
Olympiads in Informatics, 2014, Vol. 8, 157–168
© 2014 Vilnius University, IOI

157

More Algorithms without Programming

Jakub RADOSZEWSKI
Faculty of Mathematics, Informatics and Mechanics, University of Warsaw
ul. Banacha 2, 02-097 Warsaw, Poland
e-mail: jrad@mimuw.edu.pl

Abstract. It has been 4 years since the publication of “Algorithms without Programming” (Olym-
piads in Informatics, 4, 2010). In the past four years the set of algorithmic riddles proposed in
that paper has been used on different occasions, including an olympic quiz and classes with high
school and gymnasium students. It turned out that some of the problems fit better than the others,
moreover the set has been extended with several more examples. We present here what we have
learned in this period about teaching algorithmic and mathematical thinking without a computer.

Keywords: programming contests, non-programming tasks.

1 Introduction

In the first paper on algorithms without programming (Kubica and Radoszewski, 2010)
we have presented several examples of pen-and-paper tasks, formulated using basic no-
tions of combinatorics, that encapsulate a number of crucial concepts of algorithm de-
sign. The tasks could be solved using trial and error, however, such methods are quite
painful to execute “by hand” (and such solutions are error-prone). This task set was
designed for individual study for students primarily interested in mathematics and was
originally published in a Polish popular monthly.

Since 2010 the task set has been used on several different occasions. First it formed
the basis of an olympic quiz at an open event called the First Polish Informatics Camp
held for high-school and gymnasium students during ACM International Collegiate Pro-
gramming Contest Finals 2012 in Warsaw, Poland. The tasks were distributed on small
pieces of paper and the solutions were checked automatically using a computer program.
For this purpose the tasks had to be extended with several subtasks, so that the students
would not exchange their answers too easily.

Next the task set was introduced to basic and intermediate level olympic program-
ming camps, organized mainly for mathematically talented high-school and gymnasium
students at the University of Warsaw, Poland, and to a series of popular introductory
lectures to computer science. Problem solving sessions were a form of break from regu-
lar programming sessions taking place in computer rooms. They also turned out to be
a networking and, at the same time, a competitive event for students. However, their
main purpose was to show that computer science is not only about tackling technical is-

J. Radoszewski158

sues and to enhance students’ problem-solving skills. The task set required a significant
change to fit well for this application. Now we selected tasks in which the computations
were kept at a strict minimum. The solution to each task required basically a single idea
and at the same time could be obtained by students within just a few minutes.

Below we list other works, devoted mainly to specific competitions which contain
related examples of non-programming tasks used in informatics training. It is worth
noticing that, contrary to pen-and-paper competitions, for the classroom usage there is
no need to keep inventing new tasks once every period of time. The ability to solve such
tasks is just a bridge to solving regular programming tasks focused on algorithms, not
an end in itself. In particular, whenever possible, we add a link to a programming task
that is the base of the particular non-programming task, so that the students see a direct
connection between the two types of tasks.

The “Beaver” contest consists of short tasks (each to be solved within 3 minutes) on
informatics and computer literacy. The key features of the tasks: “attraction, invention,
tricks, surprise”, “thinking, not guessing answers”, and “independence from any curricu-
lum”, see Dagienė (2006), Dagienė and Futschek (2008), are the same as in the task set
that we propose. The apparent difference is that the tasks at the Beaver contest are to be
solved on a computer, whereas we generally aim at pen-and-paper competition. We also
aim only at a subset of the list of topics from the Beaver competition which generally fits
within the following categories mentioned by Dagienė and Futschek (2008): Structures,
patterns and arrangements (combinatorics and discrete structures) and Puzzles (logical
puzzles).

There are several national informatics competitions and olympiads which consist
of pen-and-paper tasks of similar flavour in at least one stage. This includes the South
African Computer Olympiad, SACO (Merry et al., 2008), Australian Informatics Com-
petition, AIC (Burton, 2010) and Dutch Olympiad in Informatics (van der Vegt, 2012).
The works of Burton (2010) and van der Vegt (2012) contain several examples of such
tasks. The former provides key characteristics which apply also to our task set, namely
“puzzle-based setting” and “no assumed knowledge”. Again, the scope of AIC is actu-
ally wider than what we consider; our tasks fit in the Algorithmic tasks category men-
tioned by Burton (2010). The AIC contains also three-stage tasks, an idea similar to the
idea of subtasks that we consider (with a slightly different motivation).

