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Abstract. Computer science at high school often focuses on programming, but a broader view of 
other areas of computer science has key benefits for both writing programs that are more efficient 
and making more theoretical concepts more accessible to those who do not find programming in-
trinsically interesting. With the introduction of computer science at high schools, a lack of coherent 
resources for teachers and students prompted the development of the NZ Computer Science Field 
Guide, an open-source, on-line textbook.

This paper describes the design of the Field Guide, which has fourteen chapters about various 
topics of computer science. The design includes written text, videos, classroom activities and inter-
active applications. The need for a broad view of computer science is discussed, and programming 
exercises to go with the topics are suggested.
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1. Introduction

Computer science at high school level often focuses on programming, but new ap-
proaches, including new curricula in the UK (Furber, 2012), Australia (Falkner et al., 
2014) and New Zealand (Bell et al., 2010), are being developed that offer a broader 
view of the subject, allowing students to delve into topics such as algorithm efficiency, 
encryption, human computer interaction and computer vision. This broader view has two 
key benefits: first, it shows programmers how to write programs that are more effective, 
and second, for those who don’t find programming intrinsically interesting, it shows 
the kinds of things that are done with programming, providing the motivation to learn 
programming.

For example, in programming competitions students are tasked with problems to 
solve that must run within a time limit. Writing a program to solve a problem may not 
be so difficult, but to do it efficiently and effectively can involve bringing to bear ideas 
from computer science (such as algorithmic complexity and tractability), and a good un-
derstanding of computer science principles can enable students to improve their compe-
tition code, allowing it to execute faster and fit under time limits set by the judges. Con-
versely, ideas from computer science (such as data compression or formal languages) 
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can provide rich domains for programming exercises, and give students more experience 
thinking about the richness of approaches available to the computer scientist, such as 
hashing (an idea which can be applied to areas as diverse as searching algorithms, error 
detection by hash totals, and password encryption by secure hashing). 

Although there are literally thousands of resources available that touch on areas of 
computer science that might be relevant to high school level students (Murugesh et al., 
2010), these resources vary greatly in suitability, and tend to occur as one-off examples 
that can’t be used as a coherent body. To address this, we have developed the “NZ Com-
puter Science Field Guide” (referred to here as the NZ CSFG, available at http://
csfieldguide.org.nz), an open-source, interactive, online “textbook” that intro-
duces a wide range of topics in computer science, without necessarily expecting students 
to be competent programmers before tackling the range of topics covered. It is a pilot for 
a wider range of computer science field guides intended for international use in a variety 
of contexts. The index of the NZ CSFG is shown in Fig. 1, showing the range of topics 
covered. 

The NZ CSFG has initially been developed to support the new computer science stan-
dards that became available in New Zealand high schools in 2011 (Bell et al., 2010), 
but it is intended to be flexible enough to support curricula for other countries, and other 
initiatives aimed at high school aged students, such as computing clubs and programming 
competitions. Because it is open source, in principle educators can adapt it to suit their 
situation. Because it is online it can be accessed by interested students as long as they have 
internet access, and an offline version is planned so that it can be delivered through other 
media as well. For example, while the NZ CSFG was initially prepared to support teaching 
computer science in New Zealand high schools, it was also being used in parallel to sup-
port a pilot for a Computer Science Club (http://computerscienceclub.org) 
for students aged around 10 to 15 years old. The club is based on a badge system where 
students can attain different levels of badges in topics in computer science, with many of 
the badge topics being associated with topics in the CSFG.

