
Olympiads in Informatics, 2014, Vol. 8, 69–79
© 2014 Vilnius University, IOI

69

Components and Architectural Design
of an Autograder System Family

Jordan FERNANDO, M. M. Inggriani LIEM
Data and Software Engineering Research, School of Electrical Engineering and Informatics
Institut Teknologi Bandung
e-mail: fernandojordan.92@gmail.com, inge@informatika.org

Abstract. A new automatic grading (autograder) system has been set up to support the Indonesian
selection and preparation process of IOI candidates in Indonesia. As interest in programming com-
petitions is increasing, we need an autograder system that can be prepared for a specific purpose
and is scalable to be able to handle the increasing number of users. Therefore, we have redesigned
a system with a new concept and presented it in this paper. The new autograder system consists of
interchangeable components to fulfil all kinds of operational purposes. Instead of having a big and
complex system, the proposed system will be automatically composed and deployed for specific
operational needs. Design, implementation and operation of the autograding and contest manage-
ment systems are supported by IOI alumni.

Keywords: auto grading, training, programming competition, components.

1. Background and Related Work

The process that Indonesian IOI participants (called “TOKI”, abbreviation of Indonesian
Computer Olympiad Team) go through is a step-by-step one, starting from the school
level, then advancing to regency, province and finally to the national level. After national
selection, the candidates are prepared and selected by a team of coaches consisting of
Indonesian university faculty members and IOI alumni. Faculty members from five na-
tional universities – the University of Indonesia (UI); Bandung Institute of Technology
(ITB); the Institute of Agriculture, Bogor (IPB); Gajah Mada University in Yogyakarta
(UGM); and the Institut Teknologi Sepuluh Nopember Surabaya (ITS) – contribute as
coaches. The preparation and selection process for narrowing down the IOI candidates
consists of 4 phases, where 30 candidates must take tests to select sixteen, eight and
finally four IOI participants. Whether or not they make it through the national process,
they form a body of national training participant alumni and IOI alumni that play sig-
nificant roles in the process in the following years. Some of them become students at
national universities or study overseas.

The process of selecting and training IOI candidates is carried out using the au-
tograder system. The first autograder system in Indonesia was developed at the Univer-

J. Fernando, M.M.I. Liem70

sity of Indonesia by Suryana Setiawan, an Indonesian IOI team leader. This first system
was the basis of the newer development at ITB.

In 2008, the IOI Selection Committee identified the need for a better autograder sys-
tem that could be used by the public. Therefore, Petra Barus, an alumnus of the National
Programming Competition, developed the Toki Learning Center (TLC) as part of his fi-
nal project in the Informatics Program at the Bandung Institute of Technology (Novandi,
2009). TLC was used for the Open National Olympiad in Informatics, for the online
training before the national training and selection process and for local competitions. Its
user communication language is Bahasa Indonesia.

In 2010, Petra Barus and Karol Danutama, an IOI alumnus, developed a new version
of TLC, called LX. LX is open to the public at http://www.tokilearning.org, and
it offers a new feature called Training Gate that emphasizes self-exercise. Training Gate
provides problem sets that are grouped by solution types and ordered by level of difficul-
ty. Until now LX has been used for the overall national training and selection process.

Driven by the need to handle tasks submission and to automate the grading pro-
cess for large programming classes at ITB, and inspired by Coursera (https://www.
coursera.org/) and Marmoset (Spacco et al., 2006), Karol Danutama developed an
autograder system that combines automatic grading on LX with a Learning Management
System (Danutama and Liem, 2013) as part of his final project in Informatics Engineer-
ing Study at ITB. The autograder system is called Oddysseus, and it provides grading
services to many clients such as Moodle and Doppel-Ganger (Chandra and Liem, 2013).
Doppel-Ganger is an educational programming tool designed for simple PCs and mobile
devices that enables students to run simple programs anywhere. Doppel is a dedicated
source code editor that provides assessment of the coding process. Ganger provides for
the compilation and execution processes through Oddysseus or a local compiler. The
architecture of Oddysseus consists of three layers and it is scalable. It has been tested
in an Object-Oriented Programming course with 164 students and in an Algorithm &
Programming course with 173 students. The autograding process is more adapted to
teaching than to competition, and until now has been used in courses in Informatics
Engineering at ITB. We have found it very useful in reducing man-hours for grading
student assignments as well as motivating the students to do more exercises. However,
program execution assessment is not enough for teaching. Therefore the grader should
be enriched with various types of source code assessments, which we categorize as white
box grading.

