
Olympiads in Informatics, 2025, Vol. 19, 87–100
© 2025 IOI, Vilnius University
DOI: 10.15388/ioi.2025.06

87

Pisek – a Caching Task Preparation System

Martin MAREŠ, Daniel SKÝPALA
Department of Applied Mathematics Faculty of Mathematics and Physics Charles University
Malostranské nám. 25 118 00 Praha 1 Czech Republic
e-mail: mares@kam.mff.cuni.cz, skipy@kam.mff.cuni.cz

Abstract. We introduce a new tool for developing competition tasks. It helps with creating test
data and checking that the tests award the expected scores to a set of reference solutions. It sup-
ports batch, interactive, and open-data tasks in a variety of programming languages. Test results
are cached, which significantly accelerates task development. Automated checks are utilized to
detect common errors, including fuzzing of output checkers. The tool interfaces to CMS for con-
figuring tasks, testing them, and semi -automatically establishing time limits.

Keywords: task preparation tool, automated testing.

1. Introduction

Preparing a task for a programming competition is an elaborate process, which includes
developing the task statement, creating test data, and checking that the test data award
the expected scores to a set of reference solutions. Experience shows that this process is
prone to errors, especially when last-minute changes are introduced in a hurry.

Contest organizers therefore strive to make the task preparation process rig orous.
One such process was documented by Diks et al. (2008) and its principles are still fol-
lowed by major contests.

An immediate consequence is the development of task preparation systems that try
to automate as much of the process as possible. They take a formal de scription of the
task, its tests, and reference solutions. Then they go through all steps of the process and
check for errors. Some steps still require human inter vention, for example setting of time
limits. But even there, the task preparation system can provide guidance.

There already exist multiple task preparation systems, most notably Poly gon1 (popu-
lar at CodeForces), TPS2 (developed for IOI 2017), sinol-make3 (orig inated in the Polish
OI), and Taskmaker4 (originated in the Italian OI).

1 https://polygon.codeforces.com/
2 https://github.com/ioi/tps
3 https://github.com/sio2project/sinol-make
4 https://github.com/olimpiadi-informatica/task-maker-rust

M. Mareš, D. Skýpala88

In this paper, we present Pisek5 – a system we have developed over the past few
years. It is powerful and fast, while being very simple with minimal dependencies. In
particular, it can be easily used by task authors on their own machines. The current ver-
sion of Pisek is available at https://github.com/piskoviste/pisek/.

We aim for supporting a much wider range of contest types and task for mats – in par-
ticular, both IOI-type contests where solutions are submitted as source code, and open-
data contests where the contestants download test in puts and submit the corresponding
outputs. We also support a wide variety of programming languages.

Pisek is based on its own task format, which tries to make common things straight-
forward and less common things possible. Tasks developed in this format can be later
exported to an actual contest system.

Pisek has a simple command-line interface, which can be used manually or invoked
as a part of a continuous integration system. Pisek employs a lot of caching behind the
scenes to make development cycles short while ensuring correctness.

Inside, Pisek is implemented in as a collection of Python modules that can also serve
as building blocks of other tools for handling tasks, or even of contest systems.

This paper presents the features of Pisek and the foundations on which it is built.
Section 2 introduces the task format and the components of the task development pro-
cess. Section 3 describes deeper layers, in particular handling of programming lan-
guages and the caching layer. Section 4 discusses integration with contest systems like
the CMS.6

1.1. History of Pisek

The first version of Pisek was developed in 2019 by Jiří Beneš, Richard Hladík, Michal
Töpfer, and Václav Volhejn for a Czech open-data contest called Kasio pea,7 drawing
inspiration from the KSP open-data system8 developed by Martin Mareš. Then it was
extended to handle IOI-type tasks for the Czech IOI team selection camp.

Between 2023 and 2025, Pisek was rewritten by Jiří Kalvoda, Daniel Skýpala, and
Benjamin Swart, based on experience with the initial version and further ideas by Mar-
tin Mareš. This version is described in this paper. It is also used to develop tasks for the
Czech national programming olympiad and CEOI 2024.