Fig. 1. The front page of the CS Field Guide.
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There are other collections of information available that have goals in common with 
the CSFG, aimed at conveying the ideas of computer science to a high school audi-
ence or through interaction and animation. Some of these have provided inspiration and 
ideas for the CSFG, and others are useful as follow up for students wanting more de-
tailed information. The “Thriving in our digital world” (http://www.cs.utexas.
edu/~engage/) course uses a similar approach to the CSFG for its teaching mate-
rial and has engaging interactive presentations, but focuses on just eight topics (four of 
which are general, such as “Innovations”). The Virginia tech online interactive modules 
(http://courses.cs.vt.edu/csonline/) for teaching computer science cov-
er a range of relevant topics (Balci et al., 2001), although the material again only covers 
a limited number of topics, and doesn’t appear to have been updated since it was devel-
oped over 10 years ago. “Babbage’s bag” (http://www.i-programmer.info/
babbages-bag.html) provides a very detailed collection of technical articles on 
many topics in computing. It is more detailed than most high school students would 
need, but is valuable as a follow up on particular topics. “CS animated” (http://
www.csanimated.com/) has interactive activities on computer science, but is more 
targeted at university level students. The “Computer Science For Fun” (cs4fn.org) 
project provides a very readable collection of short articles aimed at a teenage audi-
ence. It is about practical applications of topics in computer science, and has been very 
successful in getting students interested in computer science (Myketiak et al., 2012), 
although it doesn’t usually go into the level of detail needed to learn the topic, as it 
is primarily aimed at outreach. The “CS Bits & Bytes” (http://www.nsf.gov/
cise/csbytes/) project takes a similar approach, with regular up-to-date articles 
about applications of computer science.

In this paper we discuss in more detail the value of a broader view of computer sci-
ence for high schools students, and then describe the design of the Computer Science 
Field Guide, which is intended fill a gap for teaching computer science, and act as a 
tool to provide teachers and trainers with a rich resource for engaging students with this 
broad view of the subject. A case study is made using the chapter on algorithms to ex-
plain how design decisions were made, and we provide examples of how programming 
competition exercises could be formulated based on ideas in the CSFG.

2. The Need for a Broad View of Computer Science

It is not unusual for computer science in high school and programming competition 
environments to be regarded as being primarily about programming, and many on-line 
resources focus on “coding” (programming). This misses out on a much richer view of 
the field that explores how well the program might work, such as its efficiency, security, 
usability, scalability and reliability. In programming competitions, the areas of computa-
tional complexity and tractability are particularly important.

There are many definitions of what computer science is, and the approach we have 
taken covers a number of widely accepted definitions. A key benchmark is the ACM 
Computing Curricula document (Impagliazzo, 2006), which describes computer science 
as follows: “Computer science spans a wide range, from its theoretical and algorith-
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mic foundations to cutting-edge developments in robotics, computer vision, intelligent 
systems, bioinformatics, and other exciting areas”. This overview has been followed 
by the 2008 and 2013 Computer Science Curricula (Sahami et al., 2013) which define, 
respectively, 14 and 18 areas of computer science that should be covered at university 
level, many of which correspond to chapters in the CSFG. A crowd-sourced definition 
of computer science can be found on Wikipedia, which (at the time of writing, in April 
2014) describes it as “the scientific and practical approach to computation and its ap-
plications”, and more practically, goes on to list 16 sub-topics, 8 of which correspond to 
chapters in the CSFG, and most of the rest are touched on at some point.

Of course, computer science can’t really be broken into some finite number of discon-
nected topics, and it is important to emphasise links between topics (e.g. fast algorithms 
mean that interfaces can respond within the times recommended through HCI principles; 
search algorithms are required for pattern matching in compression systems; and com-
pression in turn improves network response times which leads to better interfaces).

Many countries are now moving to increase the amount of computer science taught 
at high school level. This is partly driven by the dramatic shortage of computer sci-
ence graduates in western countries; teaching computer science in schools can enable 
students to make better career choices, and a broader view of computer science beyond 
just programming can attract those who are interested in the bigger picture, rather than 
programming as an end in itself. The analogy that “Computer science is no more about 
computers than astronomy is about telescopes, biology is about microscopes or chem-
istry is about beakers and test tubes” (Fellows and Parberry, 1993) illustrates the value 
of providing a way for beginner programmers to access the big ideas in computing. Fur-
thermore, it is very easy to write a program that is computationally inefficient (or even 
intractable), and beyond simple functionality, issues such as the usability and security 
of programs is also important. Programming competitions can accentuate the focus on 
barely meeting some requirements, and a wider view of computer science can encourage 
a healthy view of problem solving techniques, algorithms, mathematical underpinnings, 
and human factors.

