
Olympiads in Informatics, 2024, Vol. 18, 51–62
© 2024 IOI, Vilnius University
DOI: 10.15388/ioi.2024.04

51

Analysis and Evaluation of the Contestant’s
Progress in Real-time Coding Contests

Mirvari MAMMADLI, Nihad MAMMADLI, Jamaladdin HASANOV
ADA University, School of IT and Engineering
Ahmadbey Aghaoglu str. 61, 1008 Baku, Azerbaijan
e-mail: mmammadli13254@ada.edu.az; nmammadli14004@ada.edu.az; jhasanov@ada.edu.az

Abstract. This paper presents a model for analyzing contestant progress in real-time coding con-
tests, emphasizing the critical need for effective measures in assessing code similarity and pla-
giarism cases. Current coding contest platforms often need more robust procedures to identify
and address these issues, compromising the integrity of the evaluation process. To tackle these
challenges, we propose a novel system that leverages advanced techniques to analyze code and
collective behavior, providing a holistic evaluation of submissions. The system enhances perfor-
mance assessment accuracy and maintains fairness and credibility in real-time coding contests.
The findings and insights from this study shed light on the importance of integrating sophisticated
mechanisms to ensure the authenticity of code submissions and uphold the competitive nature of
coding competitions.

Keywords: plagiarism, contest, CMS, real-time, C++.

1. Introduction

The rise of online platforms has shifted competitive programming and coding contests
into the digital world, bringing forth a pressing issue – plagiarism. As the number of
online coding platforms increases and resources for cheating become more available,
some contestants’ temptation to engage in unethical practices has grown exponentially.
Ensuring fairness in coding contests is crucial and a central concern for researchers and
instructors. However, most coding contest platforms lack solid systems to identify pla-
giarism in real time, jeopardizing the validity of the evaluation process.

Moreover, the analysis of contest data is pivotal regarding the quality and fairness
of coding competitions. As mentioned in (Hasanov et al., 2021), based on the study of
the International Olympiad in Informatics (IOI), statistical analysis of the competition
data can provide valuable insights into the strategies used, competition dynamics, and
contestant performance. Contest data analysis in competitions enables the organizers,
coaches, and participants to identify the shortcomings, strengths, and areas for improve-
ment. Therefore, we ensure real-time data visualization to facilitate further analysis in

M. Mammadli, N. Mammadli, J. Hasanov52

the proposed system. Using data-driven approaches, coding contests can be optimized
to promote fair competition.

This review explores plagiarism detection in programming, specifically in real-time
coding contests, emphasizing the need for customized solutions to address their unique
challenges.

1.1. What is Code Similarity, and How Does it Work

Code similarity involves assessing the resemblance between different code pieces to
identify potential plagiarism instances. Understanding the concept of code similarity
in the context of programming and software development is essential. A comparison
of syntactic and semantic structures of code pieces usually takes place when assessing
code similarity. One of the most common approaches includes token-based compari-
son (Yetthapu, 2023). The source code is divided into essential components known as
tokens, which could consist of parts such as literals, identifiers, and keywords. Subse-
quently, the overlap or similarity of these tokens across various code segments is ex-
amined. This particular method does not necessarily consider structure or semantics.
Thus, this method captures syntactic similarities between code segments (Prechelt et al.,
2000). To maintain the integrity of coding contests, our project introduces checker.js,
which includes three methods: comparator, cppChecker, and remover. Traditional meth-
ods face challenges adapting to source code nuances, as noted by Prechelt et al. (2002).
Also, there has been widespread use of string matching algorithms like the Longest
Common Subsequence (LCS) algorithm (Myers, 1986). However, our approach presents
a remover method that goes beyond conventional string matching, using regular expres-
sions to improve accuracy in code similarity detection.

1.2. Plagiarism in Contests

One of the main reasons for jeopardizing the evaluation process’s integrity in program-
ming contests is plagiarism. As mentioned in (Wu et al., 2022), cheating has become
challenging. Real-time detection of plagiarism, crucial for contest integrity, is a key
focus. The comparer method from our project, which is aligned with timely interven-
tions during competitions, uses async for concurrent processing. This strategic approach
ensures real-time plagiarism evaluations, emphasized by Jeske et al. (2018). The cp-
pChecker method, managing multilingual code comparison, is vital given the array of
programming languages used in coding contests. As participants engage in diverse cod-
ing languages, the capability to manage this variability becomes crucial in maintain-
ing fair and unbiased contest conditions. Academic institutions and contest organizers
prioritize solid measures to restrain plagiarism, fostering an atmosphere where skills and
imagination can be seen. Checking and comparing each piece of code could be too time-
consuming for the instructors. Therefore, before introducing our system, an analysis of

Analysis and Evaluation of the Contestant’s Progress in Real-time Coding Contests 53

previous systems and their advantages and disadvantages is considered in Section 2. The
approach used in the project is mentioned in Section 4.

