
Olympiads in Informatics, 2025, Vol. 19, 145–158
© 2025 IOI, Vilnius University
DOI: 10.15388/ioi.2025.10

145

The Olympiad Trap and an Old Trampoline

Tom VERHOEFF
Mathematics and Computer Science, Eindhoven University of Technology
Groene Loper 5, 5612 AE, Eindhoven, Netherlands
e-mail: t.verhoeff@tue.nl

Abstract. After some reminiscing, I describe the Olympiad trap and then delve into a technique to
eliminate recursion by trampolining with continuations.

Keywords: programming, recursion, recursion elimination, continuations.

1. Introduction

Since I plan to retire in October 2025, I hope you will permit me to begin with a brief
reminiscence, before telling you about the Olympiad trap. The bulk of this article, how-
ever, concerns a technical topic: how to eliminate recursion using an old technique
known as a trampoline with continuations.

I graduated in 1985 (Applied Mathematics, Eindhoven University of Technol ogy)
and started there as a PhD candidate. In that same year, TU Eindhoven somehow was
invited to participate in the preliminary regional round of the ACM International Col-
legiate Programming Contest (ICPC). We didn’t know that PhD candidates were (at that
time) allowed to participate. So, I became the team’s coach (rather than a contestant).
We went to London with an ad hoc team, and they qualified to participate in the ICPC
World Finals in 1987 (Saint Louis, MO). Later that year, we organized a university-wide
selection contest for the next regional round of the ICPC.

One thing led to another. In 1988, 1989, and 1990, I organized the pre liminary round
of the ICPC for Europe, Middle-East, and Africa (EMEA) in Eindhoven. The number of
regions increased and they became smaller. In 1997, I organized the North-West Euro-
pean Regional Contest (NWERC), and in 1999, we had the honor of hosting the ICPC
Word Finals in Eindhoven (the first time that it took place outside the USA). In 2004, I
received the ICPC European Founders Award for my efforts.

It was because of my ICPC experience that Ries Kock of the Netherlands In formatics
Olympiad (NIO) approached me in 1994. The Netherlands had been participating in
the IOI since 1990, and Ries had taken up the challenge of orga nizing IOI 1995 in The
Netherlands. He wanted me to head the Host Scientific Committee for IOI 1995. I went

T. Verhoeff146

to IOI 1994, in Sweden, as an observer, and got hooked. As part of the preparations for
IOI 1995, I set up the IOI International Secretariat on the (then still very young) World-
Wide Web. In 1999, the IOI International Scientific Committee was established, which
I chaired until 2007. In that same year, I received the IOI Distinguished Service Award.
Since then, I have followed the IOI on the side.

2. The Olympiad Trap

I already mentioned that I got hooked on the IOI during my first participation as an ob-
server. At the IOI, it feels like you are part of an important mission: discovering, stimu-
lating, and developing young talent (in informatics). You could consider the IOI a trap,
because its attractive force keeps you involved. But that is not the trap I want to discuss
here. I think that the IOI itself is trapped, viz. in its own format. That is what I mean by
the Olympiad trap.

Science olympiads cannot cover the full breadth of their field, certainly not when
the main event is a contest. The more prestigious and popular an olympiad becomes,
the more the team leaders will want to select and prepare their con testants with a focus
on what is relevant for the contest. This leads to training deeply for a narrow field. This
in turn makes it harder to change the olympiad’s format, because many people have in-
vested in the current format. That is, the Olympiad is trapped in its format.

It is easy to lose sight of the breadth of the field and of social aspects when develop-
ing talent. This is particularly worrisome for a field like informatics that still evolves
rapidly. Algorithmic problem solving plays a much smaller role nowadays, both in
(higher) CS education and in research and industry than when the IOI was established.
There is a host of other topics that attract attention. Of these, Data Science and AI
are newcomers. Parents are already advising their children not to study informatics,
because they fear that AI will affect the job market. That is why I think it should be
mandatory to augment training for olympiads with other activities on the side, to help
mitigate the Olympiad trap.

Such side activities should be interesting and challenging. In this article, I will ex-
plore such a side topic. Since this topic is still related to programming, it might even be
useful for IOI contestants.

3. Limits on Recursion

Recursion is a great algorithmic technique, which can lead to more compact and clearer
code for various problems. But recursion also has its dangers. One danger it shares with
general while loops is that it can be hard to reason about such programs, in particular
their termination (Verhoeff, 2018, 2023). Another danger is that recursion implicitly uses
memory, viz. on the call stack, so that deeply nested recursion can run out of memory.
In fact, some programming languages, such as Python and Java, impose a (configurable)
limit on the re cursion depth as built-in protection against infinite recursion. The default

The Olympiad Trap and an Old Trampoline 147

limit for Python is 1000 levels and for Java 256; C++ does not impose a limit other than
available memory.

In (Verhoeff, 2018), I discuss various aspects of recursion, in particular, tail recursion
and how linear tail recursion can be mechanically turned into a loop to avoid burdening the
stack (which I will recap below). In case of branching recursion, it may seem that only one
recursive call can be a tail call, and thus the transformation into a loop fails. In (Verhoeff,
2021), we encountered functions that break the recursion by introducing an extra param-
eter, and then “tying the knot of recursion” on the outside, by making the snake eat its own
tail (through a fixed-point construction, which still burdens the stack). It turns out that there
is another technique to break recursion and make even branching recursion tail recursive.

I will illustrate this technique through two examples in Python. Source code and vi-
sualization of the stack usage during execution is available in (Verhoeff, 2025). The first
example is based on function tri(n) that computes the -th triangular number (similar
to factorials, but using addition, so that the numbers don’t grow so fast):

The second example is total(t) that sums the values in binary leaf tree :

Function tri exhibits linear recursion and total exhibits branching recursion; neither is
tail recursive, since more work is done after the recursive calls return.

The call tri(1000) will result in a RecursionError. In case of function tri, the
standard technique of introducing an accumulation parameter yields a tail recursive
definition:

is another technique to break recursion and make even branching recursion tail
recursive.
I will illustrate this technique through two examples in Python. The first

example is based on function tri(n) that computes the n-th triangular number
(similar to factorials, but using addition, so that the numbers don’t grow so fast):

1 type nat = int # with assumption >= 0
2

3 def tri(n: nat) -> int:
4 if n == 0:
5 return 0
6 else:
7 return n + tri(n - 1)

The second example is total(t) that sums the values in binary leaf tree t:

8 @dataclass
9 class Leaf:

10 value: int
11

12 # binary tree type with int in leaves
13 type Tree = Leaf | tuple[Tree, Tree]
14

15 def total(t: Tree) -> int:
16 if isinstance(t, Leaf):
17 return t.value
18 else: # t is binary fork
19 return total(t[0]) + total(t[1])

Function tri exhibits linear recursion and total exhibits branching recursion;
neither is tail recursive, since more work is done after the recursive calls return.
The call tri(1000) will result in a RecursionError. In case of function

tri, the standard technique of introducing an accumulation parameter yields a
tail recursive definition:

20 def tri_acc(n: nat, acc: int = 0) -> int:
21 if n == 0:
22 return acc
23 else:
24 return tri_acc(n - 1, acc + n)

And this in turn is readily transformed into a loop, which avoids the dreaded
RecursionError:

25 def tri_loop(n: nat, acc: int = 0) -> int:
26 while n != 0:
27 n, acc = n - 1, acc + n
28 return acc

Exercise: Show how one of the recursive calls in total can be transformed into
a tail call by introducing an accumulation parameter. See Appendix A.1 for an
answer.

4 The trampoline

Even though the transformation from tail recursion to loop, shown above, is
straightforward, it needs to be done for each tail recursive function separately.

3

is another technique to break recursion and make even branching recursion tail
recursive.
I will illustrate this technique through two examples in Python. The first

example is based on function tri(n) that computes the n-th triangular number
(similar to factorials, but using addition, so that the numbers don’t grow so fast):

1 type nat = int # with assumption >= 0
2

3 def tri(n: nat) -> int:
4 if n == 0:
5 return 0
6 else:
7 return n + tri(n - 1)

The second example is total(t) that sums the values in binary leaf tree t:

8 @dataclass
9 class Leaf:

10 value: int
11

12 # binary tree type with int in leaves
13 type Tree = Leaf | tuple[Tree, Tree]
14

15 def total(t: Tree) -> int:
16 if isinstance(t, Leaf):
17 return t.value
18 else: # t is binary fork
19 return total(t[0]) + total(t[1])

Function tri exhibits linear recursion and total exhibits branching recursion;
neither is tail recursive, since more work is done after the recursive calls return.
The call tri(1000) will result in a RecursionError. In case of function

tri, the standard technique of introducing an accumulation parameter yields a
tail recursive definition:

20 def tri_acc(n: nat, acc: int = 0) -> int:
21 if n == 0:
22 return acc
23 else:
24 return tri_acc(n - 1, acc + n)

And this in turn is readily transformed into a loop, which avoids the dreaded
RecursionError:

25 def tri_loop(n: nat, acc: int = 0) -> int:
26 while n != 0:
27 n, acc = n - 1, acc + n
28 return acc

Exercise: Show how one of the recursive calls in total can be transformed into
a tail call by introducing an accumulation parameter. See Appendix A.1 for an
answer.

4 The trampoline

Even though the transformation from tail recursion to loop, shown above, is
straightforward, it needs to be done for each tail recursive function separately.