3. Design of the Field Guide

The NZ CSFG currently has a chapter for each of 14 areas of computer science that have 
initially been designed to match the new New Zealand high school standards released 
in 2011 (Bell et al., 2010). These areas correspond loosely to the 2008 ACM curriculum 
(which was the one available at the time that the school standards and NZ CSFG were 
designed). The ACM curriculum topics are considerably deeper than what is appropriate 
at high school level, so providing a broad overview of the topics is a challenge particu-
larly doing it in a way that students have a meaningful experience of the topic.

Key features that have driven the design of the CSFG are as follows:
Open source: teachers all over the world can access it freely, and improve it if they  ●
wish. It is intended to be a prototype for a broader range of CS Field Guides for 
other countries and contexts. The guide is licensed under a Creative Commons At-
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tribution-NonCommercial-ShareAlike licence which means that users are welcome 
to take copies and modify them. The material is produced using the open-source 
Sphinx system (http://sphinx-doc.org/), which was originally designed 
for writing Python documentation, and works from plain text source files using the 
reStructuredText format. Much of the writing has been done by volunteers, and 
the more costly parts of the production have been supported by contributions from 
industry.
Interactive: learning activities, games, videos and animations are embedded in the  ●
page as students read the book. The interactive components are intended to encour-
age direct engagement on the part of students, rather than something that is viewed 
passively.
Focus on key concepts: Rather than teach a topic in depth, we establish what the key  ●
concepts are and make sure they are conveyed. For example, binary representation 
has some obvious conversion skills that can be learned, but the key concepts are 
things such as the exponential increase in descriptive power with each bit added; 
and “algorithms” are often published as a shopping list of many different algorithms, 
whereas the key concepts are more around how different algorithms can have a non-
linear difference in performance, and that some problems are intractable.
Self-Paced: there is sufficient material that students can learn independently at their  ●
own pace, but also work in an environment facilitated by a teacher.
Teacher support: there is a semi-private version of the guide that has a lot more  ●
information for teachers, including solutions to all questions and hints for use in a 
classroom situation. The Sphinx system used enables conditional use of small units 
of text, so this makes multiple versions possible from a single source; the teacher 
guide and student version come from the same source text and future versions for 
other curricula can also be created automatically by conditionally selecting appro-
priate sections of text.
Engaging: drawing on our experience with Computer Science Unplugged, it should  ●
keep students engaged. This includes the use of humour (such as fictitious scenari-
os and tongue-in-cheek comments), “curiosities” (which give tangential examples 
or stories to create interest), and the use of cartoons.
Catering to different learning styles: the use of different ways to convey the same  ●
information provides each student with multiple experiences of the topic, and some 
may resonate better with one student’s learning style than another.
Short video “bumpers” that provide enticing introductions to the topic: these vid- ●
eos, which are generally a minute or two long, provide a somewhat humorous but 
sound overview of the topic raising questions and problems that are addressed in 
order to provoke curiosity.
Platform independent: it should be possible to read the guide online and offline,  ●
on all operating systems (primarily in a browser), and on tablets and even smart 
phones. This is achieved by using the Sphinx system, which can output the material 
on a web site, as PDF, or as an E-book (EPUB and MOBI). The interactive activi-
ties are programmed using HTML5 and JavaScript, which will run on most web 
browsers and E-book readers.
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No programming required: students do not need to be competent programmers be- ●
fore engaging with the material. Many will be learning in parallel, but alternative 
ways of engaging with the concepts are provided that don’t require programming 
ability.

Fig. 2 shows the beginning of the graphics chapter as an example. The opening video 
involves the presenter interacting with 3D graphics (including a slapstick attack of the 
ubiquitous graphics teapot) and the text begins with a “Big picture” section that conveys 
some of the key motivation for the detailed information that follows. The following sec-
tions cover selected specific topics in graphics (in this case transforms, and line/circle 
drawing algorithms) to illustrate the kind of issues that are dealt with in this topic. Each 
chapter concludes with a “Whole story” section, which mentions other key topics in the 
area of the chapter that haven’t been covered but are likely to be encountered in further 
reading or study. Currently chapters typically only cover two or three topics, which are 
sufficient to illustrate the area, but could be greatly expanded in the future to present other 
key topics that students might want to look into. 