The evolution of the autograder systems maintained by ITB is shown in Fig. 1. The
usage of the autograder has evolved from competition to teaching programming.

In a programming competition, solutions are graded using black box grading, where
the system compares the provided program output with solution output. A pair of input
and solution output is called a testcase. Black box grading needs checkers when a prob-
lem solution has many possible output. An interactive problem solution needs a special
grading process.

There are several ways to grade a source code. Grading types used in competition are
subtask, batch, output-only, and interactive. In subtask grading, the testcases are grouped
into several subtasks. Each subtask has a score and contains testcases that require certain

Components and Architectural Design of an Autograder System Family 71

algorithm as a solution. In order to gain a score in a subtask, the solution must pass all
testcases in the subtask. Testcases of batch grading are not grouped and can be scored
partially depending on the correct number of testcases. In output-only grading, a user
submits solution in the form of output file(s). In interactive grading, the solution inter-
acts with judge programs to solve the problem.

Currently, LX supports subtask, batch, output-only, and Interactive grading types and
C, C++, Java, and Pascal programming languages.

Based on experience in using Oddysseus for teaching programming, it has been
found that program execution assessment is not sufficient. In a formal teaching pro-
gramming context, the autograder system must be equipped with source code inspec-
tion, such as static analysis, bad smell detection, and plagiarism detection. Plagiarism
detection is used to compare student source codes with optimal solutions (Kustanto and
Liem, 2009).

The autograder system needs problems sets (problem description and testcases) to do
the autograding process. The preparation of problems sets takes time to ensure the prob-
lems descriptions are clear and the testcases cover all cases. Because LX and Oddysseus
have been used consistently over the years, each system contains many problems-sets.
Unfortunately these sets of problems are not well organized and are rarely reused.

With the growing number of users in Indonesia and new problems types in IOI sys-
tems, new needs have come up, such as how to set up a competition quickly, how to
scout for talent in preparation for the IOI, and how to give support to new IOI grad-
ing types as the IOI evolves and is improved. The problem sets need to be pooled in a
repository, since existing problem sets are decentralized due to coaching being done at
different locations, not only at ITB. Therefore, the IOI Selection Committee requires
new autograder systems to meet national IOI preparation and selection objectives. With
the benefits of using the autograder system in teaching, the new autograder systems are
also designed to support programming courses in the university.

In this research and development, Oddysseus serves as the baseline for the develop-
ment of the new autograder system. The authors have used reverse-engineering tech-

Fig. 1. Evolution of Autograder System maintained by ITB.

J. Fernando, M.M.I. Liem72

niques to study and improve the design of Oddysseus (Pressman, 2010). Other than
Oddysseus and LX, there are other autograder systems such as Marmoset, Open Judge
System (https://github.com/NikolayIT/OpenJudgeSystem), and CMS –
Contest Management System (https://github.com/cms-dev/cms). The existing
autograder systems only support specific purpose such as competition or learning. The
new autograder system is designed to build and deploy many specific purpose autograd-
er systems easily.

2. Problem Statement

The evolution of the autograder system shown in Fig. 1 has produced many versions
of the autograder system that exhibit a lack of controls, and the system has been reas-
sembled according to various needs. This situation raises a research question: How
can we easily and quickly provide a specific-purpose autograder system and control its
versions?
Referring to the needs described in the background, we identify the following specific
autograder systems:

Competition system.a)
Programming learning system.b)
Programming training system.c)
Problem set repository.d)

New types of systems are potentially needed in the near future.

3. Methodology

The methods used in the research and development of the new autograder system in-
clude: the study of related work, reverse engineering, component requirement analysis,
design of the proposed system architecture, component implementation, and case imple-
mentation.