3

is another technique to break recursion and make even branching recursion tail
recursive.
I will illustrate this technique through two examples in Python. The first

example is based on function tri(n) that computes the n-th triangular number
(similar to factorials, but using addition, so that the numbers don’t grow so fast):

1 type nat = int # with assumption >= 0
2

3 def tri(n: nat) -> int:
4 if n == 0:
5 return 0
6 else:
7 return n + tri(n - 1)

The second example is total(t) that sums the values in binary leaf tree t:

8 @dataclass
9 class Leaf:

10 value: int
11

12 # binary tree type with int in leaves
13 type Tree = Leaf | tuple[Tree, Tree]
14

15 def total(t: Tree) -> int:
16 if isinstance(t, Leaf):
17 return t.value
18 else: # t is binary fork
19 return total(t[0]) + total(t[1])

Function tri exhibits linear recursion and total exhibits branching recursion;
neither is tail recursive, since more work is done after the recursive calls return.
The call tri(1000) will result in a RecursionError. In case of function

tri, the standard technique of introducing an accumulation parameter yields a
tail recursive definition:

20 def tri_acc(n: nat, acc: int = 0) -> int:
21 if n == 0:
22 return acc
23 else:
24 return tri_acc(n - 1, acc + n)

And this in turn is readily transformed into a loop, which avoids the dreaded
RecursionError:

25 def tri_loop(n: nat, acc: int = 0) -> int:
26 while n != 0:
27 n, acc = n - 1, acc + n
28 return acc

Exercise: Show how one of the recursive calls in total can be transformed into
a tail call by introducing an accumulation parameter. See Appendix A.1 for an
answer.

4 The trampoline

Even though the transformation from tail recursion to loop, shown above, is
straightforward, it needs to be done for each tail recursive function separately.

3

T. Verhoeff148

And this in turn is readily transformed into a loop, which avoids the dreaded Recur-
sionError:

Exercise: Show how one of the recursive calls in total can be transformed into a tail call
by introducing an accumulation parameter. See Appendix A.1 for an answer.

4. The Trampoline

Even though the transformation from tail recursion to loop, shown above, is straightfor-
ward, it needs to be done for each tail recursive function separately. There is a simple
technique that introduces only one loop, which can transform all tail recursive functions,
after a small intervention. We don’t want nested recursive calls, but we still want to keep
the computation the same. This can be accomplished by returning the recursive call itself
in unevaluated form and let the evaluation be continued from outside the recursive func-
tion, after it has returned. Sounds magical?

Python and many other languages (including Java and C++) offer syntax to define
anonymous functions, that is, without giving them an explicit name. In Python, the syn-
tax lambda x, y: expr defines a nameless function of two arguments with the result
expr, where expression expr typically involves x, y. Similarly, we can use lambda:
expr for a function without arguments that evaluates to expr.

Here is what tri_acc looks like after the intervention to make it return an unevalu-
ated “recursive” call:

It is no longer “truly” recursive, because it does not make the recursive call! We say that the
call is suspended. In order to get the typing correct, we have defined type Thunk[A]:

Note that in Python, Callable[[], R] denotes the type of functions without argu-
ments returning a value of type R. So, a Thunk[A] is either a value of type A or a func-
tion without arguments returning a Thunk[A]. For value thunk of type Thunk[A],

is another technique to break recursion and make even branching recursion tail
recursive.
I will illustrate this technique through two examples in Python. The first

example is based on function tri(n) that computes the n-th triangular number
(similar to factorials, but using addition, so that the numbers don’t grow so fast):

1 type nat = int # with assumption >= 0
2

3 def tri(n: nat) -> int:
4 if n == 0:
5 return 0
6 else:
7 return n + tri(n - 1)

The second example is total(t) that sums the values in binary leaf tree t:

8 @dataclass
9 class Leaf:

10 value: int
11

12 # binary tree type with int in leaves
13 type Tree = Leaf | tuple[Tree, Tree]
14

15 def total(t: Tree) -> int:
16 if isinstance(t, Leaf):
17 return t.value
18 else: # t is binary fork
19 return total(t[0]) + total(t[1])

Function tri exhibits linear recursion and total exhibits branching recursion;
neither is tail recursive, since more work is done after the recursive calls return.
The call tri(1000) will result in a RecursionError. In case of function

tri, the standard technique of introducing an accumulation parameter yields a
tail recursive definition:

20 def tri_acc(n: nat, acc: int = 0) -> int:
21 if n == 0:
22 return acc
23 else:
24 return tri_acc(n - 1, acc + n)

And this in turn is readily transformed into a loop, which avoids the dreaded
RecursionError:

25 def tri_loop(n: nat, acc: int = 0) -> int:
26 while n != 0:
27 n, acc = n - 1, acc + n
28 return acc

Exercise: Show how one of the recursive calls in total can be transformed into
a tail call by introducing an accumulation parameter. See Appendix A.1 for an
answer.

4 The trampoline

Even though the transformation from tail recursion to loop, shown above, is
straightforward, it needs to be done for each tail recursive function separately.

3

There is a simple technique that introduces only one loop, which can transform
all tail recursive functions, after a small intervention. We don’t want nested
recursive calls, but we still want to keep the computation the same. This can
be accomplished by returning the recursive call itself in unevaluated form and
let the evaluation be continued from outside the recursive function, after it has
returned. Sounds magical?
Python and many other languages (including Java and C++) offer syntax

to define anonymous functions, that is, without giving them an explicit name.
In Python, the syntax lambda x, y: expr defines a nameless function of two
arguments with the result expr, where expression expr typically involves x, y.
Similarly, we can use lambda: expr for a function without arguments that
evaluates to expr.
Here is what tri_acc looks like after the intervention to make it return an

unevaluated “recursive” call:

29 def tri_acc_lazy(n: nat, acc: int = 0) -> Thunk[int]:
30 if n == 0:
31 return acc
32 else:
33 return lambda: tri_acc_lazy(n - 1, acc + n)

It is no longer “truly” recursive, because it does not make the recursive call!
We say that the call is suspended. In order to get the typing correct, we have
defined type Thunk[A]:

34 # Thunk[A]: possibly nested suspended computation of type A
35 # A should not be callable
36 type Thunk[A] = A | Callable[[], Thunk[A]]

Note that in Python, Callable[[], R] denotes the type of functions without
arguments returning a value of type R. So, a Thunk[A] is either a value of type A
or a function without arguments returning a Thunk[A]. For value thunk of type
Thunk[A], we can test whether it is actually suspended by callable(thunk).
And if it is suspended, it can be resumed by calling it as thunk().
By deseign, tri_acc_lazy always immediately returns. How can we get the

final result? That is where the trampoline gets to the rescue, since it repeatedly
resumes a suspended computation until it gets a final (non-suspended) result:

37 def trampoline[A](thunk: Thunk[A]) -> A:
38 while callable(thunk): # thunk is suspended
39 thunk = thunk() # resume it
40 return thunk

Therefore, we have tri(n) == trampoline(tri_acc_lazy(n)). Note that
tri_acc_lazy creates only one stack frame, and trampoline repeatedly re-
sumes all suspended tail calls. The control flow bounces between the trampo-
line and the thunked (lazy) “tail recursive” function, where lambda: is placed
in front of every tail recursive call to suspend it. Neat, isn’t it?
Some notes:

• Upon superficial reading, the definition of tri_acc_lazy given above
looks recursive, since the body of the function definition contains a call to
the function itself.

4

There is a simple technique that introduces only one loop, which can transform
all tail recursive functions, after a small intervention. We don’t want nested
recursive calls, but we still want to keep the computation the same. This can
be accomplished by returning the recursive call itself in unevaluated form and
let the evaluation be continued from outside the recursive function, after it has
returned. Sounds magical?
Python and many other languages (including Java and C++) offer syntax

to define anonymous functions, that is, without giving them an explicit name.
In Python, the syntax lambda x, y: expr defines a nameless function of two
arguments with the result expr, where expression expr typically involves x, y.
Similarly, we can use lambda: expr for a function without arguments that
evaluates to expr.
Here is what tri_acc looks like after the intervention to make it return an

unevaluated “recursive” call:

29 def tri_acc_lazy(n: nat, acc: int = 0) -> Thunk[int]:
30 if n == 0:
31 return acc
32 else:
33 return lambda: tri_acc_lazy(n - 1, acc + n)

It is no longer “truly” recursive, because it does not make the recursive call!
We say that the call is suspended. In order to get the typing correct, we have
defined type Thunk[A]:

34 # Thunk[A]: possibly nested suspended computation of type A
35 # A should not be callable
36 type Thunk[A] = A | Callable[[], Thunk[A]]

Note that in Python, Callable[[], R] denotes the type of functions without
arguments returning a value of type R. So, a Thunk[A] is either a value of type A
or a function without arguments returning a Thunk[A]. For value thunk of type
Thunk[A], we can test whether it is actually suspended by callable(thunk).
And if it is suspended, it can be resumed by calling it as thunk().
By deseign, tri_acc_lazy always immediately returns. How can we get the

final result? That is where the trampoline gets to the rescue, since it repeatedly
resumes a suspended computation until it gets a final (non-suspended) result:

37 def trampoline[A](thunk: Thunk[A]) -> A:
38 while callable(thunk): # thunk is suspended
39 thunk = thunk() # resume it
40 return thunk

Therefore, we have tri(n) == trampoline(tri_acc_lazy(n)). Note that
tri_acc_lazy creates only one stack frame, and trampoline repeatedly re-
sumes all suspended tail calls. The control flow bounces between the trampo-
line and the thunked (lazy) “tail recursive” function, where lambda: is placed
in front of every tail recursive call to suspend it. Neat, isn’t it?
Some notes:

• Upon superficial reading, the definition of tri_acc_lazy given above
looks recursive, since the body of the function definition contains a call to
the function itself.

4

The Olympiad Trap and an Old Trampoline 149

we can test whether it is actually suspended by callable(thunk). And if it is sus-
pended, it can be resumed by calling it as thunk().