Most chapters contain activities and projects that could be used for assessment pur-
poses; “activities” tend to be smaller formative tasks, whereas projects provide a more 
in-depth task that is typically used for summative assessment.

The main topics covered were shown in Fig. 1. As discussed above, this list largely 
reflects the widely-used ACM computer science curriculum for universities; of course, 
the topics need to be presented in a way that they are approachable for students with only 
rudimentary programming skills and a high school math background, and so that each one 
can be covered meaningfully in just a few weeks of a class.

An important task has been to identify the key concepts that would give students an 
understanding of what issues the topic needs to address, rather than an exhaustive cover-
age of many sub-topics in the area.

The main concepts identified were as follows:
Algorithms: understanding that algorithms exist independently of any program- ●
ming language, and that different algorithms for the same task not only have differ-
ent running times, but that the difference may not be linear.
Programming languages: exploring the role of compilers and interpreters in en- ●
abling a human readable language to be run on a computer, and the idea that a 
computer language is implemented by a program itself.
Human-computer interaction: critically assessing existing interfaces using well es- ●
tablished principles including basic psychology, and the idea that the person who 
implemented the interface is not in a good position to evaluate it critically.
Data representation: representing numbers, text, images and sound using bits, par- ●
ticularly the relationship between the number of bits used and the quality of the 
representation, and the exponential increase of range with the number of bits; hexa-
decimal is a shorthand for binary.
Coding: changing the representation of data to make it smaller (compression), se- ●
cure (encryption) and reliable (error control). Compression concepts include lossy 
vs lossless compression, and the kinds of structures in data that can be exploited to 
reduce file sizes. Encryption covers the concept of an attack, including approach-
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Fig. 2: The beginning of the graphics chapter.
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es such as brute-force and known-plaintext attacks, the cryptographic strength of 
keys, the key exchange problem, and areas of cryptography beyond keeping data 
confidential. 

Error control includes the idea that error detection and correction is possible, 
and the ability to do this with a high probability of success can be achieved by add-
ing relatively few bits to data.
Formal languages: efficient ways to specify and implement programming, markup,  ●
and other languages, how formal specifications are helpful in designing and com-
municating languages, and how to parse and process programs or documents writ-
ten in such languages.
Network communication protocols: the techniques and algorithms applied in com- ●
puter networks to ensure reliable, effective and efficient communication of data be-
tween two parts of a network in the face of different kinds of threats and failures.
Complexity and tractability: the relationship between problems and their algo- ●
rithms, and the idea that many common problems don’t have tractable solutions, 
that brute force algorithms can result in a combinatorial explosion of the running 
time, and that heuristic algorithms are often the best we can do in practice.
Artificial intelligence (AI): intelligent systems and the possibility of designing sys- ●
tems that exhibit aspects of human intelligence, reflecting on what intelligence is, 
and the practical and theoretical issues surrounding this. A significant component 
of Artificial Intelligence is (sadly) its limitations and understanding these can rec-
tify popular views of AI that might be picked up from media.
Software engineering: learning that there are systematic approaches that are applied  ●
to large software projects, typically with many team members and large amounts of 
program code, so that the products behave reliably and efficiently, are affordable to 
develop and maintain, and satisfy customer requirements.
Computer graphics: using computers to create images and animations based on a  ●
description of a scene or collected data, including techniques such as rendering, 
occlusion, and transformations.
Computer vision: processing images and recognising elements in an image, includ- ●
ing dealing with noise, edge detection, and face detection.

We now give a more detailed description of the design of the chapter on algorithms to 
illustrate how the above principles are worked out in practice.

4. Case Study: Algorithms Chapter

The design of the chapter on algorithms is reviewed in this section to give an idea of the 
approach taken and what topics have been included in the CSFG – and just as importantly, 
which topics have been excluded.

The key concepts that we chose to convey through the chapter are:
What an algorithm is and how it differs from the related concepts of programs and  ●
informal instructions.
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The concept that an algorithm has an associated cost, that this cost may be non-lin- ●
ear and is related to both running-time (of a program implementing the algorithm) 
and computational complexity.
The concept that two algorithms may have different costs even if they solve the  ●
same problem and that this difference in costs can be non-linear.

