
Olympiads in Informatics, 2025, Vol. 19, 129–144
© 2025 IOI, Vilnius University
DOI: 10.15388/ioi.2025.09

129

OI-Assistant: A Retrieval Augmented System
for Similar Problem Discovery and Interactive
Learning in Competitive Programming

Yuhua SU1,*, Ping Nie2, Xin MENG2

1International School Altdorf, Altdorf, Switzerland
2Peking University, Beijing, China
e-mail: suyuhuahz21@gmail.com, ping.nie@pku.edu.cn, 1601214372@pku.edu.cn

Abstract. Competitive programming (CP) often requires quickly identifying relevant problems
and solutions, yet current online judge (OJ) platforms offer only limited keyword or tag-based
search.�� ���This makes it difficult for contestants and coaches to find past problems with similar����� ����pat-
terns or concepts, hindering efficient practice and problem-solving.

We introduce OI-assistant, the first intelligent problem search and solution assistant based on
Retrieval Augmented Generation (RAG) to bridge this gap. The proposed OI assistant provides
insightful and similar problems based on our curated problem database, detailed and structured
code explanation, and interactive code validation and follow-up chat.

We first collected over 11,000 programming problems f rom Luogu, a widely-used Chinese
platform. Then we use multiple embeddings and llm-based ranker to retrieve and rank semanti-
cally similar CP problems based on user queries or code snippets. An LLM generates context-
aware responses, like related problem suggestions or solution summaries, enabling more accurate
discovery than traditional keyword-based searches. Additionally, it validates these solutions by
automatically generating test cases, validating code in real-time and providing educational im-
provement feedbacks.

The p roposed RAG-based search engine significantly imp roves t he p recision and recall of
finding relevant problems, as evidenced by enhanced search results in our preliminary tests. When
we introduced OI-Assistant to competitive programming students, their feedback was overwhelm-
ingly positive. They rated the similar-problem recommendations highly and particularly appreci-
ated the clear algorithm visualizations and real-time validation and improvement feedbacks. Over-
all, students found our platform significantly more helpful compared to traditional OJ systems or
standalone ChatGPT.

By simplifying the discovery of related practice problems and enhancing real-time interactive
learning, OI-Assistant significantly improves the effectiveness of competitive programming train-
ing and opens up new possibilities for the community.

Keywords: Competitive programming, Retrieval Augmented Generation, Large Language Model

* Corresponding author

Y. Su, P. Nie, X. Meng130

1. Introduction

Competitive programming (CP) has grown remarkably worldwide in recent decades.
Back in 2000, the International Olympiad in Informatics in Beijing had 278 participants
from 72 countries. Last year’s IOI in Egypt drew 362 participants from 91 countries.
Similarly, national contests like the USACO Open have seen participation quadruple in
just ten years. This surge in interest has led to a boom in problem repositories and online
judge (OJ) platforms where competitors hone their skills.

Current OJs have a major weakness: they can’t effectively search for problems based
on their underlying mathematical concepts (C.R.A.C. Generation, 2024; Sollenberger
et al., 2024). Simple keyword searches miss the importance of CP problems, especially
CP problems typically are wrapped in stories to hide their core algorithmic challenges.
The search options on popular platforms like Codeforces, LeetCode, and Luogu only
let you filter by basic methods like difficulty, algorithm tags, or problem sources. These
methods often return too many irrelevant results, forcing users to spend time manually
filtering through them. The problem gets worse because algorithm tagging is wrong or
inconsistent across platforms.

We created OI-Assistant to solve these issues. Our system uses Retrieval Augment-
ed Generation (RAG) specifically d esigned fo r competitive p rogramming education
(Lewis et al., 2020; Shao et al., 2025). It brings three key innovations. First, we built a
rich database with over 11,000 quality problems from Luogu, one of the most popular
competitive programming sites. This extensive collection gives our similarity search
a strong foundation, helping students find inspiration from problems with related pat-
terns. Second, we developed a multi-pronged search approach using three different
strategies: question vector search, concept vector search, and summary vector search
(Lewis et al., 2020). We enhance these parallel searches with an LLM-based reranker
that significantly boosts result quality. Our tests show this method achieves over 80%
recall when finding similar problems – much better than traditional keyword searches.
Third, OI-Assistant generates comprehensive solutions that include detailed algorithm
explanations, clear flowcharts, and a real-time code validation system (Kumar, 2025;
Fakhoury et al., 2024). This validation feature uses GPT to automatically create test
cases that cover even edge scenarios (Sollenberger et al., 2024). Users can run their
code right in our platform, get immediate feedback, and receive helpful suggestions
when errors occur (Zhou et al., 2024; Nicol and Macfarlane-Dick, 2006). The system
can also regenerate improved solutions that address specific issues, creating a feedback
loop that enhances learning (Zhang et al., 2024).

