven-item linguistic importance scale

The Importance Degrees Fuzzy number 

4. Application of Fuzzy Numbers for Quantifying Lin-
guistic Variables
Some of the proposed evaluation in LitIO criteria are measured manually using linguis-

tic variables. Linguistic variables are variables whose values are linguistic terms and not

numbers. They are used to express results of subjective qualitative evaluation. Linguistic

variables were introduced and described by (Zadeh, 1975a,b,c). Triangular and trapezoidal

fuzzy numbers are used for quantifying linguistic variables.

Next we shortly present the related concepts of fuzzy logic based on (Lee, 2005; Trianta-

phyllou, 2000).

Fuzzy set. A Fuzzy set is any set that allows its members to have different grades of

membership (membership function) in the interval [0, 1], i.e. for any subset A of a universe

X it is possible to define a membership function of a fuzzy set: µA : X → [0, 1].

A crisp set is a separate case of fuzzy set and to make distinctions between crisp and

fuzzy sets we will use A notation for fuzzy sets.

Operations on Fuzzy sets (Lee, 2005; Triantaphyllou, 2000; Zadeh, 1965):

• Negation: µ ̄A(x) = 1 − µA(x),∀x ∈ X,

• Union: µA∪B(x) = Max [µA(x), µB(x)],∀x ∈ X,

• Intersection: µA∩B(x) = Min [µA(x), µB(x)],∀x ∈ X.

Fuzzy number. A fuzzy set is called a fuzzy number if the fuzzy set is convex, normalised,

its membership function is defined in R and is piecewise continuous.

Trapezoidal fuzzy number. A trapezoidal fuzzy number is a fuzzy number represented

with four points as follows: A = (a1, a2, a3, a4) and this representation is interpreted in the

following way:

µA(x) =




0, x < a1
x−a1
a2−a1

, a1 ≤ x ≤ a2

1, a2 ≤ x ≤ a3
a4−x
a4−a3

, a3 ≤ x ≤ a4

0, x > a4

(2)

When a2 = a3, the trapezoidal number coincides with a triangular fuzzy number.

Many conversion scales have been created for transforming linguistic terms into fuzzy

numbers. (Chen et al., 1992) proposed eight conversion scales with different numbers of
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Item of linguistic scale Fuzzy number A µR( A) µL( A) µT ( A)

Very poor (0, 0, 0, 0.2) 1 0.17 0.08
Between poor and very poor (0, 0.2, 0.2, 0.4) 0.83 0.33 0.25
Poor (0, 0.2, 0.2, 0.4) 0.83 0.33 0.25
Between poor and fair (0, 0.2, 0.5, 0.7) 0.83 0.58 0.38
Fair (0.3, 0.5, 0.5, 0.7) 0.58 0.58 0.50
Between fair and good (0.3, 0.5, 0.8, 1) 0.58 0.83 0.63
Good (0.6, 0.8, 0.8, 1) 0.33 0.83 0.75
Between good and very good (0.6, 0.8, 0.8, 1) 0.33 0.83 0.75
Very good (0.8, 1, 1, 1) 0.17 1 0.92

Table 3: Calculating crisp values of the nine-item linguistic scale given in Table 1
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3 ) 0.57 0.57 0.50

More important ( 1
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2
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5
6 ) 0.43 0.71 0.64

Strongly important ( 2
3 ,

5
6 , 1) 0.29 0.86 0.79

Absolutely important ( 5
6 , 1, 1) 0.14 1 0.93
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Absolutely unimportant (0, 0, 1/6) 1 0.14 0.07
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For the team selection problem the values of the alternatives against each criterion are

numeric, pre-calculated and given to the decision makers, i.e. vj(Ai) = xij . xij was defined

when defining the decision matrix 1). The total aggregated values for the team selection

problem are calculated using this formula:

v(Ai) =
m

j=1 xijwjm
j=1 wj

(13)

Conclusions
In this paper we proposed to combine the group decision support algorithm combined with

score aggregation method to be applied during evaluation and team selection process in the

Lithuanian Informatics Olympiad. The method takes into account linguistic values (outcome

of manual evaluation) and multiple decision makers (members of the scientific committee).