Valuable background for the design of this chapter was provided by an in-depth anal-
ysis of reports that included work on algorithms submitted by students for assessment 
(Bell et al., 2012). This analysis identified several key areas in the algorithms topic that 
had a great impact on the grades achieved by students. The majority of students chose 
either sorting or searching algorithms to investigate (63% sorting and 19% searching) 
and usually these students earned a passing grade or better for the algorithms section 
of the report if they explained their work satisfactorily. It was found that students who 
chose other algorithms or used their own programs, were much less likely to pass the 
algorithms section of the report. Students needed to compare the “costs” of algorithms 
(i.e. algorithmic complexity) to do well, and the majority of students unknowingly lim-
ited their ability to discuss the cost difference between algorithms as they choose to 
only compare the costs of their algorithms for relatively small input sizes, for example 
n = 10, 20, 30. Because the non-linear difference in costs for some of these algorithms 
only emerges when larger numbers are used, such as n = 100 or n = 1000, some students 
were unable to observe this relationship. About 10% of students were also unable to 
observe this trend as they chose to compare algorithms with the same complexity, such 
as Selection and Insertion sort, and so only observed a constant difference in their costs. 
This observation drove the selection of algorithms in the chapter; it is more important 
to have a small number of algorithms with different asymptotic complexities than many 
algorithms that had the same complexity. There were also several cases where students 
interpreted the “cost” of an algorithm as the length, in lines of code, of a program imple-
menting the algorithm. This suggested students required some guidance in how to mea-
sure the cost of an algorithm.

From the study, Bubble sort and Quicksort were the most popular sorting algorithms 
used by students. While these have drastically different running times, which give stu-
dents the opportunity to talk about the non-linear difference in their costs, it has been 
argued that Bubble sort has little pedagogical value and can be confusing for students 
(Astrachan, 2003). Selection and Insertion sort are both suitable alternatives to Bubble 
sort as they provide just as strong a contrast with Quicksort and are more worthwhile 
for students to learn. Linear search and Binary search were the most popular searching 
algorithms used in student work and these provided a suitable contrast for students to 
discuss. The choice of algorithms made a very clear difference to the quality of student 
reports. The algorithms which most often led to high grades were pairs of algorithms with 
significantly different complexities. The most successful pairs were Binary search vs Lin-
ear search (which provided a comparison of O ( log n) vs O (n)) and Quicksort vs one of 
Bubble sort, Selection sort and Insertion sort (a comparison of O (n log n) vs O (n2 )).

Students are not required, or encouraged, to implement the algorithms themselves 
and use their own programs for measuring costs because this risks a bug in their program 
giving them the wrong impression of algorithmic performance. Therefore implementa-
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tions of each example algorithm used are provided for students to download, although 
students can follow up by implementing their own versions. The concept of a “cost” as 
the number of comparisons an algorithm makes is emphasised through the interactives, 
and the downloadable programs measure it as both comparisons and time taken. Students 
are encouraged to test the algorithms with large inputs so they are able to observe the non-
linear differences between algorithm costs.

Students learn better when they are given the opportunity to construct knowledge 
themselves through experience, rather than simply learning from definitions or complete 
instructions (Wadsworth, 1996). The chapter has therefore been designed so that students 
are given the opportunity to discover algorithms for themselves, and explore the differ-
ences in their costs, rather than simply explicitly telling students how each algorithm 
works and the differences between them.

Another key tool in supporting students’ construction of mental models of these 
concepts is the use of analogies and metaphors for the use of algorithms (Forišek and 
Steinová, 2012). These are used throughout the chapter but especially during the intro-
duction section (for example, searching the library) to ensure students have begun build-
ing a mental model about algorithms before they encounter the interactives.

It has been shown that learning about two algorithms in parallel and comparing them, 
rather than learning them separately, contributes to students gaining a greater under-
standing of both the algorithms and the differences between them (Patitsas et al., 2013). 
Through each of the Searching and Sorting sections algorithms are presented and dis-
cussed in relation to each other, rather than viewing each as a separate entity.