Our system builds on recent advances in large language models. As our experiments
show, modern GPT models like O3-mini can score at bronze medal levels in IOI compe-
titions even without retrieval augmentation (El-Kishky et al., 2025). But OI-Assistant’s
real value isn’t about beating these baseline capabilities – it’s about educational impact
(Marouf et al., 2024; Alyoshyna, 2024).

By combining strong problem-solving abilities with our innovative retrieval sys-
tem, OI-Assistant creates a pow erful l earning tool t hat helps students find relevant
historical problems matching their current needs (Kazemitabaar et al., 2024; Denny

OI-Assistant: A Retrieval Augmented System for Similar Problem Discovery ... 131

et al., 2023). Our retrieval system’s 80%+ recall rate ensures students efficiently find
appropriate practice materials, while the real-time validation provides the immediate
feedback crucial for learning (Price et al., 2016; Price et al., 2017). User studies con-
firm that this feature combination significantly improves problem-solving skill devel-
opment and learning efficiency compared to traditional approaches (Anderson et al.,
1995; Marouf et al., 2024).

2. Related Work

2.1. LLMs in Computer Science Education

Generative AI is changing how we teach computer science. Researchers are exploring
ways to use Large Language Models (LLMs) in educational settings, with promising
results for helping students learn programming (Kazemitabaar et al., 2024; Zhang et al.,
2024; Alyoshyna, 2024). Recent studies show LLMs can solve programming problems
quite well. Denny and colleagues (Denny et al., 2023) tested GitHub Copilot on 166
programming problems. It solved about half of them on the first try. With better prompts,
that success rate jumped to 60% for t he remaining problems. Even more imp ressive,
OpenAI’s ChatGPT-o3 earned a gold medal at the 2024 International Olympiad in In-
formatics and achieved a rating on Codeforces similar to top human competitors (El-
Kishky et al., 2025). These results show that today’s best LLMs can perform at high
levels in competitive programming.

LLMs can do more than just solve problems – they can create educational content
too. Kazemitabaar and team (Kazemitabaar et al., 2024) built CodeAid, a coding assis-
tant based on ChatGPT. It has six functions, including writing code, explaining concepts,
and fixing errors. They tested it with 700 students over a full semester. The feedback
was mostly positive. This shows how carefully designed prompts can make LLMs much
more useful for teaching. These studies lay the groundwork for using LLMs in program-
ming education.

Fakhoury (Fakhoury et al., 2024) and Sollenberger (Sollenberger et al., 2024) shows
these models can generate test cases and check if code is correct. This creates interactive
learning environments that both generate and validate code. Zhang (Zhang et al., 2024)
studied what students want from AI feedback. They found that detailed explanations in
context are what students value most when learning to program.

2.2. Current Online Judge Status

As shown in Table 1, Online Judge (OJ) platforms have grown from simple grading
tools into full-fledged competitive programming communities (El-Kishky et al., 2025;
C.R.A.C. Generation, 2024). Today’s platforms like Codeforces let users join contests,
participate in forums, and study other coders’ solutions. Luogu offers similar features.

Y. Su, P. Nie, X. Meng132

These platforms have become essential for competitive programmers to learn and con-
nect with others.