During the study of related work, the authors scrutinized the evolution of the system
and characteristics of specific systems. We learned how to save varying data and added
cross-cutting aspects of the system to be used in the new autograder system (Suwandi,
Liem, and Akbar, 2014). The authors also adopted the techniques used in continuous
integration to be used in the new autograder system (Humble and Farley, 2010).

In the reverse-engineering stage, the author implemented reverse-engineering tech-
niques on Oddysseus to uncover autograder system components.

As a result of previous work and reverse engineering, we propose the architecture of
the autograder system. Our main focus is on the static aspect (component design) and on
dynamic behaviour or runtime systems where components are assembled into one sys-
tem. The components were implemented and we performed unit tests on each of them.
In addition to component testing, integration testing was also done when the components
comprised a single system.

Components and Architectural Design of an Autograder System Family 73

4. Component Requirement Analysis

Our analysis is driven from use cases of the new system covering the usage in all specific
systems derived from components. The components are arranged in layers adopted from
Oddysseus. Each layer of the new autograder system contains components derived from
the autograder system use cases. The mapping between the autograder system use cases
and the components is shown in Table 1.

The results of the analysis and reverse-engineering processes are shown in Fig. 2.
BB consists of black box grading types such as Output Only (BB1), Subtask (BB2),

Batch (BB3), and Interactive (BB4). WB consists of white box grading types such as
Static Analysis (WB1), Bad Smell Detection (WB2), and Plagiarism Detection (WB3).
Other Black Box and White Box grading types are also included in BB or WB.

Components that have been extracted can be used for specific factory systems in
a product line; some examples of build script elements using the components are given
in Fig. 3.

Table 1
Mapping between autograder system use cases and components

Use cases Components

Manage contests Contest Management System (CMS)

Manage problems and test cases Repository of Problems (RP)
Communicator (C)

Manage results Live Scoreboard (LS), Front-end Result (FR)
Communicator (C)

Submit solutions (competition) Competition Front-end (CF)
Communicator (C), Black box grading (BB)

Manage courses and classes Learning Management System (LMS)

Submit solutions (courses) Learning Front-end (LF)
Communicator (C), Black box grading (BB), White box grading (WB)

Manage training resources Training Management System (TMS)

Submit solutions (training) Training Front-end (TF)
Communicator (C), Black box grading (BB), White box grading (WB)

Monitor system resources Monitor (M), Communicator (C)

Manage users User Management Front-end (UMF)

Autograding request Any Front-end (F)
Communicator (C), Grader (G)

Fig. 2. Component extraction from existing autograder systems.

J. Fernando, M.M.I. Liem74

Fig. 3 shows how to create an autograder system for competition. Build script will be
generated to build and test Competition Front-end, User Management Front-end, Contest
Management System, Repository of Problem, Communicator, Black box grading, Live
Scoreboard, Front-end Result, Monitor, and Grader component. After building and test-
ing components, all components will be integrated as system and integration test will be
conducted. A competition autograder system is ready to be used for a competition.

By having components of autograder systems, we can recreate many types of au-
tograder systems and simplify the deployment and testing process.

5. Proposed Solution

Our proposed solution consists of static system components and dynamic runtime envi-
ronment.

5.1. System Components

By using reverse-engineering techniques on Oddysseus, we found that Oddysseus con-
sists of three layers of components: front end, service, and back end. These layers will be
adopted with some improvements. The service layer will be changed into a communicator
layer and we will add two layers which are cross-cutting and database layers. The com-
municator layer provides communication methods from the autograder to all external
components and provides job distribution. The cross-cutting layer contains components
whose function is to take care of other aspects of the system such as security and moni-
toring. The database layer contains components that take care of the data management
system.

Functional components of the system described in the previous section are summa-
rized in Fig. 4.

The general autograder system layers are shown in Fig. 4:
Interface Layer.1.

User interacts with the autograder system through this layer, using web pages.
The functions provided by the interface depend on the type of system autograder.
In addition to the functions that depend on the type of autograder system,
there are also common functions for all types of user interfaces such as user
management.