2. Previous Work

Some of the prominent and extensively cited state-of-the-art plagiarism detection sys-
tems, according to Burrows et al. (2007), are JPlag (Prechelt et al., 2002) and MOSS
(Schleimer et al., 2003). Additionally, there exist several other noteworthy systems, such
as Sim (Gitchell & Tran, 1999), Plague (Clough, 2000), YAP (Wise, 1996), Plaggie
(Hage et al., 2011), and FPDS (Mozgovoy et al., 2005). Each system employs diverse
methodologies and algorithms to address the intricate challenges of detecting plagiarism
in programming code (Đurić & Gasevic, 2013).

In 1996, during his student project at Karlsruhe University, Guido Malpohl created a
plagiarism detection tool, JPlag, which evolved into the first online system. Subsequent-
ly, with the effort of Emeric Kwemou and Moritz Kroll, the online system transformed
into a web service (Prechelt et al., 2000). This tool specializes in plagiarism detection
across C, C++, Java, and Scheme programming languages. The underlying architecture
of JPlag relies on the Greedy String Tiling comparison algorithm (Prechelt et al., 2002).
Compared to other tools, JPlag demonstrates superior plagiarism detection performance
(Yetthapu, 2023). As stated in (Yetthapu, 2023), JPlag processes submitted source code
assignments and then generates HTML pages as output, with code similarity values
ranging from 0% to 5% indicative of no plagiarism and 100% representing blatant pla-
giarism. Intermediate values, such as 40%, warrant further manual investigation for a
conclusive judgment (Prechelt et al., 2000).

Code comparison tools like MOSS (Measure of Software Similarity) are frequently
used in software development projects to find instances of code plagiarism. MOSS is a
free online service created in 1994 by Aiken et al. at Stanford University. It functions as
a web service. It offers an easy-to-use web interface with Windows and UNIX operating
systems. MOSS splits code into continuous substrings called K-grams using the Win-
nowing algorithm and hashes each K-gram (Luke et al., 2014). MOSS uses several algo-
rithms to increase efficiency, such as control flow analysis, code structure analysis, and
string matching. About twenty-five programming languages, including Java, C, C++,
Python, JavaScript, Matlab, VHDL, and Verilog, are supported by it (Hage et al., 2010).
Results from MOSS are presented in HTML through a graphical interface that highlights
suspicious code fragments, the percentage of similarity, tokens, and matched lines. Each
matched pair is clickable, facilitating manual inspection (Yetthapu, 2023).

As mentioned in (Schleimer et al., 2003), which connects to our topic, the authors
investigate the concept of local document fingerprinting algorithms to identify copying
across large datasets accurately. They describe the efficient winnowing algorithm and
demonstrate its performance within 33% of the lower bound. The paper discusses the
difficulties in detecting partial copies and suggests using the k-grams mentioned above
and hashes as fingerprints. The article emphasizes the importance of selecting the ap-
propriate “k” value to eliminate coincidental matches.

M. Mammadli, N. Mammadli, J. Hasanov54

In the context of document fingerprinting, the article explains the mechanics of the
winnowing algorithm, as well as querying and optimal hash selection. It examines the
correctness of local algorithms for finding matching substrings and provides a lower
bound on their density. The experiments with web data demonstrate the algorithm’s per-
formance.

The paper emphasizes the importance of handling low-entropy strings in fingerprint-
ing, as demonstrated in experiments with non-uniformly random data. It introduces ro-
bust winnowing, which reduces density, emphasizing its usefulness in specific applica-
tions.

The study examines the copying structure of 20,000 web pages, identifying a non-
uniform data distribution and discussing the power law relationship between k-gram
frequency and rank. MOSS, a plagiarism detection service that uses robust winnowing,
efficiently detects document similarities (Schleimer et al., 2003).

The paper introduces and evaluates the winnowing algorithm for document finger-
printing, addressing challenges while emphasizing practical applications such as plagia-
rism detection (Schleimer et al., 2003).

(Sharma et al., 2021) also mentioned “code clone detection”. In the article, various
types of machine-learning techniques for source code analysis were researched. A sec-
tion about code clone detection was similar to our project. However, in the article, the
emphasized approach is ML (machine learning), which differs from ours. Apart from in-
vestigating the methods for automatically detecting plagiarism, the study mentioned ap-
proaches to validate the accuracy of clones reported by existing tools. The methodology
in the article entails creating a dataset of source code samples classified as non-clones
or clones. Following that, feature extraction techniques are used to identify relevant
features. Then, they are then input into machine-learning models for training and evalu-
ation. The models can detect clones within sample pairs (Sharma et al., 2021, p.19). It is
worth noting that while our project focuses on code clone detection, our approach differs
from the ML-centric methodology discussed in this study.