By deseign, tri_acc_lazy always immediately returns. How can we get the final
result? That is where the trampoline gets to the rescue, since it repeatedly resumes a
suspended computation until it gets a final (non-suspended) result:

Therefore, we have tri(n) == trampoline(tri_acc_lazy(n)). Note that tri_
acc_lazy creates only one stack frame, and trampoline repeatedly re sumes all sus-
pended tail calls. The control flow bounces between the trampo line and the thunked (lazy)
“tail recursive” function, where lambda: is placed in front of every tail recursive call to
suspend it. Neat, isn’t it?

Some notes:
Upon superficial reading, the definition of ● tri_acc_lazy given above looks re-
cursive, since the body of the function definition contains a call to the function
itself.
However, it does not execute that call itself; that is left to the client code. The ●
“recursive knot” is tied on the outside, by trampoline.
For this to work, the programming language must support function ● clo sures that
capture the current values of variables. In case of tri_acc_lazy, the expression
lambda: tri_acc_lazy(n -1, acc + n) involves two local variables, viz.
n, acc, which evaporate after the function returns. Python binds their values in
the returned lambda object.
Thunking via ● lambda: resembles the Command design pattern from Object-Ori-
ented programming (Gamma et al., 1994).

5. Enforcing Tail Recursion Via Continuations

Before addressing total, let’s generalize the technique with the accumulation param-
eter. In general, it may not be easy to find a simple accumulation param eter to make a
definition tail recursive. And in case of branching recursion, it would be useless. But
there is a way that is guaranteed to work: Continuation Passing Style, also known as
CPS (Reynolds, 1993). With CPS, you introduce an extra parameter of a function type,
known as a continuation. In Python, we abbreviate that function type to Func[A, B]:

We name this continuation parameter cont. It represents work that still needs to be done
to complete the computation. An example will make this clear. Let’s specify tri_cps(n,
cont) == cont(tri(n)). Then we have in mathematical notation

There is a simple technique that introduces only one loop, which can transform
all tail recursive functions, after a small intervention. We don’t want nested
recursive calls, but we still want to keep the computation the same. This can
be accomplished by returning the recursive call itself in unevaluated form and
let the evaluation be continued from outside the recursive function, after it has
returned. Sounds magical?
Python and many other languages (including Java and C++) offer syntax

to define anonymous functions, that is, without giving them an explicit name.
In Python, the syntax lambda x, y: expr defines a nameless function of two
arguments with the result expr, where expression expr typically involves x, y.
Similarly, we can use lambda: expr for a function without arguments that
evaluates to expr.
Here is what tri_acc looks like after the intervention to make it return an

unevaluated “recursive” call:

29 def tri_acc_lazy(n: nat, acc: int = 0) -> Thunk[int]:
30 if n == 0:
31 return acc
32 else:
33 return lambda: tri_acc_lazy(n - 1, acc + n)

It is no longer “truly” recursive, because it does not make the recursive call!
We say that the call is suspended. In order to get the typing correct, we have
defined type Thunk[A]:

34 # Thunk[A]: possibly nested suspended computation of type A
35 # A should not be callable
36 type Thunk[A] = A | Callable[[], Thunk[A]]

Note that in Python, Callable[[], R] denotes the type of functions without
arguments returning a value of type R. So, a Thunk[A] is either a value of type A
or a function without arguments returning a Thunk[A]. For value thunk of type
Thunk[A], we can test whether it is actually suspended by callable(thunk).
And if it is suspended, it can be resumed by calling it as thunk().
By deseign, tri_acc_lazy always immediately returns. How can we get the

final result? That is where the trampoline gets to the rescue, since it repeatedly
resumes a suspended computation until it gets a final (non-suspended) result:

37 def trampoline[A](thunk: Thunk[A]) -> A:
38 while callable(thunk): # thunk is suspended
39 thunk = thunk() # resume it
40 return thunk

Therefore, we have tri(n) == trampoline(tri_acc_lazy(n)). Note that
tri_acc_lazy creates only one stack frame, and trampoline repeatedly re-
sumes all suspended tail calls. The control flow bounces between the trampo-
line and the thunked (lazy) “tail recursive” function, where lambda: is placed
in front of every tail recursive call to suspend it. Neat, isn’t it?
Some notes:

• Upon superficial reading, the definition of tri_acc_lazy given above
looks recursive, since the body of the function definition contains a call to
the function itself.

4

• However, it does not execute that call itself; that is left to the client code.
The “recursive knot” is tied on the outside, by trampoline.

• For this to work, the programming language must support function clo-
sures that capture the current values of variables. In case of tri_acc_lazy,
the expression lambda: tri_acc_lazy(n - 1, acc + n) involves two
local variables, viz. n, acc, which evaporate after the function returns.
Python binds their values in the returned lambda object.

• Thunking via lambda: resembles the Command design pattern from Object-
Oriented programming (Gamma et al., 1994).

5 Enforcing tail recursion via continuations

Before addressing total, let’s generalize the technique with the accumulation
parameter. In general, it may not be easy to find a simple accumulation param-
eter to make a definition tail recursive. And in case of branching recursion, it
would be useless. But there is a way that is guaranteed to work: Continuation
Passing Style, also known as CPS (Reynolds, 1993). With CPS, you introduce
an extra parameter of a function type, known as a continuation. In Python, we
abbreviate that function type to Func[A, B]:

41 type Func[A, B] = Callable[[A], B] # functions from A to B

We name this continuation parameter cont. It represents work that still needs
to be done to complete the computation. An example will make this clear. Let’s
specify tri_cps(n, cont) == cont(tri(n)). Then we have

• tri(n) = id(tri(n)) = tri cps(n, id), where id is the (polymorphic) identity
function defined by id(a) = a;

• for n = 0, we have tri cps(0, cont) = cont(tri(0)) = cont(0);

• and for n > 0, tri cps(n, cont) = cont(tri(n)) = cont(n+ tri(n− 1)).
The latter expression can be viewed as a new function applied to tri(n−1).
Which function? The function f defined by f(x) = cont(n+x). In Python,
that function can be expressed as lambda x: cont(n + x). So, we can
rewrite further

cont(n+ tri(n− 1)) = (λx : cont(n+ x))(tri(n− 1))
= tri cps(n− 1, λ x : cont(n+ x))

This leads to the following tail recursive (!) definition of tri_cps:

42 def tri_cps(n: nat,
43 cont: Func[int, int] = id_
44) -> int:
45 if n == 0:
46 return cont(0)
47 else:
48 return tri_cps(n - 1, lambda x:
49 cont(n + x)
50)

5

T. Verhoeff150

●● ●() = ●(●()) = _●(,), where ●is the (polymorphic) identity func-
tion defined by ●() = ;
for ● = 0, we have _●(0,) = ●(●(0)) = ●(0);
and for ● 0, _●(,) = ●(●()) = ●(+ ●(− 1)).
The latter expression can be viewed as a new function applied to ●(− 1).
Which function? The function defined by ●() = ●(+). In Python, that
function can be expressed as lambda x: cont(n + x). So, we can rewrite
further

●(+ ●(− 1)) = (λ● : ●(+))(●(− 1))

= _●(− 1, λ● : ●(+))

This leads to the following tail recursive (!) definition of tri_cps:

The identity function serves as default continuation. We have named it id_, because id
is already a predefined different function in Python:

Function tri_cps first accumulates a (possibly big) continuation in steps, which it
then applies to 0. The evaluation of this continuation will also burden the stack. Thus, to
make this suitable for trampolining and limiting the stack load, lambda: is also needed
in front of both calls of cont (in addition to just the recursive call to tri_cps_lazy):

Note that the two calls to cont were also tail calls. (This explains the somewhat odd
layout of the code.)

• However, it does not execute that call itself; that is left to the client code.
The “recursive knot” is tied on the outside, by trampoline.

• For this to work, the programming language must support function clo-
sures that capture the current values of variables. In case of tri_acc_lazy,
the expression lambda: tri_acc_lazy(n - 1, acc + n) involves two
local variables, viz. n, acc, which evaporate after the function returns.
Python binds their values in the returned lambda object.

• Thunking via lambda: resembles the Command design pattern from Object-
Oriented programming (?).

5 Enforcing tail recursion via continuations

Before addressing total, let’s generalize the technique with the accumulation
parameter. In general, it may not be easy to find a simple accumulation param-
eter to make a definition tail recursive. And in case of branching recursion, it
would be useless. But there is a way that is guaranteed to work: Continuation
Passing Style, also known as CPS (?). With CPS, you introduce an extra pa-
rameter of a function type, known as a continuation. In Python, we abbreviate
that function type to Func[A, B]:

41 type Func[A, B] = Callable[[A], B] # functions from A to B

We name this continuation parameter cont. It represents work that still needs
to be done to complete the computation. An example will make this clear. Let’s
specify tri_cps(n, cont) == cont(tri(n)). Then we have

• tri(n) = id(tri(n)) = tri cps(n, id), where id is the (polymorphic) identity
function defined by id(a) = a;

• for n = 0, we have tri cps(0, cont) = cont(tri(0)) = cont(0);

• and for n > 0, tri cps(n, cont) = cont(tri(n)) = cont(n+ tri(n− 1)).
The latter expression can be viewed as a new function applied to tri(n−1).
Which function? The function f defined by f(x) = cont(n+x). In Python,
that function can be expressed as lambda x: cont(n + x). So, we can
rewrite further

cont(n+ tri(n− 1)) = (λx : cont(n+ x))(tri(n− 1))
= tri cps(n− 1, λ x : cont(n+ x))

This leads to the following tail recursive (!) definition of tri_cps:

42 def tri_cps(n: nat,
43 cont: Func[int, int] = id_
44) -> int:
45 if n == 0:
46 return cont(0)
47 else:
48 return tri_cps(n - 1, lambda x:
49 cont(n + x)
50)

5The identity function serves as default continuation. We have named it id_,
because id is already a predefined different function in Python:

51 def id_[A](a: A) -> A:
52 return a

Function tri_cps first accumulates a (possibly big) continuation in n steps,
which it then applies to 0. The evaluation of this continuation will also burden
the stack. Thus, to make this suitable for trampolining and limiting the stack
load, lambda: is also needed in front of both calls of cont (in addition to just
the recursive call to tri_cps_lazy):

53 def tri_cps_lazy(n: nat,
54 cont: Func[int, Thunk[int]] = id_
55) -> Thunk[int]:
56 if n == 0:
57 return lambda: cont(0)
58 else:
59 return lambda: tri_cps_lazy(n - 1, lambda x:
60 lambda: cont(n + x)
61)

Note that the two calls to cont were also tail calls. (This explains the somewhat
odd layout of the code.)