Communicator Layer.2.

Fig. 3. Component composition into specific purposes for the autograder system.

Components and Architectural Design of an Autograder System Family 75

In an autograder system, some components need to communicate with each other.
Communication can be done through this layer. The main task of the components
in this layer is to provide communication between the interface layer and the
autograding layer. This layer also provides services to distribute jobs received
from the interface layer to the existing components in the grading layer.

Grading Layer.3.
Automatic grading is the main function of the autograder system. This layer
provides grading services to other components. Grading services are invoked
by sending a request via the communicator layer. Automatic grading is done
by performing a process on the files contained on the grade request such as
compilation, execution, and source code analysis. In this layer, each component
serves a type of grading such as subtask, outputs only, static source code analysis,
and plagiarism detection.

Cross-cutting Layer.4.
Security and monitoring are cross-cutting concerns that we consider important.
All of these concerns can be implemented outside of the main system through
aspect-oriented analysis and design.

Database Layer.5.
The components of the interface layer, communicator layer, and grading layers
may need to store specific data to support multiple functions. This function is
supported by the database layer components and is implemented as a Database
Management System (DBMS). The data model for each use will be designed
specifically for that model.

In Fig. 4, components have not been integrated into one specific system. With sep-
aration into components, the deployment and testing process will be simplified and
automated. Moreover, with the separation of the autograder system into components,
component addition or replacement can be done with minimal effort. We have defined
components with a higher level of abstraction so that the open-closed principle can be
satisfied (Meyer, 1988).

Fig. 4. Layers of multipurpose autograder systems.

J. Fernando, M.M.I. Liem76

5.2. Runtime System

The runtime system consists of two main parts: a front-end subsystem and a grading
subsystem. Users of the autograder system interact through the front-end system. The
front-end is designed to be implemented as a web-based application, whereas the grad-
ing subsystem provides services that are invoked by the front-end subsystem. The web
application is being developed based on a data model and a set of available user interface
patterns. A new pattern or a specific web page can be integrated as a new link in the web
site. Each pattern supports a use case. The patterns are grouped in two categories:

User interface patterns that create, read/view, update, and delete (CRUD) data a.
(such as problem set, users, announcements, and events). The data models that
are managed through this pattern can be general data models such as users and
specific data models such as contests. Data variants are managed by techniques
presented in (Suwandi, Liem, and Akbar, 2014). Rules are implemented sepa-
rately from CRUD.
Interface patterns that trigger the autograding process. b.

The top-level runtime architecture of the autograder system is shown in Fig. 5.
A grading subsystem works when a request of the grading service is invoked. A new

grade request is inserted into the job queue through a communicator. A worker pulls the
job from the job queue and starts the grading process. After a worker has finished the
grading process, the worker sends the grade results back to the communicator. The front-
end subsystem then pulls the grade results from the communicator.

The autograding process is the predominant function of the autograder system. In
the competition-type autograder system, the grading process only needs to be done us-
ing black box with some help from checkers. The autograder system needs to be secure
when doing black box grading because the system runs the solution which can be harm-

Fig. 5. Runtime architecture of the autograder system.

Components and Architectural Design of an Autograder System Family 77

ful to the system. To ensure security when doing black box grading the solution is run
within a sandbox.

A learning-type autograder system requires black box grading and white box grad-
ing, such as static analysis, plagiarism detection and bad smell detection. The system can
use open source static analyzer tools. Other specific systems that need autograding can
have a combination of components and a specific front-end.

The versioning system is set up from the beginning of component development by
adopting techniques that exist in the Version Control System (VCS). An overview of the
autograder system versioning can be seen in Fig. 6. By implementing these techniques,
we have traceable components and also variants of the running system. Each version can
be extended into a new branch in which the components can be added or subtracted as
needed. Branching is necessary because each system may have a special need that is not
the same as for the other systems.

The autograder system must be scalable and robust enough to support many users
and a high demand of computing for complex problem solving. The grade requests can
be distributed to many worker instances to ensure high performance. Maximum runtime
and maximum memory usage of each worker must be set to ensure high performance.