Tasks of an algorithmic flavour with purely mathematical statements can also be found
in Ugāle team competition (Opmanis, 2009) and Project Euler (projecteuler.net).
There is a substantial difference between the format of the two and the format of our task
set: the former can be solved by the students with the aid of a computer. A more com-
prehensive description of tasks types which go beyond simple programming tasks can
be found in Hakulinen (2011) and Forišek (2013). Yet another approach to introduction
of elements of computer science in an attractive form can be found in the books of Bell
et al. (1998), Vöcking et al. (2011), Forišek and Steinová (2013).

We present our task set with each section devoted to one task. Each task contains
5 subtasks that are normally distributed among students. The task descriptions are fol-
lowed by a solution description and some methodological comments on the usual per-
formance of students on the particular task. Two of the tasks are tasks from Kubica and

More Algorithms without Programming 159

Radoszewski (2010) properly adapted to the new setting. Afterwards in a Conclusions
section we list an updated list of conditions from Kubica and Radoszewski (2010) that
a task from the set should satisfy.

2. Polygon

2.1. Problem

I own a parcel of a polygonal shape. It has 10 sides and its area equals 23 (that is, it con-
tains 23 unit squares). The corners of the parcel are: B2, B5, E5, E4, F4, F8, I8, I3, C3,
C2, see figure.

A B C D E F G H I J
1

2

3

4

5

6

7

8

9

10

Can you draw a polygon with:

6 sides and area 6?(a)
8 sides and area 8?(b)
10 sides and area 10?(c)
12 sides and area 12?(d)
14 sides and area 14?(e)

Or a polygon with 13 sides and area 13? All sides of the polygon must be contained
in grid lines. Each two consecutive sides must be perpendicular.

This riddle is based on a task from Algorithmic Engagements 2011
(http://main.edu.pl/en/archive/pa/2011/geo).

2.2. Solution

For all subtasks the answer is positive and there are numerous different solutions.
Below we draw two different parcels for subtasks (d) 12 and (e) 14:

J. Radoszewski160

12

14

12 14

There is no polygon with 13 sides and area 13. Actually there is no polygon with
an odd number of sides in which every two consecutive sides are perpendicular. This is
because all even-numbered sides must be vertical and all odd-numbered sides must be
horizontal (or vice versa).

2.3. Methodological Comments

At first the students usually solve the subtasks using trial and error. After all the subtasks
have been solved, the students can be asked to solve a sixth subtask, with 20 sides and
area 20, and then encouraged to provide a general structure of a polygon for any given
even number of sides and unit squares. Construction of such scheme requires elements
of algorithmic thinking.

On the other hand, the students usually put some effort in trying to draw a polygon
with an odd number of sides and area. They are curious why such a polygon does not
exist. Sometimes they attempt their own intuitive arguments. The main difficulty in pro-
viding such an argument is to note that the odd number of sides is the sole reason why
no such polygon exists.

3. Palindromes

3.1. Problem

A palindrome is a word which is the same when read from left to right and from right
to left. Examples of palindromes are noon, radar. Some words may be divided into
even length palindromes (therefore, for example, the palindrome noon could be used
in a division, while radar could not). For example, the word aabbaaabbaaa can be
divided into 3 even length palindromes:

aabbaaabbaaa = aabbaa|abba|aa

What is the smallest number of even length palindromes in a division of the word:

More Algorithms without Programming 161

 (a) aabbaabaabaabbbb?
 (b) aaaaabbaaabbabbabbbb?
 (c) baabbbbaabaabaabbbbb?
 (d) aabbaabaabaabbbbbbbb?
 (e) aaaabbaaabbabbaabbbb?

This riddle is based on a task from 2nd Polish Olympiad in Informatics
(http://main.edu.pl/en/archive/oi/2/pal).

3.2. Solution

Below are the optimal divisions of the words from all subtasks:

 (a) aabbaabaabaabbbb = aa|bbaabaabaabb|bb
 (b) aaaaabbaaabbabbabbbb = aa|aaabbaaa|bbabbabb|bb
 (c) baabbbbaabaabaabbbbb = baab|bbbaabaabaabbb|bb
 (d) aabbaabaabaabbbbbbbb = aa|bbaabaabaabb|bbbbbb
 (e) aaaabbaaabbabbaabbbb = aa|aabbaa|abba|bbaabb|bb

There is something special about the words selected for these subtasks. They share
the following property: if we try to select to the division the longest even palindrome
which is a prefix of the word, it cannot be extended to an optimal solution. The same
applies if we take the longest such suffix to the division.