Despite these improvements, OJs still struggle with organizing problem databases
and providing good search tools, even though users really want these features (C.R.A.C.
Generation, 2024; Sollenberger et al., 2024). We surveyed six major OJ platforms and
found several patterns in how they handle searching:

Search by origin:●● Almost all OJs tag problems by where they came from, as
shown in T able 1. T his l ets u sers filt er p roblems b y specific competitions o r
sources. Only SPOJ lacks this kind of search help.
Search by difficulty:●● Most OJs group problems by how hard they are, but they
do this differently. Codeforces uses numbers from 800–3500, while SPOJ sepa-
rates difficulty into concept and implementation scores based on user votes.
Search by algorithms:●● Algorithm tagging varies widely across platforms. Code-
forces, LeetCode, and USACO use flat tag structures with no hierarchy. Luogu
offers better organization with 22 algorithm categories, each containing related
tags. SPOJ has the most sophisticated approach with a tree-structured system.
All OJs support tag searches, but the differences between platforms make things
confusing for users.
Search by content & problem similarity:●● The biggest gap is in content-based
searching (Lewis et al., 2020; Asai et al., 2024). While some OJs let you search
by problem title or text, none offer true similarity search based on the underlying
math concepts. This is a serious problem since competitive programming tasks
usually come wrapped in stories during contests like IOI, ICPC, and Codeforces,
which makes keyword searching pretty useless.

2.3. Retrieval-Augmented Generation

LLMs can do amazing things, but they still struggle with making up information and
having outd ated knowl edge, especially in specialized fi elds (El-Kishky et al., 2025;
Tang et al., 2024). Retrieval-Augmented Generation (RAG) solves these problems by

Table 1
Different OJ Platforms

OJ Search by difficulty Algorithm Source Title
search

Content
search

Similarity
search

Codeforces 800–3500 37 parallel tags Yes No No No
LeetCode 3 categories 71 parallel tags Yes Yes No No
Luogu 7 categories Tags in 22 categories Yes Yes Yes No
USACO 7 categories 162 parallel tags Yes Yes No No
SPOJ Rating for conceptual and

implementational difficulties
119 Tags Yes No No No

UVa NO No Yes No No No

OI-Assistant: A Retrieval Augmented System for Similar Problem Discovery ... 133

combining external information lookup with LLM generation. This greatly improves
accuracy and relevance (Lewis et al., 2020; Asai et al., 2024).

For programming tasks, Wang and team created CODERAG-BENCH (C.R.A.C.
Generation, 2024), a benchmark for testing how well RAG works for coding. Their
research shows that RAG-enhanced models consistently beat regular LLMs, especially
when tasks need external libraries. This matters for competitive programming, where
specialized algorithms are often needed.

Shao’s team (Shao et al., 2025) looked at the effects of scale in retrieval-based lan-
guage models with their MassiveDS project, which has a massive 1.4 trillion-token
database. They found that bigger datastores consistently improve performance across
language modeling and various tasks. Interestingly, their smaller models with large data-
stores outperformed bigger models without retrieval in knowledge-heavy tasks. This
finding applies directly to algorithm-intensive competitive programming.

In scientific applications, Asai and colleagues (Asai et al., 2024) developed Open-
Scholar, a retrieval-enhanced model for synthesizing scientific literature. By pulling rel-
evant passages from open-access papers, OpenScholar reduced fake citations and beat
larger models like GPT-4 in factual accuracy. This shows how RAG can improve preci-
sion in technical areas.

Collectively, t hese studies establish t hat RAG significantly enhances LLM perfor-
mance in tasks requiring current, domain-specific knowledge (Lewis et al., 2020; Shao
et al., 2025; Asai et al., 2024). This approach proves especially valuable for competitive
programming applications, where precise algorithmic understanding and accurate code
generation are essential. Implementing RAG frameworks in this context can substan-
tially improve solution retrieval, problem explanation, and code generation capabilities
(C.R.A.C. Generation, 2024; Tang et al., 2024; Zhou et al., 2024).

3. Framework

Our OI-Assistant helps students find t he right practice problems and understand t heir
solutions (Kazemitabaar et al., 2024; Marouf et al., 2024). Fig. 1 shows how our system
works. It has four main parts: Data Construction, Backend Search, Solution Generation,
and Frontend Display.

3.1. Data Construction

We started by building a large collection of programming problems (Shao et al., 2025;
Asai et al., 2024). We created web crawlers to gather problems from Luogu, a popular
Chinese programming platform. We collected over 11,000 problems along with their
details and more than 10,000 community solutions.