2. Tasks and their Parts

First of all, we introduce the underlying concepts of tasks and their testing. Then we
explain how these concepts are expressed in Pisek.

5 “písek” is a Czech word for sand, alluding to a playground for children.
6 https://github.com/cms-dev/cms
7 https://kasiopea.matfyz.cz/
8 https://ksp.mff.cuni.cz/

Pisek – a Caching Task Preparation System 89

2.1. Anatomy of a Task

Pisek supports two types of tasks: batch tasks (the solution is a single program that
reads an input and then produces the corresponding output) and interac tive tasks (a pro-
gram that interacts with the contest system in multiple steps; e.g., a two-player game).
By default, all communication is performed via the standard input and output, but the
task can define a library that wraps such communication in an arbitrary API provided
to the solution.

The goal of the task is specified in a task statement given to contestants. Statements
are not handled by Pisek.

Solutions are graded using a set of tests, each having one or more testcases. Each
test is worth a certain amount of points, which are awarded for solving all testcases
in the test. For IOI-style tasks, tests correspond to subtasks. Sample input and output
(given openly to the contestant) is also considered a separate test.

In a batch task, a testcase specifies an input to the solution and the correct output.
The input can be a static file, but it is usually created using a generator. The correct
output can be static, but it is often computed from the input using a correct primary
solution. A checker then decides if the solution’s output matches the correct output. It
can be a diff-like program, or if there are multiple correct outputs, the task can provide
a judge program for checking correctness. The judge may also award partial score (e.g.,
in optimization tasks), the total score per test is then computed as the minimum over
all testcases.

In an interactive task, there is always a judge program, which interacts with the
solution over a pair of pipes. There is also an input file, but it is consumed by the judge.
Again, the judge may award partial score.

A task also comes with several reference solutions with expected scores. One of the
solution is declared primary. A primary solution is expected to solve all testcases cor-
rectly and efficiently.

In addition to solutions, a task can define a validator. It is a separate program that
meticulously verifies that the input files conform to the format set in the task statement.
In some cases, validation is integrated in the primary solution instead.

Generators, judges, and validators can have access to a dataset – a collec tion of
data files that are either contained in the task package or generated by a separate pro-
gram.

2.2. Task Package

Pisek represents everything related to a single task as a task package. The package is
stored as a single directory in the file system (possibly with sub directories). The con-
tents are typically maintained in a Git repository, but Pisek is oblivious to versioning.

Behavior of the task is controlled by a configuration file with a simple INI-like syn-
tax (essentially a collection of key-value pairs divided to sections) – see Fig. 1 for an

M. Mareš, D. Skýpala90

example. The configuration can refer to a parent configu ration file that supplies defaults
for non-specified items. Typically, the parent configuration is specific to a contest. The
ultimate parent is the set of defaults provided by Pisek itself.

Fig. 1. An example configuration file.

Pisek – a Caching Task Preparation System 91

The task package also contains a collection of static input and output files and
source code of all programs related to the task (generators, validators, judges, reference
solutions etc.).

Finally, there may be extra files not handled by Pisek. This typically includes the task
statement.

2.3. Generators

In addition to static testcases, task authors can implement a generator that produces
further testcases in a mechanic way. Pisek supports multiple generator interfaces, but all
of them follow the same logic:

The generator is deterministic ● – the generated input file depends only on the
generator itself, its runtime arguments, and possibly on the dataset. If the genera-
tor uses pseudo-random numbers, it should fix their random seed to one provided
in the runtime arguments. This is crucial for repro ducibility of testing and Pisek’s
caching.
The generator respects the seed ● – for different seeds, the generator should gener-
ate different input files. This is especially useful in open-data contests where each
attempt to solve the task produces new input data based on a fresh seed, which
expires after some time. It is also possible to declare that a particular test does not
have a seed.

The mapping of tests to testcases depends on the particular generator inter face. In the
trivial case, each test has a single testcase named after the test.