6 Making branching recursion tail recursive

CPS is so powerful that it can even make functions with branching recursion
tail recursive. Let’s see how that works by revisiting total defined in §3. First,
we specify total_cps(t, cont) = cont(total(t)). Then we have

• total(t) = id(total(t)) = total cps(t, id);

• for t = Leaf (v), we have total cps(t, cont) = cont(total(t)) = cont(v);

• for t = (t0, t1), we have

total cps(t, cont)

= cont(total(t))

= cont(total(t0) + total(t1))

= (λ tt0 : cont(tt0 + total(t1)))(total(t0))

= total csp(t0, λ tt0 : cont(tt0 + total(t1)))

= total csp(t0, λ tt0 : (λ tt1 : cont(tt0 + tt1))(total(t1)))

= total csp(t0, λ tt0 : total csp(t1, λ tt1 : cont(tt0 + tt1))).

Thus, we have derived the following definition for total_cps:

62 def total_cps(t: Tree,
63 cont: Func[int, int] = id_
64) -> int:
65 if isinstance(t, Leaf):
66 return cont(t.value)
67 else: # t is binary fork

6

The identity function serves as default continuation. We have named it id_,
because id is already a predefined different function in Python:

51 def id_[A](a: A) -> A:
52 return a

Function tri_cps first accumulates a (possibly big) continuation in n steps,
which it then applies to 0. The evaluation of this continuation will also burden
the stack. Thus, to make this suitable for trampolining and limiting the stack
load, lambda: is also needed in front of both calls of cont (in addition to just
the recursive call to tri_cps_lazy):

53 def tri_cps_lazy(n: nat,
54 cont: Func[int, Thunk[int]] = id_
55) -> Thunk[int]:
56 if n == 0:
57 return lambda: cont(0)
58 else:
59 return lambda: tri_cps_lazy(n - 1, lambda x:
60 lambda: cont(n + x)
61)

Note that the two calls to cont were also tail calls. (This explains the somewhat
odd layout of the code.)

6 Making branching recursion tail recursive

CPS is so powerful that it can even make functions with branching recursion
tail recursive. Let’s see how that works by revisiting total defined in §3. First,
we specify total_cps(t, cont) = cont(total(t)). Then we have

• total(t) = id(total(t)) = total cps(t, id);

• for t = Leaf (v), we have total cps(t, cont) = cont(total(t)) = cont(v);

• for t = (t0, t1), we have

total cps(t, cont)

= cont(total(t))

= cont(total(t0) + total(t1))

= (λ tt0 : cont(tt0 + total(t1)))(total(t0))

= total csp(t0, λ tt0 : cont(tt0 + total(t1)))

= total csp(t0, λ tt0 : (λ tt1 : cont(tt0 + tt1))(total(t1)))

= total csp(t0, λ tt0 : total csp(t1, λ tt1 : cont(tt0 + tt1))).

Thus, we have derived the following definition for total_cps:

62 def total_cps(t: Tree,
63 cont: Func[int, int] = id_
64) -> int:
65 if isinstance(t, Leaf):
66 return cont(t.value)
67 else: # t is binary fork

6

The Olympiad Trap and an Old Trampoline 151

6. Making Branching Recursion Tail Recursive

CPS is so powerful that it can even make functions with branching recursion tail re-
cursive. Let’s see how that works by revisiting total defined in §3. First, we specify
total_cps(t, cont) == cont(total(t)). Then we have

●●● () = ●(()) = _●(,);
for ● = ●(), we have _●(,) = ●(●()) = ●();
for ● = (0, 1), we have

_●(,)
= ●(())
= ●(●(0) + ●(1))
= (λ●0 : ●(0 + ●(1)))(●(0))
= _●(0, λ●0 : ●(0 + ●(1)))
= _●(0, λ●0 : (λ●1 : ●(0 + 1))(●(1)))
= _●(0, λ●0 : _●(1, λ●1 : ●(0 + 1))).

Thus, we have derived the following definition for total_cps:

You may wonder whether this definition is really tail-recursive, because it con tains two
calls of total_cps, only one of which looks like a tail call. It is, since the call with t[1]
is suspended (but not thunked) by lambda tt0. That call is incorporated into the con-
tinuation, and executed when that continuation reaches a leaf. Inside that lambda tt0,
it is a tail call.

We can now easily prepare this for the trampoline by adding lambda: (4×):

The identity function serves as default continuation. We have named it id_,
because id is already a predefined different function in Python:

51 def id_[A](a: A) -> A:
52 return a

Function tri_cps first accumulates a (possibly big) continuation in n steps,
which it then applies to 0. The evaluation of this continuation will also burden
the stack. Thus, to make this suitable for trampolining and limiting the stack
load, lambda: is also needed in front of both calls of cont (in addition to just
the recursive call to tri_cps_lazy):

53 def tri_cps_lazy(n: nat,
54 cont: Func[int, Thunk[int]] = id_
55) -> Thunk[int]:
56 if n == 0:
57 return lambda: cont(0)
58 else:
59 return lambda: tri_cps_lazy(n - 1, lambda x:
60 lambda: cont(n + x)
61)

Note that the two calls to cont were also tail calls. (This explains the somewhat
odd layout of the code.)

6 Making branching recursion tail recursive

CPS is so powerful that it can even make functions with branching recursion
tail recursive. Let’s see how that works by revisiting total defined in §3. First,
we specify total_cps(t, cont) = cont(total(t)). Then we have

• total(t) = id(total(t)) = total cps(t, id);

• for t = Leaf (v), we have total cps(t, cont) = cont(total(t)) = cont(v);

• for t = (t0, t1), we have

total cps(t, cont)

= cont(total(t))

= cont(total(t0) + total(t1))

= (λ tt0 : cont(tt0 + total(t1)))(total(t0))

= total csp(t0, λ tt0 : cont(tt0 + total(t1)))

= total csp(t0, λ tt0 : (λ tt1 : cont(tt0 + tt1))(total(t1)))

= total csp(t0, λ tt0 : total csp(t1, λ tt1 : cont(tt0 + tt1))).

Thus, we have derived the following definition for total_cps:

62 def total_cps(t: Tree,
63 cont: Func[int, int] = id_
64) -> int:
65 if isinstance(t, Leaf):
66 return cont(t.value)
67 else: # t is binary fork

6

68 return total_cps(t[0], lambda tt0:
69 total_cps(t[1], lambda tt1:
70 cont(tt0 + tt1)
71))

You may wonder whether this definition is really tail-recursive, because it con-
tains two calls of total_cps, only one of which looks like a tail call. It is,
since the call with t[1] is suspended (but not thunked) by lambda tt0. That
call is incorporated into the continuation, and executed when that continuation
reaches a leaf. Inside that lambda tt0, it is a tail call.
We can now easily prepare this for the trampoline by adding lambda: (4×):

72 def total_cps_lazy(t: Tree,
73 cont: Func[int, Thunk[int]] = id_
74) -> Thunk[int]:
75 if isinstance(t, Leaf):
76 return lambda: cont(t.value)
77 else: # t is binary fork
78 return lambda: total_cps_lazy(t[0], lambda tt0:
79 lambda: total_cps_lazy(t[1], lambda tt1:
80 lambda: cont(tt0 + tt1)
81))

I hope that this example convinces you that through CPS the transformation of
general, possibly branching, recursion to tail recursion can in fact be automated.
However, I need to temper your expectations somewhat. Exercise: Find a

recursive function definition that cannot be made tail recursive via CPS. See
Appendix A.2 for an answer.

7 Defunctionalization

What did we gain? Well, CPS with trampoline avoids using the stack, and
deep recursion is no longer a problem when using a language that limits the
recursion depth. Memory usage, however, has shifted from the stack to the
continuation. This continuation grows and shrinks (in total_cps it can be
discarded at leaves, once it has been applied, but that may give rise to a new
continuation when hitting another recursive call). The computation is accumu-
lated in the continuation (like meta-programming) and then applied.
That continuation contains all the information needed to complete the com-

putation: both data (operands) and functionality (operations). Since the op-
erations are fairly limited, it is inefficient to copy them multiple times into the
continuation. Can’t we take that duplicate functionality out and share it? Yes,
that is possible through a technique known as defunctionalization.
Let’s first do this for tri_cps. Consider its definition in §5. How are its

continuations constructed? In particular, what data is involved and how is it
structured? It starts off with id_, and “on top” of this, there appear multiple
instances of lambda x: cont(n + x), for varying n: nat. Hence, it seems
plausible that we can encode a continuation as a list[nat]:

82 type tri_cps_data = list[nat]

We now define an auxiliary function tri_cont to reconstruct the continuation
from the data and apply it:

7

68 return total_cps(t[0], lambda tt0:
69 total_cps(t[1], lambda tt1:
70 cont(tt0 + tt1)
71))

You may wonder whether this definition is really tail-recursive, because it con-
tains two calls of total_cps, only one of which looks like a tail call. It is,
since the call with t[1] is suspended (but not thunked) by lambda tt0. That
call is incorporated into the continuation, and executed when that continuation
reaches a leaf. Inside that lambda tt0, it is a tail call.
We can now easily prepare this for the trampoline by adding lambda: (4×):

72 def total_cps_lazy(t: Tree,
73 cont: Func[int, Thunk[int]] = id_
74) -> Thunk[int]:
75 if isinstance(t, Leaf):
76 return lambda: cont(t.value)
77 else: # t is binary fork
78 return lambda: total_cps_lazy(t[0], lambda tt0:
79 lambda: total_cps_lazy(t[1], lambda tt1:
80 lambda: cont(tt0 + tt1)
81))

I hope that this example convinces you that through CPS the transformation of
general, possibly branching, recursion to tail recursion can in fact be automated.
However, I need to temper your expectations somewhat. Exercise: Find a

recursive function definition that cannot be made tail recursive via CPS. See
Appendix A.2 for an answer.