Programming contests often present problems as stories (El-Kishky et al., 2025).
While these narratives make problems interesting, they hide the core math concepts,

Y. Su, P. Nie, X. Meng134

which makes keyword searches pretty useless. We solved this by using large language
models with carefully designed prompts to extract the mathematical essence from each
problem, separating the algorithm from the story (Denny et al., 2023; El-Kishky et al.,
2025).

We also use Luogu’s tagging system, which groups problems by categories like Dy-
namic Programming, Graph Theory, Math, and Data Structures. Each category has more
specific tags – for example, Dynamic Programming breaks down into 1D DP, Interval
DP, Tree DP, and so on. Luogu rates problem difficulty on a 7-level scale:

Level 1: Beginner problems teaching basic concepts
Level 2: Easy problems needing simple algorithms
Level 3: Medium problems combining multiple ideas
Level 4: Hard problems requiring complex algorithms
Level 5: Provincial competition level
Level 6: National competition (NOI) level
Level 7: International Olympiad (IOI) level
After cleaning the data, each problem has a standard format with the problem state-

ment, algorithm tags, difficulty level, and solution. For each problem, we create three
different vector embeddings using OpenAI’s API: Statement embedding that captures
the math concepts, Concept embedding that represents the algorithms needed, Solution
embedding that encodes how to implement the answer. We store these in FAISS indexes
so we can search them quickly.

Fig. 1. OI-Assistant Framework.

OI-Assistant: A Retrieval Augmented System for Similar Problem Discovery ... 135

3.2. Assistant Response Generation

Finding similar problems is helpful, but students also need to understand how to solve
them (Kazemitabaar et al., 2024; Zhang et al., 2024. As shown in Fig. 1 (bottom left),
our Solution Generation Layer transforms a user’s problem query into a comprehensive
educational solution through several interconnected stages.

3.2.1. User Input Processing and Retrieval.

When a user submits a problem, the system first processes it through the Backend Search
Layer shown in Fig. 1 (top right). The input question undergoes multi-vector search,
which splits into three parallel components:

Question Vector Search1.	 – finds problems with similar statement structures,
Concept Vector Search2.	 – id entifies problems using similar algorithmic t ech-
niques,
Summary Vector Search3.	 – locates problems with similar high-level approaches

The results from these three search components feed into the LLM-based Reranker
(shown in the pink oval in Fig. 1), which evaluates each candidate problem in context
and identifies the most top 50 relevant matches.

3.2.2. Solution Generation Process

As depicted in Fig. 1 (bottom left), the Solution Generator begins with Context Prepara-
tion. This crucial step combines the original problem with the retrieved similar problems
and their solutions from our database. This context gives our system concrete examples of
approaches that worked for similar challenges. The OpenAI Generation Process (shown
in the central box) consists of four key components working in tandem:

 1.	 Algorithm Analysis: (shown in the pink box) – The system creates a detailed
explanation of the solution approach, key insights, and reasoning steps (Zhang
et al., 2024). This forms the conceptual foundation of the solution.
 2.	 Mermaid Flowchart: (shown in the pink box) – In parallel, the system gener-
ates a visual flowchart using Mermaid syntax. This visualization helps students
understand the algorithm’s workflow intuitively, making complex concepts eas-
ier to grasp.
 3.	 Code Generation (shown in the pink box): The system produces implementa-
tion code in the student’s preferred programming language based on the algo-
rithm analysis.
 4.	 Complexity Analysis (shown in the pink box): The system explains the time and
space complexity of the solution, helping students understand efficiency consid-
erations (El-Kishky et al., 2025).

3.2.3. Code Validation and Regeneration

What makes our system especially valuable is the Code Validation & Regeneration Lay-
er shown at the bottom of Fig. 1 (bottom left). This layer includes: 1. Test Case Genera-

Y. Su, P. Nie, X. Meng136

tion: The system automatically creates diverse test cases covering both normal scenarios
and edge cases (Sollenberger et al., 2024). 2. Code Validator: These test cases are fed
into the Code Validator, which executes the generated code against the tests. 3. Feedback
Loop: If the code passes all tests (the “Yes” path in Fig. 1), the system produces the Final
Solution. If any tests fail (the “No” path), the Code Regenerator (LLM) analyzes what
went wrong and creates an improved solution.