With the more advanced interfaces, the generator can be asked to produce a list of
testcases it can generate. Each testcase has a file name (e.g., easy01.in) and optional
attributes: if it is seeded and how many instances of the testcase (with different seeds)
should be generated.

The configuration file can then specify a list of filename globs for each test, e.g.,
in_globs=01*.in easy*.in. All testcases (static and generated) match ing any
of the globs are included in the test.

Moreover, a test can also define one or more predecessor tests, whose testcases are
automatically included. For example, the contest-specific configuration can specify that
the predecessor should be the previous test. Transitively, this makes each test to include
its own testcases and testcases of all previous tests.

2.4. Checkers

A batch task needs a checker to decide if the solution’s output is correct. Pisek provides
a variety of built-in checkers that compare the solution’s output with the correct output
at different levels of strictness:

M. Mareš, D. Skýpala92

Diff ● – runs the diff utility provided by the operating system, set to ignore differ-
ences in whitespace. This is a traditional method, but it suffers from quadratic time
complexity in the worst case.
Tokens ● – compares the two outputs as sequences of whitespace-separated tokens.
By default, newline characters are considered separate tokens, but the task can
choose to make them equivalent to other whitespace. Additionally, the checker can
be configured as case-insensitive and/or to compare numeric tokens with a given
precision. This checker is the rec ommended choice if the correct output is unique
up to formatting.
Shuffle ● – a token-based checker that accepts all permutations of tokens within
a line, or all permutations of lines within a file, or both. It is useful if the correct
output is unique up to order.

If there are multiple correct outputs (e.g., multiple shortest paths in a graph), the task
provides a custom judge. Pisek supports several interfaces to judges, including the one
used in CMS.

Depending on the interface, the judge can be given the test number, the seed used to
generate the input, the input, the correct output (as produced by the primary solution),
and the solution’s output. The input and the correct output are optional – some judges do
not need them, as they can compute everything from the seed. This is useful if Pisek is
used within an open-data contest system, which can skip generating the unneeded files
and save time.

The main part of the judge’s output is the verdict (accept or reject, possibly with a
message for the contestant). Optionally, the judge can award points (absolute or relative
to the number of points per test).

Interactive tasks always require a custom judge, which talks to the solution over a
pair of pipes. Pisek currently supports only the manager interface of communication
tasks in CMS. The judge gets the input and produces a verdict as with the batch judges.

In the future, we plan to design a more flexible interactive judge interface, because
the CMS interface suffers from multiple problems. In particular, use of named pipes
leads to deadlocks if they are opened in an unexpected order. Furthermore, it is not pos-
sible to report wrong answers differently from protocol errors, which leads to confus-
ing results if the protocol error is caused by a pipe being closed automatically after the
solution crashes. This is in need of more research and hopefully also cooperation among
maintainers of contest systems.

2.5. Solutions

The task specifies a primary solution and an arbitrary number of secondary solutions.
The primary solution should be correct and efficient; it is used to produce the correct
output if the checker needs it. The set of secondary solutions usually includes other
correct solutions (to ensure that the primary solution is correct) and also incorrect
solutions with a wide range of mistakes (to ensure that the scoring strategy works as
expected).

Pisek – a Caching Task Preparation System 93

Solutions communicate over their standard input and output, although this can be
wrapped in a library (see below). Solutions typically have their running time and mem-
ory limited.

For each solution, the task configuration specifies the expected outcome. It can be the
expected number of points or the expected outcome for each test (e.g., test 1 passes, test
2 produces a wrong answer, test 3 times out). The expected outcomes are preferred, but
expected points can be more useful in optimization tasks.

2.6. Verification

There are many possible mistakes in competition tasks, but they frequently follow one of
a few typical patterns. Pisek provides a battery of checks for such common errors. All of
them are optional, defaults are usually provided by the per-contest configuration.