7 Defunctionalization

What did we gain? Well, CPS with trampoline avoids using the stack, and
deep recursion is no longer a problem when using a language that limits the
recursion depth. Memory usage, however, has shifted from the stack to the
continuation. This continuation grows and shrinks (in total_cps it can be
discarded at leaves, once it has been applied, but that may give rise to a new
continuation when hitting another recursive call). The computation is accumu-
lated in the continuation (like meta-programming) and then applied.
That continuation contains all the information needed to complete the com-

putation: both data (operands) and functionality (operations). Since the op-
erations are fairly limited, it is inefficient to copy them multiple times into the
continuation. Can’t we take that duplicate functionality out and share it? Yes,
that is possible through a technique known as defunctionalization.
Let’s first do this for tri_cps. Consider its definition in §5. How are its

continuations constructed? In particular, what data is involved and how is it
structured? It starts off with id_, and “on top” of this, there appear multiple
instances of lambda x: cont(n + x), for varying n: nat. Hence, it seems
plausible that we can encode a continuation as a list[nat]:

82 type tri_cps_data = list[nat]

We now define an auxiliary function tri_cont to reconstruct the continuation
from the data and apply it:

7

T. Verhoeff152

I hope that this example convinces you that through CPS the transformation of general,
possibly branching, recursion to tail recursion can in fact be automated.

However, I need to temper your expectations somewhat. Exercise: Find a recursive
function definition that cannot be made tail recursive via CPS. See Appendix A.2 for an
answer.

7. Defunctionalization

What did we gain? Well, CPS with trampoline avoids using the stack, and deep recur-
sion is no longer a problem when using a language that limits the recursion depth.
Memory usage, however, has shifted from the stack to the continuation. This continu-
ation grows and shrinks (in total_cps it can be discarded at leaves, once it has been
applied, but that may give rise to a new continuation when hitting another recursive
call). The computation is accumu lated in the continuation (like meta-programming)
and then applied.

That continuation contains all the information needed to complete the com putation:
both data (operands) and functionality (operations). Since the op erations are fairly lim-
ited, it is inefficient to copy them multiple times into the continuation. Can’t we take that
duplicate functionality out and share it? Yes, that is possible through a technique known
as defunctionalization.

Let’s first do this for tri_cps. Consider its definition in §5. How are its continua-
tions constructed? In particular, what data is involved and how is it structured? It starts
off with id_, and “on top” of this, there appear multiple instances of lambda x:
cont(n + x), for varying n: nat. Hence, it seems plausible that we can encode a
continuation as a list[nat]:

We now define an auxiliary function tri_cont to reconstruct the continuation from the
data and apply it:

So, now the operation (viz. n+x) occurs once, viz. in tri_cont. The defunc tionalized
version of tri_cps is then given by

68 return total_cps(t[0], lambda tt0:
69 total_cps(t[1], lambda tt1:
70 cont(tt0 + tt1)
71))

You may wonder whether this definition is really tail-recursive, because it con-
tains two calls of total_cps, only one of which looks like a tail call. It is,
since the call with t[1] is suspended (but not thunked) by lambda tt0. That
call is incorporated into the continuation, and executed when that continuation
reaches a leaf. Inside that lambda tt0, it is a tail call.
We can now easily prepare this for the trampoline by adding lambda: (4×):

72 def total_cps_lazy(t: Tree,
73 cont: Func[int, Thunk[int]] = id_
74) -> Thunk[int]:
75 if isinstance(t, Leaf):
76 return lambda: cont(t.value)
77 else: # t is binary fork
78 return lambda: total_cps_lazy(t[0], lambda tt0:
79 lambda: total_cps_lazy(t[1], lambda tt1:
80 lambda: cont(tt0 + tt1)
81))

I hope that this example convinces you that through CPS the transformation of
general, possibly branching, recursion to tail recursion can in fact be automated.
However, I need to temper your expectations somewhat. Exercise: Find a

recursive function definition that cannot be made tail recursive via CPS. See
Appendix A.2 for an answer.

7 Defunctionalization

What did we gain? Well, CPS with trampoline avoids using the stack, and
deep recursion is no longer a problem when using a language that limits the
recursion depth. Memory usage, however, has shifted from the stack to the
continuation. This continuation grows and shrinks (in total_cps it can be
discarded at leaves, once it has been applied, but that may give rise to a new
continuation when hitting another recursive call). The computation is accumu-
lated in the continuation (like meta-programming) and then applied.
That continuation contains all the information needed to complete the com-

putation: both data (operands) and functionality (operations). Since the op-
erations are fairly limited, it is inefficient to copy them multiple times into the
continuation. Can’t we take that duplicate functionality out and share it? Yes,
that is possible through a technique known as defunctionalization.
Let’s first do this for tri_cps. Consider its definition in §5. How are its

continuations constructed? In particular, what data is involved and how is it
structured? It starts off with id_, and “on top” of this, there appear multiple
instances of lambda x: cont(n + x), for varying n: nat. Hence, it seems
plausible that we can encode a continuation as a list[nat]:

82 type tri_cps_data = list[nat]

We now define an auxiliary function tri_cont to reconstruct the continuation
from the data and apply it:

7
83 def tri_cont(data: tri_cps_data, x: int) -> int:
84 if data: # non-empty
85 n = data.pop()
86 return tri_cont(data, n + x)
87 else: # empty, act as identity
88 return x

So, now the operation (viz. n + x) occurs once, viz. in tri_cont. The defunc-
tionalized version of tri_cps is then given by

89 def tri_dcps(n: nat, data: tri_cps_data = None) -> int:
90 if data is None:
91 data = [] # to avoid mutable default argument
92 if n == 0:
93 return tri_cont(data, 0)
94 else:
95 data.append(n)
96 return tri_dcps(n - 1, data)

Of course, this can also be made lazy for the trampoline (see tri_dcps_lazy
in (Verhoeff, 2025)).
For this particular function, we can go even further and reduce the data

to a single natural number, because all continuations basically are composi-
tions of lambda x: n + x for various values of n. The simplification hinges on
associativity of function composition and this property:

(λx : n+ x) ◦ (λx : m+ x) = (λx : (n+m) + x))

Note that for n = 0, λx : n + x is the identity function. This simplification
gives us back tri_acc, where the whole continuation is compressed into a single
integer (acc).
It is also instructive to defunctionalize total_cps defined in §6. Its contin-

uation grows in three ways:

• id_, without capturing any data, is the initial continuation;

• lambda tt0: total_cps(t[1], lambda tt1: cont(tt0 + tt1)), with
t[1]: Tree as captured data, extends cont;

• lambda tt1: cont(tt0 + tt1), with tt0: int as captured data, also
extends cont.

Thus, we can encode a continuation as

97 type total_cps_data = list[int | Tree]

The int is the total of a left subtree that needs to be added to the total of
a right subtree (which has not been determined yet), and the Tree is a right
subtree which still must be totaled. Here is how to reconstruct the continuation
from the data:

98 def total_cont(data: total_cps_data, x: int) -> int:
99 if data: # non-empty

100 last = data.pop()
101 if isinstance(last, int): # pending total of left tree
102 return total_cont(data, last + x) # last is a tt0

8

83 def tri_cont(data: tri_cps_data, x: int) -> int:
84 if data: # non-empty
85 n = data.pop()
86 return tri_cont(data, n + x)
87 else: # empty, act as identity
88 return x

So, now the operation (viz. n + x) occurs once, viz. in tri_cont. The defunc-
tionalized version of tri_cps is then given by

89 def tri_dcps(n: nat, data: tri_cps_data = None) -> int:
90 if data is None:
91 data = [] # to avoid mutable default argument
92 if n == 0:
93 return tri_cont(data, 0)
94 else:
95 data.append(n)
96 return tri_dcps(n - 1, data)

Of course, this can also be made lazy for the trampoline (see tri_dcps_lazy
in (Verhoeff, 2025)).
For this particular function, we can go even further and reduce the data

to a single natural number, because all continuations basically are composi-
tions of lambda x: n + x for various values of n. The simplification hinges on
associativity of function composition and this property:

(λx : n+ x) ◦ (λx : m+ x) = (λx : (n+m) + x))

Note that for n = 0, λx : n + x is the identity function. This simplification
gives us back tri_acc, where the whole continuation is compressed into a single
integer (acc).
It is also instructive to defunctionalize total_cps defined in §6. Its contin-

uation grows in three ways:

• id_, without capturing any data, is the initial continuation;

• lambda tt0: total_cps(t[1], lambda tt1: cont(tt0 + tt1)), with
t[1]: Tree as captured data, extends cont;

• lambda tt1: cont(tt0 + tt1), with tt0: int as captured data, also
extends cont.