This validation-regeneration cycle continues until a correct solution is found, mim-
icking how a teacher might guide a student through debugging (Anderson et al., 1995;
Price et al., 2017). When t ests f ail, t he system doesn’t just flag errors – it analyzes
the specific issues and suggests targeted improvements (Zhou et al., 2024; Nicol and
Macfarlane-Dick, 2006).

3.3. Frontend Interface

As shown on the right side of Fig. 1, the Frontend Display Layer shows the system’s
functions through nice user interface. Fig. 2 and Fig. 3 illustrate actual screenshots of
the UI interface.

3.3.1. Solution Display Components

The middle right side of Fig. 1 highlights components of the solution display:
Solution:●● Clearly shows the algorithm and codes using clean description.
Flowchart:●● Provides visual diagram that illustrates the algorithm’s workflow. This
is helping students learn the solution process easier.
Similar Questions:●● gives related practice problems from our database. This is
helping students recognize patterns and connections across multiple problems
(Price et al., 2016). Each similar problem also has a reason of its relevance to the
current user input.

Fig. 2. OI-Assistant Frontend for Response.

OI-Assistant: A Retrieval Augmented System for Similar Problem Discovery ... 137

3.3.2. Interactive Components

Fig. 2 shows the OI-Assistant’s frontend response and Fig. 3 shows the real-time code
validation and re-generation feature. As shown in Fig. 2, Student can input the question
statement or some code snippts to ask our system, our system will search our database to
find similar statements and solutions. Also, the concepts for the user input are also dis-
played. Then on the right side of Fig. 2, the system will teach the student to understand
the problem by text descriptions and a flowchart. After the flowchart, there is a code for
the input question. In Fig. 3, there is a code box whose default code is from the system
generation. The user can also edit the code box. Then the user can click the button to
validate the code in the box. Our system will on the fly generate the test cases for the
user input statement and the system will execute the code to check if the code can cover
all generated test cases. If some test cases are not passed, the system will again look at
the code and failed cases to generate some suggestions for improvement. The system
will also output improved codes. The user can copy the improved code or input their
own new code back to the code box to validate. This system then provides a super useful
interactive process for learning.

4. Experiments and Evaluation

We built a complete evaluation framework to test OI-Assistant. Our tests cover every-
thing from basic model abilities to how users feel about the system (Kazemitabaar et al.,
2024; Fakhoury et al., 2024). Each experiment shows how different parts work together
to create an effective learning tool.

Fig. 3. OI-Assistant Frontend for Real-time Code Validation and Re-generation.

Y. Su, P. Nie, X. Meng138

4.1. LLM Performance on IOI 2024

As Fig. 4 shows, all models get better results when they try more times. The O3-mini
model starts with okay performance. Yet with enough attempts, it reaches scores similar
to human bronze medalists (around 215 points). This matters for real-world use. Even
smaller models can do well if you let them try multiple times (El-Kishky et al., 2025;
Zhou et al., 2024). We found that performance tends to level off after 10–20 attempts,
suggesting this is a practical limit by computation.

Our system needs LLMs that can solve programming problems well (El-Kishky
et al., 2025). We tested several GPT models on IOI-2024 problems using methods from
the Hugging Face IOI repository. One key question: how does performance improve
with multiple solution attempts?

4.2. Dataset Characteristics and Analysis

After we know we can get good performance with SOTA LLMs, we next check our own
dataset. This knowledge base powers our retrieval system, so it directly affects perfor-
mance.

Our collected dataset includes 11,000 competitive programming problems from Lu-
ogu, one of China’s busiest programming platforms. These problems come with 11,000

Fig. 4. OpenAI models performance on IOI 2024 with multiple generations.

OI-Assistant: A Retrieval Augmented System for Similar Problem Discovery ... 139

high quality solutions that have strong community engagement such as upvotes. We
analyzed this dataset from several aspects to understand its educational value.