Size of inputs and outputs ● – sizes are compared with a configured max imum.
This can catch a run-away generator. In open-data contests, the limits are usually
more strict, because the contestants must be able to download the input, run their
program, and upload its output within a short time window.
Coverage of tests by solutions ● – for each test, there should be a reference solution
that succeeds on this test and all its predecessors, but fails on all other tests. This
is useful if subtasks of the task are linearly ordered (each is a strict superset of the
preceding one) or if their dependencies form a rooted tree.
Unused inputs ● – every input (static or produced by the generator) should be in-
cluded in at least one test.
Last test uses all inputs ● – if the subtasks are linearly ordered, the last test should
include all inputs.
Generator depends on seed ● – the generator produces different input files for the
same testcase with different seeds. This can produce false positives in tasks with
short inputs, but our experience shows that it is rare in practice.
Fuzzing ● – if the task has a custom judge, this check tries to run it on many ran-
domly mutated copies of the sample outputs. This often crashes judges with sloppy
parsing of the solution’s output.

Additionally, a validator supplied with the task is ran on each testcase. Its goal is
to check conformance of the input to the task statement. The validator is also given
the test where the testcase belongs, so it can verify properties required by specific
subtasks.

2.7. Preprocessors

Input and output of most tasks is a simple ASCII text. But the simplicity is often deceiv-
ing: text files can contain trailing spaces at the end of a line, multiple spaces in a row,
or tabulators instead of spaces. Lines can be terminated by different newline characters,

M. Mareš, D. Skýpala94

the final newline can be missing, or perhaps there are a few extra empty lines at the very
end. Windows programs tend to add the UTF-8 byte-order marker at the beginning of
text files, even if the text contains only ASCII characters. Sometimes, they also encode
the ASCII text in UTF-16.

Some of these problems are unknown in the C++-centric world of major com-
petitions. But once a competition enables more exotic programming languages, or if the
tasks are open-data, all of them become everyday issues.

Handling all these anomalies in checkers and judges is a tedious task prone to errors.
Pisek avoids problems with irregular whitespace by using token-based checkers (and we
provide a tokenization library to custom judges). To handle the other problems, Pisek
runs all text files through a preprocessor that normalizes character encoding and newline
characters (including proper termination of the last line).

Preprocessing takes place in three situations:
All inputs (both static and generated) ● – the inputs are normalized first. If an input
contains non-ASCII or non-printable characters, normalization fails and so does
testing of the task. If normalization changes the input, depending on the configura-
tion either the normalized input is used instead, or an error is raised.
Outputs produced by solutions ● – they are normalized before they are checked
for correctness. A warning can be also produced if the output was non-normalized.
Failed normalization causes the testcase to fail.
Outputs produced by contestants ● – if Pisek is used as a part of an open-data con-
test system, outputs uploaded by contestants are also normalized.

Tasks with non-ASCII input/output can set their input/output format to binary and
check correctness using a judge. New formats can be added easily. An obvious candidate
is Unicode text in UTF-8 or UTF-16, but that would bring a completely new set of nor-
malization issues (see Whistler (2024)).

Preprocessing does not take place for interactive tasks. Their judges must cope with
non-normalized text.

3. Building and Running Programs

Development of a task involves running different programs: generators, valida tors,
judges, and reference solutions. They are written in varying programming languages.
First, it is good practice to test solutions in all languages available to the contestants,
so that time limits can be calibrated accordingly. Second, task authors often prefer to
use higher-level languages (e.g., Python) for generators and validators, which need not
run quickly.

Let us consider typical use cases first:
Simple C++ ● – The task package contains one source file. We need to run a compil-
er, which produces an executable file. In some cases, the task author wants to add
custom compiler options or to link a well-known library. Most traditional compiled
languages also fall into this category.