Thus, we can encode a continuation as

97 type total_cps_data = list[int | Tree]

The int is the total of a left subtree that needs to be added to the total of
a right subtree (which has not been determined yet), and the Tree is a right
subtree which still must be totaled. Here is how to reconstruct the continuation
from the data:

98 def total_cont(data: total_cps_data, x: int) -> int:
99 if data: # non-empty

100 last = data.pop()
101 if isinstance(last, int): # pending total of left tree
102 return total_cont(data, last + x) # last is a tt0

8

The Olympiad Trap and an Old Trampoline 153

Of course, this can also be made lazy for the trampoline (see tri_dcps_lazy in (Ver-
hoeff, 2025)).

For this particular function, we can go even further and reduce the data to a single
natural number, because all continuations basically are composi tions of lambda x:
n + x for various values of . The simplification hinges on associativity of function
composition and this property:

(λ : +) ◦ (λ : +) = (λ : (+) +))

Note that for = 0, λ : + is the identity function. This simplification gives us back
tri_acc, where the whole continuation is compressed into a single integer (acc).

It is also instructive to defunctionalize total_cps defined in §6. Its contin uation
grows in three ways:

id ● _, without capturing any data, is the initial continuation;
lambda ● tt1: cont(tt0 + tt1), with tt0: int as captured data, extends
cont;
lambda ● tt0: total_cps(t[1], lambda tt1: cont(tt0 + tt1)), with
t[1]: Tree as captured data, also extends cont.

Thus, we can encode a continuation as

The int is the total of a left subtree that needs to be added to the total of a right subtree
(which has not been determined yet), and the Tree is a right subtree which still must be
totaled. Here is how to reconstruct the continuation from the data:

Notice the call of total_dcps. Thus we get the following defunctionalized version of
total_cps:

83 def tri_cont(data: tri_cps_data, x: int) -> int:
84 if data: # non-empty
85 n = data.pop()
86 return tri_cont(data, n + x)
87 else: # empty, act as identity
88 return x

So, now the operation (viz. n + x) occurs once, viz. in tri_cont. The defunc-
tionalized version of tri_cps is then given by

89 def tri_dcps(n: nat, data: tri_cps_data = None) -> int:
90 if data is None:
91 data = [] # to avoid mutable default argument
92 if n == 0:
93 return tri_cont(data, 0)
94 else:
95 data.append(n)
96 return tri_dcps(n - 1, data)

Of course, this can also be made lazy for the trampoline (see tri_dcps_lazy
in (Verhoeff, 2025)).
For this particular function, we can go even further and reduce the data

to a single natural number, because all continuations basically are composi-
tions of lambda x: n + x for various values of n. The simplification hinges on
associativity of function composition and this property:

(λx : n+ x) ◦ (λx : m+ x) = (λx : (n+m) + x))

Note that for n = 0, λx : n + x is the identity function. This simplification
gives us back tri_acc, where the whole continuation is compressed into a single
integer (acc).
It is also instructive to defunctionalize total_cps defined in §6. Its contin-

uation grows in three ways:

• id_, without capturing any data, is the initial continuation;

• lambda tt0: total_cps(t[1], lambda tt1: cont(tt0 + tt1)), with
t[1]: Tree as captured data, extends cont;

• lambda tt1: cont(tt0 + tt1), with tt0: int as captured data, also
extends cont.

Thus, we can encode a continuation as

97 type total_cps_data = list[int | Tree]

The int is the total of a left subtree that needs to be added to the total of
a right subtree (which has not been determined yet), and the Tree is a right
subtree which still must be totaled. Here is how to reconstruct the continuation
from the data:

98 def total_cont(data: total_cps_data, x: int) -> int:
99 if data: # non-empty

100 last = data.pop()
101 if isinstance(last, int): # pending total of left tree
102 return total_cont(data, last + x) # last is a tt0

8

instances of lambda x: cont(n + x), for varying n: nat. Hence, it seems
plausible that we can encode a continuation as a list[nat]:

82 type tri_cps_data = list[nat]

We now define an auxiliary function tri_cont to reconstruct the continuation
from the data and apply it:

83 def tri_cont(data: tri_cps_data, x: int) -> int:
84 if data: # non-empty
85 n = data.pop()
86 return tri_cont(data, n + x)
87 else: # empty, act as identity
88 return x

So, now the operation (viz. n + x) occurs once, viz. in tri_cont. The defunc-
tionalized version of tri_cps is then given by

89 def tri_dcps(n: nat, data: tri_cps_data = None) -> int:
90 if data is None:
91 data = [] # to avoid mutable default argument
92 if n == 0:
93 return tri_cont(data, 0)
94 else:
95 data.append(n)
96 return tri_dcps(n - 1, data)

Of course, this can also be made lazy for the trampoline (see tri_dcps_lazy
in (Verhoeff, 2025)).
For this particular function, we can go even further and reduce the data

to a single natural number, because all continuations basically are composi-
tions of lambda x: n + x for various values of n. The simplification hinges on
associativity of function composition and this property:

(λx : n+ x) ◦ (λx : m+ x) = (λx : (n+m) + x))

Note that for n = 0, λx : n + x is the identity function. This simplification
gives us back tri_acc, where the whole continuation is compressed into a single
integer (acc).
It is also instructive to defunctionalize total_cps defined in §6. Its contin-

uation grows in three ways:

• id_, without capturing any data, is the initial continuation;

• lambda tt0: total_cps(t[1], lambda tt1: cont(tt0 + tt1)), with
t[1]: Tree as captured data, extends cont;

• lambda tt1: cont(tt0 + tt1), with tt0: int as captured data, also
extends cont.

Thus, we can encode a continuation as

97 type total_cps_data = list[int | Tree]

The int is the total of a left subtree that needs to be added to the total of
a right subtree (which has not been determined yet), and the Tree is a right
subtree which still must be totaled. Here is how to reconstruct the continuation
from the data:

8
98 def total_cont(data: total_cps_data, x: int) -> int:
99 if data: # non-empty

100 last = data.pop()
101 if isinstance(last, int): # pending total of left tree
102 return total_cont(data, last + x) # last is a tt0
103 else: # pending right tree
104 data.append(x)
105 return total_dcps(last, data) # last is a t[1]
106 else: # empty, act as identity
107 return x

Notice the call of total_dcps. Thus we get the following defunctionalized
version of total_cps:

108 def total_dcps(t: Tree,
109 data: total_cps_data = None
110) -> int:
111 if data is None:
112 data = [] # to avoid mutable default argument
113 if isinstance(t, Leaf):
114 return total_cont(data, t.value)
115 else: # t is binary fork
116 data.append(t[1]) # postpone processing of t[1]
117 return total_dcps(t[0], data)

We now have two mutually tail-recursive definitions. Without knowing how
these function definitions were derived, it would not be obvious why they ter-
minate.
By the way, just as with tri_dcps, it is possible to merge some continua-

tions for total_dcps, and to pass these on as a single integer (acc), and the
remainder as a list[Tree]. We leave it as an exercise to the reader to fill in
the missing details (see Appendix A.3 for some hints). The result is a classic
tail recursive function, without suspended calls and without the need for an
auxiliary function that explictly reconstructs the continuation.

118 def total_acc_dcps(t: Tree,
119 acc: int = 0,
120 data: list[Tree] = None
121) -> int:
122 if data is None:
123 data = [] # to avoid mutable default argument
124 if isinstance(t, Leaf):
125 acc = acc + t.value
126 if data: # non-empty
127 t1 = data.pop()
128 return total_acc_dcps(t1, acc, data)
129 else: # data is empty
130 return acc
131 else: # t is binary fork
132 data.append(t[1]) # postpone processing of t[1]
133 return total_acc_dcps(t[0], acc, data)

In hindsight, it is clear that in all these defunctionalized programs, parameter
data serves as a custom stack, that stores exactly the information needed to
support the branching recursion.

9

T. Verhoeff154

We now have two mutually tail-recursive definitions. Without knowing how these func-
tion definitions were derived, it would not be obvious why they ter minate.

By the way, just as with tri_dcps, it is possible to merge some continua tions for
total_dcps, and to pass these on as a single integer (acc), and the remainder as a
list[Tree]. We leave it as an exercise to the reader to fill in the missing details (see
Appendix A.3 for some hints). The result is a classic tail recursive function, without
suspended calls and without the need for an auxiliary function that explictly reconstructs
the continuation.

In hindsight, it is clear that in all these defunctionalized programs, parameter data serves
as a custom stack, that stores exactly the information needed to support the (branching)
recursion.

8. Conclusion

I hope to have created awareness of what I call the Olympiad trap, where the IOI is
locked into its own contest format. One way of mitigating it, is to pay attention to inter-
esting and challenging topics in informatics that fall outside the scope of the IOI. As an

103 else: # pending right tree
104 data.append(x)
105 return total_dcps(last, data) # last is a t[1]
106 else: # empty, act as identity
107 return x

Notice the call of total_dcps. Thus we get the following defunctionalized
version of total_cps:

108 def total_dcps(t: Tree,
109 data: total_cps_data = None
110) -> int:
111 if data is None:
112 data = [] # to avoid mutable default argument
113 if isinstance(t, Leaf):
114 return total_cont(data, t.value)
115 else: # t is binary fork
116 data.append(t[1]) # postpone processing of t[1]
117 return total_dcps(t[0], data)

We now have two mutually tail-recursive definitions. Without knowing how
these function definitions were derived, it would not be obvious why they ter-
minate.
By the way, just as with tri_dcps, it is possible to merge some continua-

tions for total_dcps, and to pass these on as a single integer (acc), and the
remainder as a list[Tree]. We leave it as an exercise to the reader to fill in
the missing details (see Appendix A.3 for some hints). The result is a classic
tail recursive function, without suspended calls and without the need for an
auxiliary function that explictly reconstructs the continuation.