As shown in Fig. 5, we can see our dataset is balance for different difficulty level.
Data difficulty definition can be found in section 3.1. Each difficulty level has about or
more than 1000 questions. NOI questions are more than 2500. In Fig. 6, we can check the
top 15 popular luogu tags for those questions in our datasets. The tags in Fig. 6 is from
luogu to show it’s real data features. Dynamic Programming and provincial selections
are popular in our datasets. In Fig. 7, we can see the relationship between the acceptance
and the difficulty of the luogu data. When the difficulty increases, the acceptance is drop-
ping. And most of those questions are submitted by students for more than 10k times.
This shows our dataset’s meaningful status of helping those students to learn CP.

Fig. 5: Number of Problems for Difficulty Level.

Fig. 6: Popular Tags in the dataset.

Y. Su, P. Nie, X. Meng140

4.3. Retrieval System Performance

Building on our understanding of LLMs and dataset quality, we tested our multi-vector
retrieval system. Traditional keyword searches often miss the deeper connections be-
tween problems, especially when similar challenges come wrapped in different con-
texts.

As shown in Fig. 8, we tested our system with three different settings to confirm our
system can search and find similar problems given a new coding problem. Substring
setting means the input question is a random substring of the existing problems in the
datasets. Substring could be the problem definition or the solution to the existing prob-
lems. LLM Rewrite setting means we use GPT-4o to rewrite the existing questions with
a different story to wrap the question with the same mathematic logics. Code Snippet
setting means we use GPT-4o to generate an code answer for each existing problem. So
with those three settings, we can comprehensively test our system’s retrieval ability for
both natural language and code input.

We created a dataset with 300 user input for each setting and 900 user input in total.
We evaluated our 3 embedding retrievers and 1 llm ranker’s recall performance. As
shown in Fig. 8, the LLM ranker always gives the highest recall for three setting for all
recall@K, where K = 10, 30, or 50. When we retrieve 50 candidates, the LLM ranker
can achieve 80%+ recall for all settings. For the embedding retrieval, the Question rep-
resentations gives the best score for about 69% at top 59% for the substring setting. For
the code snippet settings, the recall drops dramatically to 30% which means it’s hard for
the embedding vectors to capture the semantic meaning of code. However, the Summary
of the input can still keep decent recall at about 34% which shows the multiple vector
embedding’s advantages. After combining the results from three vector search, the LLM
ranker can always get 80%+ recall at any settings. This shows the robustness of the LLM
ranker. It also provide reliable similar problems output for our system.

Fig. 7: Relationship between Difficulty and Acceptance Rate.

OI-Assistant: A Retrieval Augmented System for Similar Problem Discovery ... 141

4.4. User Experience Evaluation

After we confirm our system has good performance with multiple different recall testing.
We conducted a user study with 36 competitive programming students who compared
OI-Assistant with alternatives (ChatGPT and Luogu).

As shown in Table 2, our system outperformed both ChatGPT and luogu across all
dimensions. Students especially give high ratings for our ability of finding similar prob-
lems (rated 4.8/5 compared to just 3.1/5 for ChatGPT and 2.8/5 for traditional platforms).
This confirms that our focus on finding similar questions makes a real difference.

As shown in Table 3, we also show the system’s helpfulness for different modules.
students liked the similar problem recommendations (4.8/5), Code validation and feed-
back (4.9/5). These features create a comprehensive CP learning experience. Students
can first understand solution approaches through clear explanations and visuals. Then

Fig. 8: Recall Performance of different modules on different settings.

Y. Su, P. Nie, X. Meng142

they can improve their learning by using with similar problems found by our retrieval
system and the real-time testing system with automatically generated test cases. The
Overall helpfulness is also high for our system. Those real user experience feedbacks
and ratings confirm our system’s educational value.

5. Limitations and Future Work

Our OI-Assistant shows promise, but it has some clear limitations. Let’s look at what
could be better.

First, the system needs lots of computing power. This makes widespread deployment
challenging. The LLM-based reranker that gives us great results also adds delays that us-
ers notice. When we generate multiple solutions to find the best one, we need even more
computing resources. Not all schools or learning centers can provide this kind of cost.
These issues matter most when trying to use the system in places with limited resources
or when scaling up to many users.

Our dataset has its own limitations. We only used problems from Luogu. Program-
ming problems often contain cultural references that might confuse users from different
backgrounds. Also, different programming communities create problems in their own
unique ways.