Pisek – a Caching Task Preparation System 95

Simple Python ● – The task package contains one source file. We can run it directly.
This also applies to languages like Perl, Ruby, Raku, and JavaScript.
Simple Java ● – The task package contains one source file. We need to run a com-
piler, which produces byte code. To run it, we need to invoke the Java virtual ma-
chine. Alternatively, we can set up binfmt_misc on Linux to make the kernel
recognize the byte code signature and run the JVM automatically. We prefer to
avoid this approach, because it needs root privileges and we cannot adjust JVM
options per task. A similar case is C#.
Multi-file C++ or Java ● – Like Simple C++, but we have multiple source files
which have to be compiled and linked together to produce a single binary.
Multi-file Python ● – We have multiple source files, but no compiler. All files have
to be present when running the program. An alternative is to use the little-known
zipapp module from Python’s standard library that can pack all files to a single
ZIP archive which is then runnable by the Python interpreter. We still need a ge-
neric solution for other Python-like languages.
Rust with Cargo ● – Rust programs are usually built using Cargo from a directory
with all source files and a configuration of Cargo. A similar case is Go with its
module system.
Make ● – In rare cases, there is a program with a complex building process. It can
be a multi-language program, or perhaps a program whose source code is gener-
ated by another program. As we do not want to implement yet another universal
build system, we prefer to defer to an existing build system in such cases. For
sake of tradition, let us consider Make. The source code is then a directory with
a Makefile.
Task-specific stubs and libraries ● – At some contests (e.g., recent IOIs), solu-
tions are expected to implement an API instead of communicating using files.
The solution is then linked with a stub: a piece of code specific for a combina-
tion of a task and a language that serves as the interface between the contest
system and the API. Usually, the stub reads the input from the standard input,
calls the solution’s API, and writes the result to the standard output. Similarly,
an interactive task can provide an API called by the solution to interact with the
judge.
Multi-purpose binaries ● – Sometimes, we want to share code among gen erators,
judges, and validators. A single source file can participate in compilation of mul-
tiple binaries. Or we can produce a single binary which can play multiple roles,
depending on the command-line arguments passed.

Overall, we want to handle the simple cases (e.g., a single C++/Python source file)
with as little configuration as possible, while still allowing the com plex cases.

This is accomplished by two parts of configuration: build sections that de scribe
how programs are compiled from their sources, and run sections that specify how the
programs should be run. All settings in these sections have defaults such that in the
typical case, you can omit the sections completely and just specify the name of the
program.

M. Mareš, D. Skýpala96

3.1. Building Programs

A build takes the source and produces an executable program. The source is either a
single file or a sub-directory. The executable program is either a single file executable
by the OS or a sub-directory containing an executable file called run that can refer to
the rest of the sub-directory (relative to the path it was ran from).

The build is governed by a build section in the task configuration. The section
is named after the combination of a program name and its purpose, e.g., [build_
solution:good1]. It specifies the name of the source and a build strategy to be
used. Available strategies include:

A simple C++ program ● – compiles a single source file to a single exe cutable file.
A simple Python program ● – just copies the source file and marks it as execut-
able.
A simple Java program ● – compiles a single source file to a byte code file, pro-
duces a directory, were run is a shell script that runs the JVM on the byte code.
A multi-file Python program ● – takes a directory and a given entry point, produces
a directory with run symlinked to the file with the entry point.
Cargo ● – takes a directory and runs Cargo in it to produce a single file.
Make ● – takes a directory, runs make in it; the Makefile is supposed to produce
output in a sub-directory called target, which contains either a single executable
file or a collection of files with an executable run.

If neither the source nor the strategy is given, Pisek chooses automatically. Most
strategies have an auto-detection rule. For example, if we are building the solution
good1 and the task package contains a file good1.cpp, the C++ strategy is willing to
build it. If multiple strategies match, an error is raised and the user must make an explicit
choice. So in the simple cases, the whole build section can be omitted.

Additionally, the build section can set strategy-specific options like compiler options,
further files to be made available to the compiler (e.g., header files) and additional source
files to be compiled together with the main source file (e.g., task stubs). This is useful in
conjunction with inheritance of build section: [build_solution:good1] inherits
from [build_solution] (e.g., task-specific libraries) and [build] (e.g., compiler
flags provided by contest-specific config uration).

3.2. Running Programs

Whenever task configuration specifies a program to be run (e.g., a solution), it actually
refers to a run section named after the program and its purpose. For example, [run_
solution:good1]. The run section refers to a build section that produces the pro-
gram and it specifies the command-line arguments to be passed and resource limits to be
applied (e.g., a time and memory limit).