118 def total_acc_dcps(t: Tree,
119 acc: int = 0,
120 data: list[Tree] = None
121) -> int:
122 if data is None:
123 data = [] # to avoid mutable default argument
124 if isinstance(t, Leaf):
125 acc = acc + t.value
126 if data: # non-empty
127 t1 = data.pop()
128 return total_acc_dcps(t1, acc, data)
129 else: # data is empty
130 return acc
131 else: # t is binary fork
132 data.append(t[1]) # postpone processing of t[1]
133 return total_acc_dcps(t[0], acc, data)

In hindsight, it is clear that in all these defunctionalized programs, parameter
data serves as a custom stack, that stores exactly the information needed to
support the branching recursion.

8 Conclusion

I hope to have created awareness of what I call the Olympiad trap, where
the IOI is locked into its own contest format. One way of mitigating it, is

9

103 else: # pending right tree
104 data.append(x)
105 return total_dcps(last, data) # last is a t[1]
106 else: # empty, act as identity
107 return x

Notice the call of total_dcps. Thus we get the following defunctionalized
version of total_cps:

108 def total_dcps(t: Tree,
109 data: total_cps_data = None
110) -> int:
111 if data is None:
112 data = [] # to avoid mutable default argument
113 if isinstance(t, Leaf):
114 return total_cont(data, t.value)
115 else: # t is binary fork
116 data.append(t[1]) # postpone processing of t[1]
117 return total_dcps(t[0], data)

We now have two mutually tail-recursive definitions. Without knowing how
these function definitions were derived, it would not be obvious why they ter-
minate.
By the way, just as with tri_dcps, it is possible to merge some continua-

tions for total_dcps, and to pass these on as a single integer (acc), and the
remainder as a list[Tree]. We leave it as an exercise to the reader to fill in
the missing details (see Appendix A.3 for some hints). The result is a classic
tail recursive function, without suspended calls and without the need for an
auxiliary function that explictly reconstructs the continuation.

118 def total_acc_dcps(t: Tree,
119 acc: int = 0,
120 data: list[Tree] = None
121) -> int:
122 if data is None:
123 data = [] # to avoid mutable default argument
124 if isinstance(t, Leaf):
125 acc = acc + t.value
126 if data: # non-empty
127 t1 = data.pop()
128 return total_acc_dcps(t1, acc, data)
129 else: # data is empty
130 return acc
131 else: # t is binary fork
132 data.append(t[1]) # postpone processing of t[1]
133 return total_acc_dcps(t[0], acc, data)

In hindsight, it is clear that in all these defunctionalized programs, parameter
data serves as a custom stack, that stores exactly the information needed to
support the branching recursion.

8 Conclusion

I hope to have created awareness of what I call the Olympiad trap, where
the IOI is locked into its own contest format. One way of mitigating it, is

9

The Olympiad Trap and an Old Trampoline 155

example of such a topic, I explained how tail recursion can be transformed into a loop
using thunking and a trampoline. And next, how Continuation Passing Style (CPS) can
be used to transform arbitrary recursion into tail recursion. These ideas were discovered
a long time ago and have become part of the CS folklore. For a history of continuations
see (Reynolds, 1993), which traces it back to 1964, when Adriaan van Wijngaarden
(designer of Algol 60 and Algol 68, and my father’s promotor) first described it. The
trampoline seems to have been introduced by Steele (1977). Gibbons (2022) is a modern
exploration of CPS, accumulation, and defunctionalization.

The code for this article is available at (Verhoeff, 2025). It includes code that is in-
strumented to visualize how the stack is used, together with the output of that code. It
also treats the example of flattening a binary leaf tree.

Acknowledgment

I would like to thank Ahto Truu and my colleague Berry Schoenmakers (one of the team
members who made it to the ICPC World Finals in 1987) for helping me improve this
article.

References

Gamma, E. and Helm, R. and Johnson, R. and Vlissides, J. (1994). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley.

Gibbons, J. (2022). Continuation-Passing Style, Defunctionalization, Accumulations, and Associativity. The
Art, Science, and Engineering of Programming, 6(2):7:1–7:28.
https://doi.org/10.22152/programming-journal.org/2022/6/7

Reynolds, J.C. (1993). The Discoveries of Continuations. LISP Symb. Comput., 6(3–4):233–248.
https://doi.org/10.1007/BF01019459

Steele, Guy L. (1977). Debunking the “expensive procedure call” myth or, procedure call implementations
considered harmful or, LAMBDA: The Ultimate GOTO. In: ACM’77: Proceedings of the 1977 annual
conference. pp. 153–162. https://doi.org/10.1145/800179.810196

Verhoeff, T. (2018). A master class on recursion. In: Adventures Between Lower Bounds and Higher Altitudes.
Lecture Notes in Computer Science Vol. 11011, Springer, pp. 610–633.
https://doi.org/10.1007/978-3-319-98355-4_35

Verhoeff, T. (2021). Look Ma, backtracking without recursion, IOI Journal 2021, 15, 119–132.
https://doi.org/10.15388/ioi.2021.10

Verhoeff, T. (2023). “Understanding and designing recursive functions via syntactic rewriting”, IOI Journal,
17, 99–119. https://doi.org/10.15388/ioi.2023.08

Verhoeff, T. (2025). Git repository with source code for “The Olympiad Trap and an Old Trampoline”.
(Accessed 30 May 2025)
https://gitlab.tue.nl/t-verhoeff-software/code-for-cps-with-trampoline

T. Verhoeff156

T. Verhoeff is Assistant Professor in Computer Science at Eindhoven
University of Technology, where he works in the group Software En-
gineering & Technology. His research inter ests are support tools for
verified software development, model driven engineering, and func-
tional programming. He received the IOI Distinguished Service Award
at IOI 2007 in Zagreb, Croatia, in particular for his role in setting up
and maintaining a web archive of IOI-related material and facilities for
commu nication in the IOI community, and in establishing, developing,
chairing, and contributing to the IOI International Scientific Commit-
tee from 1999 until 2007.

The Olympiad Trap and an Old Trampoline 157

Appendix A. Answers to Exercises

A.1. Function total with Accumulation Parameter

One of the recursive calls in the definition of total can be made into a tail call by intro-
ducing an accumulation parameter:

The other recursive call is not a tail call, since more work is done after it returns.

A.2. Recursive Function where CPS Fails

Continuation Passing Style (CPS) is a powerful technique that can be used to transform
any recursive function definition into a tail-recursive definition. But this does not mean
that the resulting function is useful. In particular, it may not terminate. One example
where this happens is the fixpoint combinator.

For given function , we call a fixpoint of when () = . The fixpoint combina-
tor ●returns a fixpoint of a given function from functions to func tions. That is, we
have ●(●()) = ●() as function. It can be defined in Python as fix:

Function fix is recursive but not tail recursive.
Let’s see an application. Function tri is a fixpoint of function pre_tri:

Note that pre_tri abstracts from the recursive call, by making the function called there
a function parameter. Hence, it is itself not recursive. Obviously, we have

That is, tri is a fixpoint of pre_tri. Hence, we can define tri by fix(pre_tri).
 Can we make fix tail recursive by applying CPS? Let’s try:

Tom Verhoeff is Assistant Professor in Computer Science at
Eindhoven University of Technology, where he works in the
group Software Engineering & Technology. His research inter-
ests are support tools for verified software development, model
driven engineering, and functional programming. He received
the IOI Distinguished Service Award at IOI 2007 in Zagreb,
Croatia, in particular for his role in setting up and maintaining
a web archive of IOI-related material and facilities for commu-
nication in the IOI community, and in establishing, developing,
chairing, and contributing to the IOI International Scientific
Committee from 1999 until 2007.

A Answers to exercises

A.1 Function total with accumulation parameter

One of the recursive calls in the definition of total can be made into a tail call
by introducing an accumulation parameter:

134 def total_acc(t: Tree, acc: int = 0) -> int:
135 if isinstance(t, Leaf):
136 return acc + t.value
137 else:
138 return total_acc(t[1], # tail call
139 total_acc(t[0], acc)) # not a tail call

The other recursive call is not a tail call, since more work is done after it returns.

A.2 Recursive function where CPS fails

Continuation Passing Style (CPS) is a powerful technique that can be used to
transform any recursive function definition into a tail-recursive definition. But
this does not mean that the resulting function is useful. In particular, it may
not terminate. One example where this happens is the fixpoint combinator.
For given function f , we call x a fixpoint of f when f(x) = x. The fixpoint

combinator fix returns a fixpoint of a given function f from functions to func-
tions. That is, we have f(fix (f)) = fix (f) as function. It can be defined in
Python as fix:

140 type Endo[A] = Func[A, A] # endo-functions on A
141

142 def fix[A, B](f: Endo[Func[A, B]]) -> Func[A, B]:
143 return f(lambda a: fix(f)(a))

Function fix is recursive but not tail recursive.
Let’s see an application. Function tri is a fixpoint of function pre_tri:

144 def pre_tri(g: Func[nat, int]) -> Func[nat, int]:
145 return lambda n: 0 if n == 0 else n + g(n - 1)

Note that pre_tri abstracts from the recursive call, by making the function
called there a function parameter. Hence, it is itself not recursive. Obviously,
we have

146 pre_tri(tri)(n) == tri(n)

11

Tom Verhoeff is Assistant Professor in Computer Science at
Eindhoven University of Technology, where he works in the
group Software Engineering & Technology. His research inter-
ests are support tools for verified software development, model
driven engineering, and functional programming. He received
the IOI Distinguished Service Award at IOI 2007 in Zagreb,
Croatia, in particular for his role in setting up and maintaining
a web archive of IOI-related material and facilities for commu-
nication in the IOI community, and in establishing, developing,
chairing, and contributing to the IOI International Scientific
Committee from 1999 until 2007.

