
Olympiads in Informatics, 2025, Vol. 19, 27–33
© 2025 IOI, Vilnius University
DOI: 10.15388/ioi.2025.02

27

Virtual Time Measurement in
Programming Contests

Paweł DIETRICH1, Bartosz KOSTKA2
1Google Poland,
2Google Canada
e-mail: p.dietrich@fri.edu.pl, kostka@oij.edu.pl

Abstract: We propose a novel method for measuring time in programming competitions. This
method utilizes the instruction count, using existing hardware capabilities, to ensure a fair and
deterministic evaluation. By basing the measurement on the count of executed instructions, the
method becomes less dependent on the underlying machine’s specifications. Furthermore, it facili­
tates scalability by enabling parallel program execution on multiple threads. We also discuss the
adoption of this method in various Polish competitions.

Keywords: virtualized time measurement, hardware performance counters, deterministic program
evaluation, programming contest judging systems.

1. Introduction

The goal of this paper is to share a novel approach to measure execution time of par­
ticipants’ submissions developed for Polish Olympiad in Informatics (POI). The authors
also share their experience with using this approach in a production environment.

Traditionally, competitive programming problems challenge participants to write a pro­
gram that performs computations and that execution is restricted by certain time and memory
limits. The memory footprint of the program is straightforward to measure, as the approach
to handling memory has not changed in years. On the other hand, there are multiple CPU
architectures, and within a single architecture, there are different revisions of processors. Par­
ticipant submissions can run faster or slower depending on the clock speed, cache sizes, CPU
die layout, memory controller latency, and many other factors.

Organizers wanting to provide consistent judging verdicts using standard time mea­
surement techniques need to maintain a uniform fleet of judging machines and carefully
control their software. To achieve time measurement accuracy within an error margin
of a few percent, only one program can be judged on each judging machine. This ap­
proach also disallows the use of shared hardware (e.g., cloud machines) due to “noisy
neighbor” problems. The requirement to use physical machines is usually costly, and this

P. Dietrich, B. Kostka28

approach often wastes significant resources, since today’s machines have multiple CPU
cores. However, to maintain the time measurement accuracy, only one submission can
be judged at a time.

2. Implementations

There were multiple iterations of the mechanism that we use today for time measure­
ment in Polish competitions. The first version of the tool called oitimetool Acedański
(2009) used Intel’s library PinLuk et al. (2005). The current version used in POI is called
sio2jailDubiel (2018) was based on perf API.

The first tool was limited to running only on Intel CPUs, and since there are other
popular vendors in the CPU space, we decided to switch to sio2jail exclusively and
abandon oitimetool. This way, we depend on an open-source software component (the
Linux kernel with perf enabled), rather than on a proprietary CPU interface. Both solu­
tions were intentionally implemented to calculate the same time for the same programs.
The idea was to make the switch a small technical nuance.

2.1. Using a Linux perf

Modern computer systems are equipped with various ways of collecting and analyzing
performance data. One of the tools that uses these build-in systems is perf – a powerful
performance analysis tool available on Linux systems. perf was introduced as a tool for
using the Performance Monitoring Units (PMUs) hardware in modern processors to col­
lect data on hardware events such as instruction counting or cache monitoring.

The perf tool provides a very simple command line interface. For example:

2 Implementations
There were multiple iterations of the mechanism that we use today for time
measurement in Polish competitions. The first version of the tool called oitime-
toolAcedański (2009) used Intel’s library PinLuk et al. (2005). The current
version used in POI is called sio2jailDubiel (n.d.) was based on perf API.

The first tool was limited to running only on Intel CPUs, and since there
are other popular vendors in the CPU space, we decided to switch to sio2jail
exclusively and abandon oitimetool. This way, we depend on an open-source
software component (the Linux kernel with perf enabled), rather than on a
proprietary CPU interface. Both solutions were intentionally implemented to
calculate the same time for the same programs. The idea was to make the switch
a small technical nuance.