In the future, we could try model distillation to create smaller, faster versions of our
reranker without losing much performance. Better search techniques, like hybrid search
and small model ranking. Smart caching for common problem patterns would speed up
responses for frequently asked questions.

Table 2
User Ratings for Different Platforms

System Aspect OI-Assistant ChatGPT Luogu

Solution quality 4.5 3.8 2.6
Finding similar problems 4.8 3.1 2.8
Overall Helpfulness 4.5 3.5 2.1

Table 3
User Ratings for Different Modules

OI-Assistant Feature Average Rating (1–5) Standard Deviation

Algorithm analysis quality 4.7 0.4
Flowchart visualization 4.6 0.5
Code validation and feedback 4.9 0.3
Similar problem recommendations 4.8 0.5
Interactive follow-up capability 4.1 0.6
LLM-generated test cases 4.3 0.3

OI-Assistant: A Retrieval Augmented System for Similar Problem Discovery ... 143

We also want to expand what our database Adding more competitive programming
platforms data would provide a richer knowledge base with diverse problem-solving
approaches. Supporting more programming languages would help more students use the
system, especially in schools that teach specific languages.

6. Conclusion

We developed OI-Assistant to address a significant challenge faced by competitive pro-
gramming students and coaches that finding similar problems with similar concepts not
just by tags is super useful for student learning. By leveraging Retrieval Augmented
Generation (RAG), our system achieves promising results. Experiments demonstrate
over 80% recall for retrieving similar questions even for code snippets. Users confirmed
that our integrated features including solution generation, algorithm explanations, flow-
chart, and real-time code validation, greatly help their learning process. Our work shows
a great future for competitive programming education. OI-Assistant doesn’t just help
students find problems; it strengths their understanding by connecting similar code prob-
lems and providing real-time feedback for any coding problems with automatic test
cases and validation. This approach builds stronger thinking, helping students recognize
patterns across diverse problems and figure out the errors in the code by test cases driven
way and educational feedback. As language models continue to evolve, combining RAG
with them will become increasingly valuable for specific knowledge base, making it eas-
ier for students to learn complex concepts and do better in competitive programming.

References

Alyoshyna, Y. (2024). AI in Programming Education: Automated Feedback Systems for Personalized Learning.
University of Twente Student Theses.

Anderson, J.R., Corbett, A.T., Koedinger, K.R., and Pelletier, R. (1995). Cognitive tutors: Lessons learned. The
Journal of the Learning Sciences, 4(2), 167–207.

Asai, A., He, J., Shao, R., Shi, W., Singh, A., Chang, J.C. et al. (2024). OpenScholar: Synthesizing scientific
literature with retrieval-augmented LMs. arXiv preprint arXiv:2411.14199.

C.R.A.C. Generation. (2024). CODERAG-BENCH: Can Retrieval Augment Code Generation?
Corbett, A.T. and Anderson, J.R. (1992). The LISP intelligent tutoring system: Research in skill acquisition.

In: Computer Assisted Instruction And Intelligent Tutoring Systems: Establishing Communication and Col-
laboration. Lawrence Erlbaum Associates, Inc, 141–194.

Denny, P., Kumar, V., Giacaman, N. (2023). Conversing with Copilot: Exploring prompt engineering for solving
CS1 problems using natural language. In: Proceedings of the 54th ACM Technical Symposium on Computer
Science Education V. 1. 1136–1142.

El-Kishky, A., Wei, A., Saraiva, A., Minaev, B., Selsam, D., Dohan, D., et al. (2025). Competitive Programming
with Large Reasoning Models. *arXiv preprint arXiv:2502.06807*.

Fakhoury, S., Naik, A., Sakkas, G., Chakraborty, S., and Lahiri, S.K. (2024). LLM-Based Test-Driven Interac-
tive Code Generation: User Study and Empirical Evaluation. IEEE Transactions on Software Engineering.

Georgia Department of Education. (2020). Georgia’s ReStart: Embrace, Engage, Expand, and Enhance Learn-
ing with Technology (GRE4T) Initiative.