A Answers to exercises

A.1 Function total with accumulation parameter

One of the recursive calls in the definition of total can be made into a tail call
by introducing an accumulation parameter:

134 def total_acc(t: Tree, acc: int = 0) -> int:
135 if isinstance(t, Leaf):
136 return acc + t.value
137 else:
138 return total_acc(t[1], # tail call
139 total_acc(t[0], acc)) # not a tail call

The other recursive call is not a tail call, since more work is done after it returns.

A.2 Recursive function where CPS fails

Continuation Passing Style (CPS) is a powerful technique that can be used to
transform any recursive function definition into a tail-recursive definition. But
this does not mean that the resulting function is useful. In particular, it may
not terminate. One example where this happens is the fixpoint combinator.
For given function f , we call x a fixpoint of f when f(x) = x. The fixpoint

combinator fix returns a fixpoint of a given function f from functions to func-
tions. That is, we have f(fix (f)) = fix (f) as function. It can be defined in
Python as fix:

140 type Endo[A] = Func[A, A] # endo-functions on A
141

142 def fix[A, B](f: Endo[Func[A, B]]) -> Func[A, B]:
143 return f(lambda a: fix(f)(a))

Function fix is recursive but not tail recursive.
Let’s see an application. Function tri is a fixpoint of function pre_tri:

144 def pre_tri(g: Func[nat, int]) -> Func[nat, int]:
145 return lambda n: 0 if n == 0 else n + g(n - 1)

Note that pre_tri abstracts from the recursive call, by making the function
called there a function parameter. Hence, it is itself not recursive. Obviously,
we have

146 pre_tri(tri)(n) == tri(n)

11

Tom Verhoeff is Assistant Professor in Computer Science at
Eindhoven University of Technology, where he works in the
group Software Engineering & Technology. His research inter-
ests are support tools for verified software development, model
driven engineering, and functional programming. He received
the IOI Distinguished Service Award at IOI 2007 in Zagreb,
Croatia, in particular for his role in setting up and maintaining
a web archive of IOI-related material and facilities for commu-
nication in the IOI community, and in establishing, developing,
chairing, and contributing to the IOI International Scientific
Committee from 1999 until 2007.

A Answers to exercises

A.1 Function total with accumulation parameter

One of the recursive calls in the definition of total can be made into a tail call
by introducing an accumulation parameter:

134 def total_acc(t: Tree, acc: int = 0) -> int:
135 if isinstance(t, Leaf):
136 return acc + t.value
137 else:
138 return total_acc(t[1], # tail call
139 total_acc(t[0], acc)) # not a tail call

The other recursive call is not a tail call, since more work is done after it returns.

A.2 Recursive function where CPS fails

Continuation Passing Style (CPS) is a powerful technique that can be used to
transform any recursive function definition into a tail-recursive definition. But
this does not mean that the resulting function is useful. In particular, it may
not terminate. One example where this happens is the fixpoint combinator.
For given function f , we call x a fixpoint of f when f(x) = x. The fixpoint

combinator fix returns a fixpoint of a given function f from functions to func-
tions. That is, we have f(fix (f)) = fix (f) as function. It can be defined in
Python as fix:

140 type Endo[A] = Func[A, A] # endo-functions on A
141

142 def fix[A, B](f: Endo[Func[A, B]]) -> Func[A, B]:
143 return f(lambda a: fix(f)(a))

Function fix is recursive but not tail recursive.
Let’s see an application. Function tri is a fixpoint of function pre_tri:

144 def pre_tri(g: Func[nat, int]) -> Func[nat, int]:
145 return lambda n: 0 if n == 0 else n + g(n - 1)

Note that pre_tri abstracts from the recursive call, by making the function
called there a function parameter. Hence, it is itself not recursive. Obviously,
we have

146 pre_tri(tri)(n) == tri(n)

11

Tom Verhoeff is Assistant Professor in Computer Science at
Eindhoven University of Technology, where he works in the
group Software Engineering & Technology. His research inter-
ests are support tools for verified software development, model
driven engineering, and functional programming. He received
the IOI Distinguished Service Award at IOI 2007 in Zagreb,
Croatia, in particular for his role in setting up and maintaining
a web archive of IOI-related material and facilities for commu-
nication in the IOI community, and in establishing, developing,
chairing, and contributing to the IOI International Scientific
Committee from 1999 until 2007.

A Answers to exercises

A.1 Function total with accumulation parameter

One of the recursive calls in the definition of total can be made into a tail call
by introducing an accumulation parameter:

134 def total_acc(t: Tree, acc: int = 0) -> int:
135 if isinstance(t, Leaf):
136 return acc + t.value
137 else:
138 return total_acc(t[1], # tail call
139 total_acc(t[0], acc)) # not a tail call

The other recursive call is not a tail call, since more work is done after it returns.

A.2 Recursive function where CPS fails

Continuation Passing Style (CPS) is a powerful technique that can be used to
transform any recursive function definition into a tail-recursive definition. But
this does not mean that the resulting function is useful. In particular, it may
not terminate. One example where this happens is the fixpoint combinator.
For given function f , we call x a fixpoint of f when f(x) = x. The fixpoint

combinator fix returns a fixpoint of a given function f from functions to func-
tions. That is, we have f(fix (f)) = fix (f) as function. It can be defined in
Python as fix:

140 type Endo[A] = Func[A, A] # endo-functions on A
141

142 def fix[A, B](f: Endo[Func[A, B]]) -> Func[A, B]:
143 return f(lambda a: fix(f)(a))

Function fix is recursive but not tail recursive.
Let’s see an application. Function tri is a fixpoint of function pre_tri:

144 def pre_tri(g: Func[nat, int]) -> Func[nat, int]:
145 return lambda n: 0 if n == 0 else n + g(n - 1)

Note that pre_tri abstracts from the recursive call, by making the function
called there a function parameter. Hence, it is itself not recursive. Obviously,
we have

146 pre_tri(tri)(n) == tri(n)

11
That is, tri is a fixpoint of pre_tri. Hence, we can define tri by fix(pre_tri).
Can we make fix tail recursive by applying CPS? Let’s try:

147 def fix_cps[A, B](g: Endo[Func[A, B]],
148 cont: Endo[Func[A, B]] = id_
149) -> Func[A, B]:
150 return fix_cps(g, lambda h: cont(g(lambda a: h(a))))

This definition is indeed tail recursive. But when you apply it to pre_tri,
it does not terminate, because the argument g remains unchanged and never
reaches a base case. The continuation cont keeps on growing. So, fix_cps is
useless and certainly not equivalent to fix.

A.3 Defunctionalization of total_cps

The defunctionalization of total_cps can be better understood by analyzing
the structure of its continuations. These can always be written as a composition:

• id , the initial continuation, is an empty composition;

• λ tt1 : cont(tt0 + tt1) = cont ◦ (λ tt1 : tt0 + tt1) = cont ◦ (tt0 +), where
(n+) abbreviates the function λx : n+ x;

• λ tt0 : total cps(t1, cont ◦ (tt0 +))
= λ tt0 : (cont ◦ (tt0 +))(total(t1))
= λ tt0 : cont(tt0 + total(t1))
= cont(λ tt0 : tt0 + total(t1))
= cont ◦ (+ total(t1)).

Thus, every continuation is some composition of (tt0 +) and (+ total(t1))
for varying values of tt0 and t1. Compositions of these two kinds of functions
commute (due to associativity of addition; see below), and therefore all functions
of the form (tt0 +) can be moved together and merged into one such function,
as we have seen before, which can then be defunctionalized into a single integer
(acc). The composition of the other functions is defunctionalized into a list of
Tree.
Here is a proof that the composition of (n+) and (+m) commutes because

addition is associative. For integer k, we calculate:

((n+) ◦ (+m))(k)
= (n+)((+m)(k))

= (n+)(k +m)

= n+ (k +m)

= (n+ k) +m

= (+m)(n+ k)

= (+m)((n+)(k))

= ((+m) ◦ (n+))(k)

Such calculations with side-effect-free functions lies at the foundation of modern
functional programming.

12

T. Verhoeff158

This definition is indeed tail recursive. But when you apply it to pre_tri, it does not
terminate, because the argument g remains unchanged and never reaches a base case. The
continuation cont keeps on growing. So, fix_cps is useless and certainly not equivalent
to fix.

A.3. Defunctionalization of total_cps

The defunctionalization of total_cps can be better understood by analyzing the struc-
ture of its continuations. These can always be written as a composition:

●● , the initial continuation, is an empty composition;
λ ● 1 : ●(0 + 1) = ◦ (λ 1 : 0 + 1) = ◦ (0 +), where (+) ab-
breviates the function λ● : + ;
 λ ● 0 : _●(1, ◦ (0 +))
= λ 0 : (◦ (0 +))(●(1))
= λ 0 : (0 + ●(1))
= ●(λ 0 : 0 + ●(1))
= ◦ (+ ●(1)).

Thus, every continuation is some composition of (0 +) and (+ (1)) for varying
values of 0 and 1. Compositions of these two kinds of functions commute (due to as-
sociativity of addition; see below), and therefore all functions of the form (0 +) can be
moved together and merged into one such function, as we have seen before, which can
then be defunctionalized into a single integer (acc). The composition of the other func-
tions is defunctionalized into a list of Tree.

Here is a proof that the composition of (+) and (+) commutes because addition is
associative. For integer , we calculate:

 ((+) ◦ (+))()

= (+)((+)())

= (+)(+)

= + (+)

= (+) +

= (+)(+)

= (+)((+)())

= ((+) ◦ (+))()

Such calculations with side-effect-free functions lies at the foundation of modern func-
tional programming.