3.3. Methodological Comments

This task is to be solved using trial and error. Most commonly the students come up with
suboptimal solutions at first. What they learn from this task is that greedy is not neces-
sarily optimal. A correct algorithmic approach to this problem is via dynamic program-
ming (which the students do not need to use here). Interestingly enough, if we were to
divide the initial word into the maximum number of even length palindromes, a greedy
approach would work!

4. Wagons

4.1. Problem

Let us consider a track siding: an incoming track A, an exit track B and two auxiliary
tracks 1, 2. Track A contains 7 wagons numbered 1 through 7. The wagons arrive on
track A in the following order:

J. Radoszewski162

1 2

B A

6, 3, 2, 5, 1, 7, 4(a)
5, 2, 4, 1, 6, 3, 7(b)
6, 2, 5, 1, 3, 7, 4(c)
7, 5, 2, 4, 1, 6, 3(d)
6, 1, 3, 5, 2, 7, 4(e)

The wagons are to exit via track B in increasing order of numbers 1, . . . , 7. Each
wagon is to be moved from track A to one of the tracks 1, 2 and then to track B exactly
once. There can be arbitrarily many wagons on each track at the same time.

Can this task be completed successfully? If so, to which auxiliary track should the
subsequent wagons be moved?

(For example, if the initial order of wagons was 5, 2, 6, 4, 1, 3, 7 then the answer
would be positive. The wagons could be moved using the auxiliary tracks 1, 1, 2, 2, 1,
1, 1 respectively.)

This riddle is based on a task from 17th Polish Olympiad in Informatics
(http://main.edu.pl/en/archive/oi/17/kol).

4.2. Solution

The subtasks are constructed in such way that a solution exists (however, there exist
permutations of wagons 1 , … , 7 which cannot be sorted using two auxiliary tracks).

Note that at all moments of time all wagons on each auxiliary track must be sorted
from the smallest to the highest number (from the beginning of the track). There is
a natural greedy approach to this problem: under the aforementioned order-condition,
always put the next wagon on the auxiliary track where the first wagon has the smallest
number. However, for all given subtasks this strategy fails. For example, in subtask (a)
after processing the first 5 wagons we would obtain wagons 1, 2, 3, 6 on one auxiliary
track and wagon 5 on the other auxiliary track. Next we move wagons 1, 2, 3 to track B
in this order and there is no auxiliary track to move wagon 7 to.

Using trial and error, for example, the following solutions can be obtained:

1, 2, 2, 1, 1, 2, 1(a)
1, 2, 1, 1, 2, 1, 1(b)

More Algorithms without Programming 163

1, 2, 1, 1, 1, 2, 1(c)
1, 1, 2, 1, 1, 2, 1(d)
1, 1, 2, 1, 1, 2, 1(e)

4.3. Methodological Comments

The purpose of this task is similar to the task Palindromes. The students are not sup-
posed to come up with any particular algorithm but to see that greedy does not work. The
original task from the Polish Olympiad in Informatics was solved using a smart reduc-
tion to the problem of two-colouring of a particular graph (which seems too complex to
be presented at this level).

5. Coins

5.1. Problem

Assume you were given coins with the values being powers of two:

1, 2, 4, 8, 16, 32, …

and you had exactly one coin with each value. Then you could pay any (positive integer)
amount of money using these coins (for example, 45 = 1 + 4 + 8 + 32).

What is the smallest (positive integer) amount of money, which cannot be paid using
the following set of coins:

6, 3, 2, 10, 21, 46, 1, 48?(a)
12, 7, 3, 2, 31, 27, 28, 1?(b)
27, 56, 1, 13, 60, 4, 7, 2?(c)
44, 39, 5, 1, 9, 1, 18, 2?(d)
62, 3, 26, 12, 53, 2, 1, 7?(e)

Keep in mind that you have exactly one coin of each kind!

5.2. Solution

The same task in a traditional setting has already been presented in Kubica and Radosze-
wski (2010). We briefly recall the solution here.

The first step is to sort the sequence of coins in non-decreasing order; for the se-
quence in the first subtask we have:

1, 2, 3, 6, 10, 21, 46, 48(a)

J. Radoszewski164

Using the first two coins we can pay any integer amount from [1, 3]. With the first
three, we can pay any amount from [1, 6]. By including the coin 6, we can pay any
amount from [1, 12], with the additional coin 10 we can pay any amount from [1, 22],
and with the additional coin 21 we can pay any amount from [1, 43]. The next coin is
46, which concludes that the amount 44 cannot be paid. The answers to the remaining
subtasks are as follows: (b) 26, (c) 55, (d) 37, (e) 52.