There are several algorithm visualisation tools and interactive tutorials that were con-
sidered for use in the chapter. Visualisations of algorithms have been popular for teach-
ing different algorithms but it has been noted that many are too complex for students to 
understand (Murugesh et al., 2010). Furthermore, many don’t require interaction from 
the student, and so encourage passive use of the resource. It was found when examin-
ing the visualisations and interactives available that some covered more algorithms than 
were necessary, and used advanced language that made them unsuitable for use by school 
aged students. Several contained valuable information and taught the algorithms well but 
unfortunately were aesthetically unappealing or repetitive, which didn’t engage students. 
Thus, we make limited use of visualisations, and have focused on making them appealing 
and at a level that is meaningful to high school students.

Following the pattern for the CSFG, the chapter begins with a video and a “What’s 
the big picture?” introductory section, each of which gives an overview of the topic of 
algorithms and the key concepts the chapter is going to present.

The introductory videos are not intended to teach any of the chapter content, but by 
giving a ‘big picture’ view of the main topic they give context to the lessons in the chap-
ter. The first step in the video development process was to decide which concepts were 
to be conveyed. Several different combinations of concepts were reviewed, including the 
best and worst cases for an algorithm and the differences between an algorithm and a 
program, but the final key concepts chosen were the following:

That an algorithm is a set of instructions for completing a task or solving a prob- ●
lem, we use them in our everyday lives, and algorithms are used to tell computers 
how to solve problems.
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There can be many different algorithms for solving a particular problem and some  ●
of these algorithms are better than others.
Using a better algorithm can be better than using a faster computer. ●

For the video, several scenarios were considered, including algorithms for work-
ing with a collection of CDs, navigating supermarket aisles and mazes, connecting up 
networks, boarding planes and finding routes on a map. The concept chosen used two 
characters, one representing a fast computer and the other a very slow computer, and 
had them race each other to find a book in a library. The character representing the fast 
computer is much faster at looking through the books and running through the library, but 
uses a Linear search algorithm to try and find the book, searching the entire library book 
by book until they find the one they were searching for. The character representing the 
slow computer takes a much longer time to walk through the library and examines each 
book for a long time before placing it back on the shelf and moving on. This character, 
however, uses a Binary search algorithm, and finds the book much faster. The full video 
can be viewed online at http://www.youtube.com/watch?v=FOwCCvHEfY0, 
and can be viewed or downloaded at http://vimeo.com/69609500 (all the videos 
in the CSFG are provided on Vimeo as well as YouTube, to make it easier for teachers 
to download them and play them in a classroom, as some schools limit access to online 
video sites.)

After the video a short introduction section reiterates and emphasises the key lessons 
from the video and describes the sections of the chapter. To emphasise the points that 
there are a number different algorithms for the same problem and that some of these algo-
rithms are better than others, a sorting algorithm visualisation has been designed (Fig. 3). 
The aim of this visualisation is not to teach the algorithms, although it may be of use to 
refer to it again after students have learnt the sorting algorithms so they can see them in 
action. It is intended to be engaging, to keep students interested in the chapter content, 
and to show again the difference in the performance of algorithms. The visualisation we 
have designed shows only four algorithms to avoid overwhelming students. We have also 
placed a strong emphasis on the aesthetic of the visualisation as it is intended to be eye 
catching and engaging. 

The algorithms mentioned include “bogosort”, in which values are shuffled randomly 
until they end up in the correct order (which is very unlikely to ever happen for a large 
list). While this isn’t a useful algorithm, it illustrates some algorithmic concepts starkly 
(such as relative running times, worst case time, best case time, and tractability). The other 
rows are sorted using Insertion sort, Selection sort and Quicksort. Once the bars are found 
to be in the correct order the bird beside that particular row begins a victory dance.

Teaching the details of algorithms begins by introducing Linear and Binary search. 
These algorithms were chosen because it is easy for students to gain a high level under-
standing of them and they are easy for students to perform themselves with physical ob-
jects. The non-linear difference in their complexities also makes them suitable choices for 
students to compare. The searching algorithms are taught using a constructivist approach 
through a game in which students have to search through a large number of presents in an 
attempt to find and collect the missing pets of two children, shown in Fig. 4. The game 
is based on the CS Unplugged “Battleships” activity (http://csunplugged.org/
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searching-algorithms), but was changed to unwrapping presents, since blowing 
up battleships was likely to appeal more to male than female students.