Again, there are defaults that allow omitting the whole section: we build [build_
solution:good1] and run the program with no arguments. There is an inheritance

Pisek – a Caching Task Preparation System 97

hierarchy of [run_solution] and [run] that typically provides re source limits.
For solutions in particular, we also inherit from [run_primary_solution] and
[run_secondary_solution], which is often used to run secondary solutions with
a less strict time limit.

3.3. Sandboxing

Programs should be run within a sandbox that imposes resource limits and checks that
the programs access only the expected files (this is important to ensure consistent cach-
ing).

Pisek currently uses minibox, a simple pseudo-sandbox which limits memory us-
ing the kernel’s ulimit for virtual memory and which kills the program when the time
limit is exceeded. It is not a proper sandbox as it is easy to escape from it. But it is actu-
ally sufficient in most cases as the programs in the task package can be trusted not to be
malicious. (However, beware when using somebody else’s task packages.)

The advantage of this approach is simplicity and no need for root privileges. Disad-
vantages include problems with limiting memory in C# and Go (both runtimes allocate
enormous amounts virtual address space without actually us ing it) and the impossibility
of controlling programs with multiple processes or threads.

In the future, we plan to switch to Isolate (Blackham and Mareš, 2012)) and/or
systemd-run (weaker, but available in most Linux distributions by de fault).

3.4. Caching

Testing a task in Pisek can be a time-consuming process. We need to generate all input
files, validate them, run all verification checks, run all solutions, and check their output.
All this can easily take at least minutes for an IOI-level task. On the other hand, it is good
practice to re-test the task after every change, especially in the later stages of contest
preparation.

We observe that minor changes in the task often affect only a small subset of Pisek’s
operations. We can therefore save significant time by caching results of operations and
re-computing them only if the relevant parts of the task change.

This is similar to what build systems like make do, but they need the user to declare
explicit dependencies, which is prone to errors. We prefer a systematic and automated
approach that is as close to obviously correct as possible.

Testing of tasks is divided to small pieces called jobs. Each job can depend on results
of other jobs, called its prerequisites. There is a universal mechanism for caching job
results. Each cache entry contains the following information:

Name ● – a human-readable description of the job (e.g., “Run solution name on input
name”).
Result ● – the output of the job (e.g., if running the solution succeeded).

M. Mareš, D. Skýpala98

Signature ● – a cryptographic hash of all data on which the job depends. This in-
cludes:

__init__ ○ arguments – each job is internally a class, whose initial ization
parameters specify what the job should do (with more details than what is
specified in the job’s name).
Results of prerequisites. ○
Testing context ○ – values of command-line arguments and all settings in task
configuration which have been accessed when the job was run.
Contents of files ○ – for each file read or created by the job, we record the hash
of its contents, which is then added to the collective signa ture.
Evaluation of globs ○ – if the job uses filename globbing (e.g., to select tes-
tcases for a given test), we need to check that the glob still pro duces the same
set of files. Otherwise, dependencies on file contents would not catch a newly
matched file.

Signature recipe ● – a list of all inputs from which the signature was com puted.
The cache can contain multiple entries with the same job name, but different signa-

tures. (This is why the signature covers contents of files produced by the job: Different
versions of the job may have the same output file with different contents.)

When Pisek wants to run a job, it looks up all entries with the right name in the
cache. For each such entry, it computes the signature according to the entry’s recipe.
If it matches the entry’s signature, the job is considered unchanged and the cached
result is re-used. If the job needs recomputing, a new entry is created with the same
name and a new signature. If there are too many entries with the same name, we trim
the oldest ones.

The jobs are fine-grained, which enables Pisek to recompute only the abso lute mini-
mum when the task changes. For example, when we change the judge, we do not re-run
the solutions and we only re-judge their outputs. When a new testcase is added, solutions
are run only on that testcase etc.

This systematic approach has proven itself efficient and reliable. Over the years
we used Pisek, there were very few errors, usually caused by colliding job names or
file names. The cache is automatically invalidated when Pisek is upgraded to avoid
compatibility errors. (However, this does not apply when using the development ver-
sion of Pisek from its Git repository as the version number changes only for official
releases.)