Kazemitabaar, M., Ye, R., Wang, X., Henley, A.Z., Denny, P., Craig, M., Grossman, T. (2024). CodeAid: Evalu-
ating a classroom deployment of an LLM-based programming assistant that balances student and educator
needs. In: Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems. 1–20.

Kira Learning. (n.d.). The AI platform for schools.

Y. Su, P. Nie, X. Meng144

Kumar, S. (2025). Teaching LLMs to generate Unit Tests for Automated Debugging of Code. Medium.
Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., et al. (2020). Retrieval-augmented genera-

tion for knowledge-intensive NLP tasks. Advances in Neural Information Processing Systems, 33, 9459–
9474.

Marouf, A., Al-Dahdooh, R., Abu Ghali, M.J., Mahdi, A.O., Abunasser, B.S., and Abu-Naser, S.S. (����������2024). En-
hancing Education with Artificial Intelligence: The Role of Intelligent Tutoring Systems. International Jour-
nal of Engineering and Information Systems (IJEAIS), 8(8), 10–16.

Nicol, D.J. and Macfarlane-Dick, D. (2006). Formative assessment and self‐regulated learning: A model and
seven principles of good feedback practice. Studies in Higher Education, 31(2), 199–218.

Price, T.W., Dong, T., and Barnes, T. (2016). Generating data-driven hints for open-ended programming. In:
International Conference on Educational Data Mining. 446–451.

Price, T.W., Zhi, R., and Barnes, T. (2017). Evaluation of a data-driven feedback algorithm for open-ended
programming. In: International Conference on Educational Data Mining. 530–535.

Psotka, J., Massey, L.D., and Mutter, S.A. (Eds.). (1988). Intelligent Tutoring Systems: Lessons Learned. Law-
rence Erlbaum Associates, Inc.

Shao, R., He, J., Asai, A., Shi, W., Dettmers, T., Min, S. et al. (2025). Scaling Retrieval-Based Language Models
with a Trillion-Token Datastore. Advances in Neural Information Processing Systems*, 37, 91260–91299.

Shi, X., Tian, M., and Zhang, J. (2022). A summary of personalized learning research. In: IET Conference Pro-
ceedings. Vol. 2022, No. 9, 53–58.

Sollenberger, Z., Patel, J., Munley, C., Jarmusch, A., and Chandrasekaran, S. (2024). LLM4VV: Exploring
LLM-as-a-Judge for Validation and Verification Testsuites.

Tang, H., Hu, K., Zhou, J.P., Zhong, S.C., Zheng, W.L., Si, X., and Ellis, K. (2024). REx: An Exploration-
Exploitation Framework for LLM-Based Code Refinement. arXiv preprint arXiv:2411.14199.

VanLehn, K. (1988). Student modeling and mastery learning in a computer-based programming tutor. In: Intel-
ligent Tutoring Systems. Springer, Berlin, Heidelberg, 479–506.

Zhang, Z., Cheng, L., and Chen, X. (2024). Students’ Perceptions and Preferences of Generative Artificial Intel-
ligence Feedback for Programming. Journal of Educational Computing Research, 71(4), 647–673.

Zhou, Y., Peng, X., Zeng, A., Xie, Q., and Luo, T. (2024). LLMFix: Automatically Fixing Code Generation Er-
rors in Large Language Models. arXiv preprint arXiv:2409.00676.

Y. Su – a senior high student at the International School Altdorf in
Switzerland. With four years of competitive programming experience,
he won a gold medal in the Swiss Olympiad in Informatics. His re-
search interest focuses on machine learning and human-computer in-
teraction. His past projects include building a stuttering recognition
system and enhancing a micro-expression spotting network.

P. Nie – a Senior Applied Scientist with a Master’s degree from Peking
University. His research interests lie in Code Large Language Mod-
els, Information Retrieval, and Natural Language Processing. He also
serves as a program committee member for conferences such as ACL,
SIGIR, and NeurIPS.

X. Meng – a Senior Deep Learning Engineer with a Master’s degree
from Peking University. He has 10 years of experience in AI develop-
ment, like CUDA acceleration, Parallel Computing. His research in-
terests lie in Computer Vision and Autonomous driving with LLM,
Robots, Embodied Intelligence.