Using the constructivist approach, students are simply told whether or not the num-
bers in the presents are in sorted order, and what number they are required to find. From 
our experience, students very quickly realise that an unsorted list is very slow to search 
(usually), and for a sorted list they quickly adopt a binary search related approach which 
enables them to find a number quickly without using too many of the small number of 
“lives” they are given.

There is a risk that students may try an interpolation search for the sorted list (e.g. 
guess that lower numbers are nearer the start); to confound this, we have adjusted the 
distribution of numbers to be non-uniform, so this strategy will generally not behave sig-
nificantly better than a conventional binary search and will quickly discourage students 
from trying to guess number locations. The exact distribution of numbers was tested 
using simulations of likely student strategies on different number distributions, which 
identified patterns that would be pedagogically most valuable.

Fig. 3: The sorting algorithms comparison animation

   

(a)                                                                                         (b)

Fig. 4: Game for teaching search algorithms constructively. (a) An unsorted set of presents in which students 
must find the given number; a large number of lives is provided since a linear search will be required. (b) A 
sorted list; only a few lives are available, so students will need to use binary search to avoid looking at too 

many presents. 
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The sorting algorithms section of the chapter focuses on Selection sort, Insertion 
sort and Quicksort which, like the searching algorithms, were selected for their contrast-
ing run times (for Selection or Insertion sort vs Quicksort) and the successful results 
achieved by student using them in past assessment (Bell et al. 2012). Selection and 
Insertion sort are very simple to explain and demonstrate with physical objects. Despite 
the complexity of implementing Quicksort it can also be simple to teach the basic meth-
od and demonstrate it with objects, which is all students require to understand it.

Although there are many animations of sorting algorithms available, these don’t usu-
ally engage the viewer in the process. We have used a constructivist approach to explain 
the sorting algorithms using a balance scale that can compare objects only two at a time 
(simulating the data comparison step of conventional sorting algorithms). This is based 
on the CS Unplugged sorting activity (http://csunplugged.org/sorting-
algorithms). Since a physical balance scale isn’t always available, an online simula-
tion was provided (shown in Fig. 5). The simulated scale has the advantage that we can 
enforce having only one weight on each side of the scale. Students are guided through 
the sorting algorithms; for example for selection sort, they are first asked to find the 
heaviest weight of the set, comparing just two at a time. Students soon find that this can 
be done in n - 1 comparisons, and then n - 2 for the second smallest, and so on. The 
other algorithms are also demonstrated using the approach from the CS Unplugged sort-
ing activity. Quicksort is seeded with the idea of putting a randomly chosen weight on 
one side of the scale and comparing each of the others with it. Students often come up 
with the idea of applying the algorithm recursively to the two groups of weights.

Programs implementing all the main algorithms discussed are provided for students 
to download in common programming languages used in schools, so that students can 
test their speed, confident that the implementation is correct (since the main learning 
outcome desired is to observe speed differences, rather than the ability to implement 
well-known algorithms).

The “whole story” section mentions the range of other problems and algorithms that 
exist, and also the “big oh” notation that students will quickly encounter if they look at 
other resources on algorithms. This notation isn’t needed to understand the main con-
cepts in the chapter, and so is avoided to make it accessible to students without the 
necessary math background, but it is important to mention it here since it is so common 
in this context.

Fig. 5: The Sorting Interactive
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5. Programming Exercises Based on the CS Field Guide

Creating exercises based on this kind of material has been explored previously (Voigt 
et al., 2009), where computer science concepts based on CS Unplugged activities were 
adapted for a programming competition environment. For example, the parity error 
correction technique (which appears in the CSFG also) can be used as the basis for a 
task to identify which bit(s) are identified by a parity error, with a step-up obtained by 
going from a single row of bits to multiple rows, and from single errors to multiple 
errors. For this kind of activity, in principle the most challenging version would be a 
full implementation of an error correction protocol, which is both authentic and moti-
vating.