2.1 Using a Linux perf
Modern computer systems are equipped with various ways of collecting and an-
alyzing performance data. One of the tools that uses these build-in systems is
perf – a powerful performance analysis tool available on Linux systems. perf was
introduced as a tool for using the Performance Monitoring Units (PMUs) hard-
ware in modern processors to collect data on hardware events such as instruction
counting or cache monitoring.

The perf tool provides a very simple command line interface. For example:

$ perf stat -B dd if=/dev/zero of=/dev/null count=1000000

1000000+0 records in
1000000+0 records out
512000000 bytes (512 MB) copied, 0.956217 s, 535 MB/s

Performance counter stats for ’dd if=/dev/zero of=/dev/null count=1000000’:

5,099 cache-misses # 0.005 M/sec (scaled from 66.58%)
235,384 cache-references # 0.246 M/sec (scaled from 66.56%)

9,281,660 branch-misses # 3.858 % (scaled from 33.50%)
240,609,766 branches # 251.559 M/sec (scaled from 33.66%)

1,403,561,257 instructions # 0.679 IPC (scaled from 50.23%)
2,066,201,729 cycles # 2160.227 M/sec (scaled from 66.67%)

217 page-faults # 0.000 M/sec
3 CPU-migrations # 0.000 M/sec

83 context-switches # 0.000 M/sec
956.474238 task-clock-msecs # 0.999 CPUs

0.957617512 seconds time elapsed

There are two main metrics, which can be used to model execution time of
the program itself. Thay are cycles and instructions. Esentially different
instructions can take different amount of cycles. From our experiments the ratio
of cycles per particular instruction can vary from CPU to CPU, even within a
particular vendor. For more accurate results for a particular hardware this can

2

Virtual Time Measurement in Programming Contests 29

There are two main metrics, which can be used to model execution time of the pro­
gram itself. They are cycles and instructions. Essentially different instructions
can take different amount of cycles. From our experiments the ratio of cycles per par­
ticular instruction can vary from CPU to CPU, even within a particular vendor. For
more accurate results for a particular hardware this can be a good metric. However our
original goal was to be more hardware agnostic, that is why we choose the instructions
counter, which counts the literal instructions writted in a program’s binary file as they
are executed.

In sio2jail, we use the perf interface using its C++ API (linux/perf_event.h).
We set up performance monitoring using perf_event_open1 system call. We set it
up to count only instructions from user namespace and only after the execve call (the call
that executes the program to be judged) is executed. Additionally, we want to implement
the instruction limit. We use the sample_period and wakeup_events options,
which allow us to receive a notification when the counter values exceed certain values,
to do so.

2.2. sio2jail Usage

The implementation of sio2jail is available in the GitHub repository SIO2Project (2018).
The implementation offers process sandboxing using seccomp The Linux Kernel Docu­
mentation (2025) and instruction counting using above mentiond perf, memory limit
verification and more. There is also a test program available, that was running exactly
1 second on a reference machine and was used to properly scale instructions to seconds
ratio.

Unfortunately we did not provide any default options for the sio2jail binary. The us­
ers are responsible for setting all the options by themselves. We have released an extra
script called oiejq, which sets the sio2jail command line options to print time(1)
like output, which is handy for the participants to use.

3. Pros and Cons

Using this special virtual environment for time measurement can be beneficial for pro­
gramming competitions in a number of ways.