5.3. Methodological Comments

Students usually find this task quite hard. This is because trial and error requires quite a
lot of effort to obtain the solution and often leads to mistakes in the answer. Eventually
students manage to solve the majority of the subtasks.

This task encapsulates several algorithmic concepts: sorting, elements of dynamic
programming approach and binary number system (in the task statement).

6. Triangle

6.1. Problem

We are given 11 line segments of the following lengths:

1, 49, 11, 3, 338, 128, 30, 78, 17, 208, 6(a)
103, 1, 15, 8, 167, 271, 5, 3, 64, 25, 38(b)
94, 154, 5, 8, 248, 35, 2, 1, 58, 23, 13(c)
87, 3, 20, 12, 141, 4, 228, 52, 1, 33, 8(d)
108, 25, 178, 15, 3, 42, 9, 68, 1, 4, 286(e)

Is it possible to pick three different line segments from the set and use them to obtain
a triangle with positive area? If so, which three segments to choose?

This riddle is based on a task from 2nd Polish Olympiad in Informatics
(http://main.edu.pl/en/archive/oi/2/tro).

6.2. Solution

Recall that a triangle with positive area can be built using segments of length a, b, c if
the longest one (say c) is strictly shorter than the total length of the smaller two (that is,
a + b > c).

The answers to all subtasks are positive. In each case there exist unique three seg-
ments that can be used to form a triangle:

30, 49, 78(a)

More Algorithms without Programming 165

15, 25, 38(b)
13, 23, 35(c)
20, 33, 52(d)
42, 68, 108(e)

It is easy to see that if a solution exists then there is also a solution formed by three
consecutive segments in ascending order of lengths. For example, in the first subtask we
have the following order:

1, 3, 6, 11, 17, 30, 49, 78, . . .(a)

It suffices to stop at 78, since we have already discovered the requested triad of seg-
ments: 30 + 49 > 78.

6.3. Methodological Comments

I usually present this task just after the task Coins. Thanks to that several students dis-
cover fast that having the line segments in ascending order of lengths simplifies the
solution considerably.

At the conclusion of the task one can try to argue why exactly it suffices to choose
three consecutive segments in the sorted order. There is a simple greedy argument: we
start with any three segments in the sorted order and show that by increasing the lengths
of the smaller two (without exceeding the length of the longest one) we only raise the
odds of obtaining a solution.

Young students usually do not have the habit of proving the correctness of their
ideas. In this task set we try to create this habit threefold. First, by showing simple for-
mal proof ideas like the one above. Second, by stimulating the students’ curiosity (“Why
does it work?”). And third, by showing that the most straightforward intuition (usually
the greedy one) need not always work (as in the tasks Palindromes and Wagons).

7. Anti-binary Sets

7.1. Problem
An anti-binary set is a set of integers that does not contain two numbers of the form m
and 2m. For example, the set:

A = {2, 3, 5, 8, 11, 13}

is anti-binary whereas the set:

B = {2, 3, 5, 6, 8, 11, 13}

is not, since both 3 and 6 are its elements.

J. Radoszewski166

What is the largest size of an anti-binary set that is a subset of

{1, … , 11}?(a)

{1, … , 12}?(b)

{1, … , 13}?(c)

{1, … , 14}?(d)

{1, … , 15}?(e)

How many different anti-binary subsets of the same size exist?

This riddle is a simplified version of a task from Algorithmic Engagements 2007
(http://main.edu.pl/en/archive/pa/2007/pod).

7.2. Solution

The same task in a traditional setting has been presented in Kubica and Radoszewski
(2010). The most reliable way to obtain the solution is to draw a graph with vertices
numbered 1 through n (n = 11, … , 15 depending on the subtask) and edges connecting
every two nodes with numbers m and 2m. Note that such graph is always a collection of
disjoint paths. The graph for n = 15 is presented below.

1 2 4 8

3 6 12

5 10 7 14

9 11 13 15

Now the task boils down to finding the largest independent set in this graph and
counting all largest independent sets, which are both extremely simple. We obtain the
following answers to subtasks:

12 anti-binary sets of size 7(a)
6 anti-binary sets of size 8(b)
6 anti-binary sets of size 9(c)
12 anti-binary sets of size 9(d)
12 anti-binary sets of size 10(e)

More Algorithms without Programming 167

7.3. Methodological Comments

This task introduces basic notions of graph theory. A good idea is to collect the solu-
tions of both parts of the task separately. Students usually manage to solve the first part
of the task (that is, to find the largest anti-binary set for a given n) quickly without any
graphical illustration. However, they will need to perform the graph construction (either
explicitly or implicitly) to count the number of largest anti-binary subsets.