Some suggestions for exercises building on the material currently in the CSFG are:

Algorithms: implement one of the searching or sorting algorithms; solve a sorting- ●
based problem where there is a tight time constraint that requires the use of Quick-
sort rather than the O(n2) algorithms.
Programming languages: implement a simple translator or assembler based on a  ●
small language (such as MIPS, or a subset, which is used in the chapter).
Human-computer interaction: design a progress bar (or create information to  ●
support one) that gives an accurate estimation of completion time; or implement 
an experiment that measures user behaviour for response time or pointing time 
(Fitts’s law).
Data representation: convert numbers between binary, decimal and hexadecimal;  ●
convert binary codes to the 5-bit letter system used in the chapter; perform round-
ing of numbers required when (say) 24-bit colour is converted to 16-bit colour.
Coding: encode or decode run-length encoding compression; implement the lon- ●
gest match search required for Ziv-Lempel compression; implement a simple 
substitution encryption system; write a brute-force system to attack an encrypted 
message; detect errors in data protected with parity bits; calculate checksums for 
product bar codes or ISBN numbers.
Formal languages: write a program that implements an FSA from a transition  ●
table; use regular expressions in a program to check input; implement a simple 
lexer; generate random text based on a formal language (grammar or FSA).
Network communication protocols: write a program to assemble packets that ar- ●
rive out of order; implement a system that can acknowledge packets and request a 
re-send to assemble messages reliably.
Complexity and tractability: implement an exhaustive evaluation of a small NP- ●
complete problem (e.g. TSP, graph colouring, vertex cover, knapsack); implement 
a heuristic and award points for the answer which is closest to optimal.
Artificial intelligence: implement a pattern-matching chatbot; perform elementary  ●
data mining by statistical analysis; implement a min-max search.
Software engineering: implement a software metric or visualisation (lines of code,  ●
comments, digraph of flow control); write a test generator to create examples to 
test some software that has been supplied.
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Computer graphics: implement basic transforms; write software to combine mul- ●
tiple transforms into one matrix operation; implement Bresenham’s line-drawing 
algorithm.
Computer vision: Implement a simple filter that performs a weighted sum of sur- ●
rounding pixels; perform simple face recognition given measurements of facial 
features in pre-processed images; perform simple edge detection by finding dis-
continuities in an image.

The above suggestions are simply to seed ideas, and students or instructors reading 
the chapters may well come across ideas that could be implemented. For each topic, the 
difficulty of assignments ranges from a simple simulation to a full implementation of the 
concepts in a way that could be used in a practical situation.

6. Conclusion

The Computer Science Field Guide has taken a new approach to making concepts from 
computer science accessible to high school students, encouraging a very broad view of 
the field rather than a depth-first approach that inevitably focuses on programming. The 
open nature of the guide is intended to make it easy for adaptation for new situations 
and curricula.

The guide includes a feedback link, which provides a tight feedback loop where 
any user can suggest clarifications or improvements. Over 100 suggestions have been 
received to date. About 23% are simple typos that can be fixed very quickly; 12% are 
“bouquets”, acknowledging the usefulness of the resource; and the remainder are a mix-
ture of clarifications and suggestions that may take longer to implement but are being 
prioritised for attention.

Currently all but one of the chapters covers the key concepts that we have aimed to 
convey (the final one to be written, on Network Communication Protocols, is in prog-
ress). Further work is needed to add more examples to each chapter; for example, trac-
tability is currently explained using the Travelling Salesman Problem, but other topics 
such as bin-packing or graph colouring could be added as other ways to illustrate tracta-
bility. Future plans include adding more topics such as Computability, Big data, Parallel 
computing and Databases. Other topics that are currently considered specialised may 
well become important as a basic part of computer science in the future (e.g. Quantum 
computing).

Other features that could be added to the guide include quizzes and student login and 
tracking. Also, multiple versions for different curricula are planned, and eventually a 
system to support translations would be useful.

The CSFG has been designed to be flexible to adapt to future needs of computer 
science education in high schools, and may end up being used in situations that can’t 
even be imagined now. Fortunately the computer science community has a strong ethos 
of open systems, crowd sourcing and creativity that we hope will enable this project to 
adapt to future demands.
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