First, the described method, leveraging hardware event counters and potentially
running in a virtualized environment with namespaces, eliminates the dependency on
the specific physical configuration of the machine evaluating the program. This means
the same program, when run on different machines with varying factors like clock
speed, cache size, or even the number of cores (assuming they don’t impact the algo­

1	https://man7.org/linux/man-pages/man2/perf_event_open.2.html

P. Dietrich, B. Kostka30

rithm’s execution path), will result in highly consistent instruction counts. This has
several advantages:

Flexibility in judging machines. The judging machines do not need to have identi­●●
cal configurations, which is often impractical and costly to achieve, especially for
larger competitions. This also allows for the judging machines to differ from the
contestants’ machines. As long as the virtual environment with hardware event
counters is implemented, the measurement conditions remain consistent.
If the environment is published, the contestants also have an ability to run their ●●
programs in the exact same environment. This is extremely helpful for situations
where we cannot guarantee that each contestant has access to the exactly same ma­
chine (for instance in online competitions where contestants participate from their
homes, using their personal machines). The contestants do not have to experiment
how much smaller/faster are the judging machines compared to the machine they
use for the competition, as they can run their programs in the exact same environ­
ment.
Problem setters can set the time limits for their problems much easier. They can ●●
now execute their model solutions on their own machines and confidently set ap­
propriate time limits for the problems based on the measured execution time during
the development stage. This eliminates the need to worry about hardware discrep­
ancies between their machines and the judging environment.
A cornerstone of the proposed method is its guarantee of deterministic and repeat­●●
able execution. This ensures that the measured execution time for a given solution
remains invariant across multiple runs. This characteristic proves particularly ad­
vantageous in scenarios where a solution requires re-evaluation. Under the conven­
tional time measurement approach, such re-judgement can lead to discrepancies in
the verdict, especially when the solution is fairly close to the time limit. Tradition­
ally, this necessitates executing the solution multiple times and verifying if any
of those runs fall within the allotted time. The virtual time measurement method
effectively eliminates this issue. Furthermore, the inherent consistency of virtual
time measurement facilitates the seamless portability of problems across different
platforms, provided they share the same virtual environment. This eliminates the
need for time limit re-calibration for each platform, As we use distinct platforms
for competitions and public training purposes, this feature streamlines problem
reuse across these platforms.
Simplified maintenance and upgrades. If machines need to be replaced in the judg­●●
ing environment, the consistency of time measurement ensures that time limits for
past problems don’t need to be recalculated or reevaluated.

Furthermore, we want to highlight that this virtual environment allows for a high
degree of isolation for program execution. This isolation ensures that the measured ex­
ecution time remains independent of extraneous processes running concurrently on the
judging machine. Consequently, the time measurement becomes a more accurate reflec­
tion of the program’s intrinsic performance, as factors like CPU or memory utilization

Virtual Time Measurement in Programming Contests 31

by other processes are effectively eliminated from the equation. This isolation offers a
significant advantage for both contestant and judging machines. For judging machines,
this isolation permits the parallel execution and evaluation of the programs. By leverag­
ing multi-core processors, the judging process can achieve significant efficiency gains.
Additionally, the isolation allows us to utilize virtualization techniques without concerns
regarding the impact of other processes running within the same virtual machine. This
allows for greater flexibility in resource allocation and management within the judging
environment.

While the proposed method offers substantial advantages, especially for the contest
organizers, we have to acknowledge that it represents an abstraction of real-world time
measurement. While the discrepancies between the standard method and the virtual pro­
cessor approach are minimal, we recognize that transitioning to a new time measurement
method necessitates a comprehensive preparation and education effort. Our experience,
encompassing over a decade of utilizing virtual time measurement, instills confidence
that this method will have a negligible impact on the competition experience for the
vast majority of participants, particularly for new contestants. This is contingent upon
providing them with appropriate tools to gauge execution time within the virtual envi­
ronment.

The main differences to traditional approach, which can be viewed as cons are as
follows.

Uniform memory access cost. Cache size does not affect the program performance ●●
as measured by the number of instructions. It means that programs do not get any
penalty due to cache misses and the whole memory basically has a uniform access
cost, which is far from the reality.
A separate realtime limit is still needed. This is because a program, can still hang on ●●
a syscall or even just sleep. In such cases no instructions are being executed and a
instruction limit might not be reached at all. However in competitive programming
usage of sleep and complex syscall instructions is very rare.