The original task from Kubica and Radoszewski (2010) involved counting all anti-
binary subsets of a set {1, … , n}. While this question is nice to be solved at home with
a computer (or calculator) at hand, it involves too much computation to be solved in a
class. Let us note that counting all largest antibinary subsets solely enforces the students
to use some smarter method than trial and error.

8. Conclusions

We presented several algorithmic non-programming tasks to be solved during an ex-
ercise session with a group of high-school or pre-high-school students who are just
starting to program (or have never programmed before). A number of desired features of
an algorithmic non-programming task were already listed in Kubica and Radoszewski
(2010). These conditions also apply for the tasks presented in this paper: we aim at
small instances of regular programming tasks which admit a technically simple solu-
tion that avoids using advanced techniques or classical algorithms and which do not
admit a trivial suboptimal or heuristic solution that behaves better on the particular data.
However, due to the specific environment considered in this paper, more restrictive
guidelines apply.

Obviously we need to produce several interesting instances (subtasks) for each task.
This can often be done automatically using implementations of the solutions. Task state-
ment should be based on simple concepts, possibly include a figure to increase its at-
tractiveness, and have a short formulation. A student should be able to come up with a
solution within 5 minutes. The solution should consist of a single idea and minimum
computations (errors in computations aren’t fun). Note that some computations are
equally easy for a computer but their complexity differs dramatically in the pen-and-
paper scenario, e.g. adding 10 numbers from {1, … , 1000} vs finding their maximum.
Last but not least, the solution should include some of the crucial concepts of computer
science and algorithms in particular, while the task statement should avoid using any
concepts of programming.

We have also introduced a new type of tasks on which the most intuitive though
incorrect solution fails. In such tasks we do not expect the students to invent the model
solution of the corresponding programming task. The purpose of such tasks is to encour-
age students to perform verification of correctness of their solutions.

J. Radoszewski168

References

Bell, T., Fellows, M.R., Witten, I. (1998). Computer Science Unplugged … Off-Line Activities and Games for
all Ages. http://csunplugged.org/

Burton, B.A. (2010). Encouraging algorithmic thinking without a computer. Olympiads in Informatics, 4,
3–14.

Dagienė, V. (2006). Information technology contests – introduction to computer science in an attractive way.
Informatics in Education, 5(1), 37–46.

Dagienė, V., Futschek, G. (2008). Bebras international contest on informatics and computer literacy: criteria
for good tasks. In: 3rd International Conference on Informatics in Secondary Schools – Evolution and
Perspectives, ISSEP 2008. 19–30.

Forišek, M. (2013). Pushing the boundary of programming contests. Olympiads in Informatics, 7, 23–35.
Forišek, M., Steinová, M. (2013). Explaining Algorithms Using Metaphors. Springer.
Hakulinen, L. (2011). Survey on informatics competitions: developing tasks. Olympiads in Informatics, 5,

12–25.
Kubica, M., Radoszewski, J. (2010). Algorithms without programming. Olympiads in Informatics, 4, 52–66.
Merry, B., Gallotta, M., Hultquist, C. (2008). Challenges in running a computer olympiad in South Africa.

Olympiads in Informatics, 2, 105–114.
Opmanis, M. (2009). Team competition in mathematics and informatics “Ugāle” – finding new task types.

Olympiads in Informatics, 3, 80–100.
van der Vegt, W. (2012). Theoretical tasks on algorithms; two small examples. Olympiads in Informatics, 6,

212–217.
Vöcking, B., Alt, H., Dietzfelbinger, M., Reischuk, R., Scheideler, C., Vollmer, H., Wagner, D. (Eds.). (2011).

Algorithms Unplugged.

J. Radoszewski (1984), assistant professor at Institute of Informat-
ics, Faculty of Mathematics, Informatics and Mechanics, University of
Warsaw, chair of the jury of Polish Olympiad in Informatics, co-chair of
the Scientific Committee of CEOI’2011 in Gdynia, former member of
Host Scientific Committees of IOI’2005 in Nowy Sącz, CEOI’2004 in
Rzeszów, and BOI’2008 in Gdynia, Poland. His research interests focus
on text algorithms and combinatorics.