The technology used for the building of the system is gradle (http://www.gra-
dle.org/), which utilize a Domain-Specific Language to define the building pro-
cess, and artifactory (http://www.jfrog.com/home/v_artifactory_open-
source_overview) to manage the supply of autograder system components.

Fig. 6. Autograder system versioning and branches.

J. Fernando, M.M.I. Liem78

6. Case Study

The components will be used to deploy a new competition system, as a part of national
preparation in May 2014. In this event, other countries will be invited to participate,
since the communication will be in English. The result will be presented in IOI 2014
seminars. The new system is also targeted for use in Asia-Pacific Informatics Olympiad
(APIO) 2015, where Indonesia will be the host.

7. Conclusion

The evolution and variation of the autograding system in our national programming
competition and formal education is the fruit of IOI alumni and national programming
contest alumni contributions. Their experience in competition has led them to be excel-
lent researchers of autograding systems. The results of the work are useful for competi-
tion and also for teaching programming and education.

The new component-based system has been proven to make the process of version-
ing, deployment, testing and synchronization easier. The development of a new grading
type or interface could be done with more flexibility to meet particular needs.

The main contribution of this work is a set of components and generic runtime sys-
tem that can be used to build and deploy a specific-purpose autograder system. The fam-
ily of specific autograder systems is deployed and tested automatically. The architecture
is tested to meet the requirement of scalability, extendibility and adaptabilities.

The new autograder system runs on Linux platform. The components are built us-
ing Java programming language. The DBMS that is used by the components currently
is MariaDB. The new autograder system need minimal total RAM of 2GB size, but it
is recommended to be run on computer with total RAM of 4GB size. Due to its state as
prototype, the source code of the new autograder system has not yet published, but the
grading service is opened for public.

Acknowledgements

We would like to thank Mr. Adi Mulyanto and Mr. James Robert Holmboe for their valu-
able comments.

References

Chandra, T.N., Liem, I. (2013). Source code editing evaluator for learning programming. In: ICEEI 2013.
169–175.

Danutama, K., Liem, I. (2013). Scalable autograder and lms integration. In: ICEEI 2013. 387–395.
Humble, J., Farley, D. (2010). Continuous Delivery. Addison-Wesley, Boston.
Kustanto, C., Liem, I. (2009). Automatics source code plagiarism detector. In: ACIS/SNPD 2009. Daigu, Ko-

rea, 481–486.
Meyer, B. (1988). Object-Oriented Software Construction. Prentice Hall.

Components and Architectural Design of an Autograder System Family 79

Novandi, P.S. (2009). TOKI Learning Center – Sistem Pelatihan Kompetisi Pemrograman Komputer. ITB
Final Project.

Pressman, R.S. (2010). Software Engineering a Practitioner’s Approach Seventh Edition. McGraw-Hill, New
York.

Spacco, J., Hovemeyer, D., Pugh, W., Fawzi, E., Hollingsworth, J.K., PaduaPerez, N. (2006). Experiences with
marmoset: designing and using an advanced submission and testing system for programming courses. In:
ITICSE ‘06. 13–17.

Suwandi, A., Liem, I., Akbar, S. (2014). Concern-based SaaS application architectural design. In: ICT-EurAsia
2014. 228–237.

J. Fernando is a student of Informatics Engineering at Institut
Teknologi Bandung. He is the Indonesian technical committee team
leader in the national IOI preparation in 2013 and 2014. He is doing his
research in the development of autograding components and runtime
systems as a part of his final project.

M.M.I. Liem is a member of Data and Software Engineering Research
Group in the School of Electrical Engineering and Informatics at Institut
Teknologi Bandung (ITB). She has been teaching programming at ITB
since 1977. She obtained her doctoral degree in Universite Joseph Fou-
rier in Grenoble, France in 1989, with the teaching of programming as
the major topic of her dissertation. Since 2004, she has been involved as
a team member in national recruitment, training and IOI preparation for
the Indonesian team. She is also the ITB ACM ICPC coach and advisor.