4. Adoption in Polish Olympiad in Informatics

Recognizing the significance and potential ramifications of adopting a new time mea­
surement system, we prioritized a well-defined implementation process. This ensured
thorough preparation and understanding for both the scientific committee and the con­
testants.

During the initial phase (2008), all first-stage submissions for the Polish Olympi­
ad in Informatics (POI) were re-evaluated using the oitimetool after the competition
concluded. This analysis compared results generated by oitimetool with those obtained
through conventional time measurements. The results exhibited a high degree of sta­
tistical similarity. Notably, correlation coefficients remained consistently above 0.998.
Detailed findings are available in Acedański (2009).

P. Dietrich, B. Kostka32

The oitimetool system’s first official integration into the competition occurred
during the final stage of the POI in 2011. This stage was chosen strategically due to the
smaller number of advanced participants (under 100). During this contest, contestant
submissions were judged in two distinct environments:

The traditional environment measuring actual execution time. ●●
A virtual environment utilizing the Pin library for instruction counting. ●●

The final score for each submission was determined by the higher value ob­
tained from these two executions.

Following the successful pilot run, oitimetool was adopted as the sole judg­
ing environment for the first time during the subsequent school year (2011/2012). All
three stages of the POI utilized oitimetool, resulting in [number] submissions being
judged.

Over the following years, advancements in technology necessitated adapta­
tion. This included the introduction of new hardware-based instruction counting and
mechanisms for program privilege isolation and restriction. To address these changes, a
modernized judging environment named sio2jail was implemented in 2018. Built upon
state-of-the-art technologies of the era, sio2jail addressed some of the limitations pres­
ent in oitimetool.

The virtual environment was not incorporated into other Polish programming
competitions. Notably, both the Polish Collegiate Programming Competition (Aka­
demickie Mistrzostwa Polski w Programowaniu Zespołowym) and the country’s larg­
est open competition, Algorithmic Engagements (Potyczki Algorytmiczne), opted out.
This decision was based on the belief that both contestants (students and professionals)
and problem-setters in these competitions possess sufficient experience with traditional
real-time measurement approaches, and therefore, the virtual environment wouldn’t
offer them significant benefits.

We believe that this implementation allowed us to use full potential of multi-
threaded judging machines, minimizing impact of the hardware to the scoring and run­
ning costs. On the downsides, it slightly changed the characteristics of a CPU and
treated memory accesses as uniform.

References

Acedański, S. (2009). Wykorzystanie sprzętowych liczników zdarzeń do oceny wydajności algorytmów (Unpub­
lished master’s thesis). University of Warsaw.

Dubiel, M. W. T. D. P. J. K. W. (2018). Sio2jail, narzędzie do nadzorowania wykonania programów zgłaszanych
w ramach konkursów algorytmicznych. (University of Warsaw, 2018)

Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., ... Hazel-wood, K. (2005). Pin: building
customized program analysis tools with dynamic instrumentation. Acm Sigplan Notices, 40(6), 190–200.

SIO2Project. (2018). A tool for supervising execution of programs submitted in algorithmic competitions. Re­
trieved from https://github.com/sio2project/sio2jail

The Linux Kernel Documentation. (2025). seccomp: secure computing. Retrieved from
https://www.kernel.org/doc/html/latest/userspace-api/seccomp_filter.html

Virtual Time Measurement in Programming Contests 33

P. Dietrich is an engineer at Google Poland working on platforms and
infrastructure. He is serving as a member of Polish Olympiad in In­
formatics Committee focusing on technical details. Paweł is leading
a technical team that organizes most competitive programming events
in Poland. This team was responsible for running contests with time
measurement approach described in this document.

B. Kostka is a software developer at Google Canada. He is actively
involved in the competitive programming community, serving as a
member of the IOI Scientific Committee, Vice President of the Polish
Junior Olympiad in Informatics, and a member of the Universal Cup
organising committee. Previously, he worked with many talented stu­
dents who won multiple IOI medals and also organised and set prob­
lems for Google Kick Start.