4. Integration with Contest Systems

When the task is tested in Pisek, we need to export it to the actual contest system. The
export should be automated to the greatest extent possible to avoid human errors.

The environment in which the solutions run within the contest system is obviously
different from the environment used by task authors. So we need to verify that the be-
havior of tasks in the contest system matches the expectations.

Pisek – a Caching Task Preparation System 99

4.1. Integration with CMS

We have implemented an export to CMS, which can set up the task, create a dataset with
the test data, set time and memory limits, submit all reference solutions, download test
results, and compare them to the expected results.

We also have a semi-automatic tool for choosing the time limit. This requires detailed
specification of the expected behavior of the reference solutions on tests. In particular,
we need to separate timeouts from the other failure modes. Then we can compute the
time interval between the slowest solution that should not time out and the fastest one
that should time out. The time limit is then chosen manually from the computed interval.
If the interval is empty, we must improve the test data.

Since Pisek supports a much wider variety of tasks, there are some restric tions. The
task must use judge interfaces compatible with CMS and it cannot rely on the text pre-
processor.

Currently, the CMS lacks a public API for creating tasks and submitting solutions.
Our CMS interface therefore relies on CMS internals and calls CMS libraries in ways
that can break in the future. We will try to keep up with changes in CMS, but the proper
solution is to make CMS offer a well-defined API.

4.2. KSP Open-data System

With the KSP open-data contest system, we plan a completely different ap proach.
We are going to re-implement the back-end of the contest system on the top of Pisek.
Most of the necessary functionality is already available in Pisek as separate modules:
most importantly generating the input data for a given seed and testing if the output
is correct.

The only significant difference is that we have to separate the actions per formed
online during the contest (generating inputs and checking outputs) from those that take
place when setting up the task (compiling programs, preparing datasets).

5. Conclusions

Pisek has proven itself useful when developing tasks for multiple contests in cluding
CEOI 2024.

Still, there remain several areas which call for further research and develop ment.
Most importantly, we would like to extend compatibility between Pisek and CMS: sup-
port the full range of Pisek’s built-in checkers, judge interfaces, and possibly also the
text preprocessor. One possibility is to improve CMS itself, another is auto-generating
manager code for CMS.

M. Mareš, D. Skýpala100

The task format could be brought closer to the Kattis problem package specification.9
Both formats would benefit from cross-pollination and automated conversion of tasks
between them.

A task statement (and its translations) could be added to the task package format,
which would enable automatic inclusion of sample inputs and outputs. Formalizing de-
scriptions of subtasks (at least partially) could enable sharing a single definition of limits
among the task statements, the validator, and pos sibly also the generator. The task-maker
already supports similar features.

Further automated checks for common errors should be included, especially a more
powerful fuzzer.

Judges and validators of different tasks contain a lot of common code, often imple-
mented with insufficient handling of malformed inputs. We suggest that this common
code should be generalized and made available as a library. The library should be inde-
pendent of the task preparation system used.

References

Blackham, B., Mareš, M. (2012). A New Contest Sandbox. Olympiads in Informatics, 6, 100–109.
Diks, K. et al. (2008). A Proposal for a Task Preparation Process. Olympiads in Informatics, 2, 64–74.
Whistler, K. (ed.) (2024). Unicode Standard Annex #15: Unicode Normal ization Forms. Available online at:

https://unicode.org/reports/tr15/

M. Mareš is a lector at the Department of Applied Math ematics of Fac-
ulty of Mathematics and Physics of the Charles University in Prague,
organizer of several Czech programming contests, member of the IOI
Technical Com mittee, and a Linux hacker.

D. Skýpala is a Bachelor student at Faculty of Mathe matics and Phys-
ics of the Charles University in Prague, IOI 2022 bronze medalist,
organizer of several Czech pro gramming contests and a member of
CEOI 2024 Scientific Committee.

9 https://github.com/Kattis/problem-package-format