Even though MCDA theory is acceptable from the scientific point of view, there arise

many difficulties with its application in practice because the stakeholders feel reluctant and

sensitive about the application of complicated formula to sensitive issues (in this case score

aggregation).

The most important requirements to the score aggregation method were the understand-

ability and acceptability of parts of it (i.e. those disclosed to the contestants) to the wider

audience. Another important requirement was use of a value function. As a result of these

requirements, we spent time on looking for a suitable method that would fulfill all the

problem specific requirements, rather than analysing several equally possible options. The

paper reveals how we arrived to the suggested score aggregation method for the evaluation

problem.

There is much more potential for the MCDA application for team selection problem. One

reason is that the number of stakeholder is very small (from 5 to 12 contestants involved)

and they are top students with good mathematical and algorithmical skills, which makes

it easier to explain for them to accept mathematical decision making methods. Therefore

several methods were chosen as possible for consideration for this problem. Before proposing

to apply any of those methods in practice, the intermediate step would to model the problem

with data from previous years and to analyse differences between the models for the team

selection problem.
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sensitive about the application of complicated formula to sensitive issues (in this case score

aggregation).

The most important requirements to the score aggregation method were the understand-

ability and acceptability of parts of it (i.e. those disclosed to the contestants) to the wider

audience. Another important requirement was use of a value function. As a result of these

requirements, we spent time on looking for a suitable method that would fulfill all the

problem specific requirements, rather than analysing several equally possible options. The

paper reveals how we arrived to the suggested score aggregation method for the evaluation

problem.

There is much more potential for the MCDA application for team selection problem. One

reason is that the number of stakeholder is very small (from 5 to 12 contestants involved)

and they are top students with good mathematical and algorithmical skills, which makes

it easier to explain for them to accept mathematical decision making methods. Therefore

several methods were chosen as possible for consideration for this problem. Before proposing

to apply any of those methods in practice, the intermediate step would to model the problem

with data from previous years and to analyse differences between the models for the team

selection problem.
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Conclusions

In this paper we proposed to combine the group decision support algorithm combined 
with score aggregation method to be applied during evaluation and team selection pro-
cess in the Lithuanian Informatics Olympiad. The method takes into account linguistic 
values (outcome of manual evaluation) and multiple decision makers (members of the 
scientific committee).

Even though MCDA theory is acceptable from the scientific point of view, there arise 
many difficulties with its application in practice because the stakeholders feel reluctant 
and sensitive about the application of complicated formula to sensitive issues (in this 
case score aggregation).

The most important requirements to the score aggregation method were the under-
standability and acceptability of parts of it (i.e. those disclosed to the contestants) to the 
wider audience. Another important requirement was use of a value function. As a result 
of these requirements, we spent time on looking for a suitable method that would fulfill 
all the problem specific requirements, rather than analysing several equally possible op-
tions. The paper reveals how we arrived to the suggested score aggregation method for 
the evaluation problem.

There is much more potential for the MCDA application for team selection problem. 
One reason is that the number of stakeholder is very small (from 5 to 12 contestants 
involved) and they are top students with good mathematical and algorithmical skills, 
which makes it easier to explain for them to accept mathematical decision making meth-
ods. Therefore several methods were chosen as possible for consideration for this prob-
lem. Before proposing to apply any of those methods in practice, the intermediate step 
would to model the problem with data from previous years and to analyse differences 
between the models for the team selection problem.
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Even though this paper presented the case of the Lithuanian Informatics Olympiad, 
the proposed solutions can be considered in other educational contexts as long as similar 
constraints are valid. The constrains include that the problem under consideration is a 
ranking, repeated, group decision making problem involving decision makers with a 
different level of their expertise skills as well as the need to present the decision making 
process to the stakeholders.
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