As mentioned (Đurić & Gasevic, 2013), contestants can modify the source code in
several ways, including lexical and structural forms. Most common examples of lexical
modifications could include modification of source code formatting, addition, modifica-
tion, or deletion of comments, language translations, reformatting or modification of
program output, etc. Lexical modifications often do not require advanced programming
skills, unlike structural modification, which involves changing the order of variables in
statements, changing the order of statements within code blocks, reordering code blocks,
adding redundant statements or variables, modifying control structures, changing data
types and modification of data structures, method inlining and method refactoring, re-
dundancy and so on. To counteract these changes, plagiarism detection tools examine
the program’s structure and its lexical elements, using techniques such as tokenization,
abstract syntax tree comparison, and semantic analysis to identify suspicious patterns
and similarities. The system proposed in the article showed more promising results than
JPlag when considering the structural and lexical modifications. While considering these
structural modifications, it is essential to know the programming language that will be
used so that modifications do not result in compilation errors or run-time exceptions

Analysis and Evaluation of the Contestant’s Progress in Real-time Coding Contests 55

(Đurić & Gasevic, 2013). Since the IOI contest we are preparing for will be held in C/
C++, our system was adopted to consider the use of language.

The source code similarity detection tools can be categorized into two operational
modes: online and offline (Đurić and Gasevic, 2013, p. 7). Based on this categorization,
our project follows the online paradigm. Every process happens in real time and with
the use of a socket.

According to (Đurić and Gasevic, 2013), there are several types of plagiarism tools,
such as text-based plagiarism detection, attribute-oriented plagiarism detection, and so
on. Since the text-based plagiarism tools ignore the code syntax and just compare Eng-
lish words, it is not the most helpful approach to take when it comes to coding contests.
A better approach would be using attribute-oriented similarity detection, where fun-
damental properties are used, such as the number of unique operands, operators, and
so on. However, there are more suitable approaches than this since the same number
of variables, loops, or conditional statements might be considered plagiarism. The ap-
proach best suited for these conditions would be structure-oriented similarity detection.
It includes tokenization and string-matching algorithms to determine plagiarism (Đurić
and Gasevic, 2013). While reviewing the existing approaches, it became evident that
the approach we will use for our project is a structure-oriented similarity detection tool.

2.1. Challenges of Similarity Detection

Detecting plagiarism in code is challenging, and similarity rates might be excessively
high. This happens due to the concise nature of simple tasks which require fewer lines
of code. Hence, the contestants unintentionally produce remarkably similar code pieces.
For instance, a very primitive example could be printing “Hello World” in a console
in a few lines of code, which is possible, thus contributing to the prevalence of similar
code structures. One potential resolution strategy for this issue involves exempting code
segments with fewer than 10 to 15 lines from plagiarism detection or adjusting the pla-
giarism assessment based on the code’s line count.

Moreover, a challenge arises in cases where contestants are required to implement
functions within pre-provided code. In this particular situation, the tool will count the
provided code as part of the similarity, thus artificially inflating the similarity rate. A
potential mitigation strategy involves providing the plagiarism detector with a predeter-
mined code sample in such scenarios. Subsequently, the detector tool would be config-
ured to disregard the designated code piece when evaluating similarity, further enhanc-
ing the assessment’s accuracy.

3. Design of an Alarm and Monitoring Dashboard

One of the goals of our project is a visual dashboard that provides a far friendlier user ex-
perience and more analytical possibilities. The seats will be displayed in the monitoring

M. Mammadli, N. Mammadli, J. Hasanov56

dashboard (Fig. 1). There will be sections from A to H, and there will be ~ six seats per
section (the sections and number of seats will be adjusted to the contest requirements):

When one of the seats is clicked, the information about the contestant sitting there
will appear on the screen (Fig. 2). The information includes user ID, username, submis-
sion, and similarity rate in comparison with others:

A notification will pop up on top of the screen as soon as the contestant submits.
Along with this, on the Alarms page, the history log of the alarms will be kept, and the
colors will be according to the type of the alarm (Fig. 3):

Fig. 1. Seats Page (Monitoring Dashboard).

Fig. 2. Contestant information (By clicking on the seat).

Analysis and Evaluation of the Contestant’s Progress in Real-time Coding Contests 57

For the submission, we have several kinds of alarms:
Similarity alarm ● – When the contestant submits their work, it goes through the
process of checking for plagiarism. When the similarity rate is more than or equal
to 70%, a notification on top of the page will pop up, and the seat color will blink
red.
Scoring preceding another event ● – If any kind of event (such as going to WC,
print, and so on) happened within 45 minutes before the submission and the simi-
larity rate is more than or equal to 50%, the seat will blink yellow, and the notifica-
tion with similarity rates between two submissions will be seen.

Fig. 3. Alarms Log.

Fig. 4. Submission without any kind of possible plagiarism.

M. Mammadli, N. Mammadli, J. Hasanov58

Sudden increase alarm – ● After the submission, the contestant’s similarity rate
increases by 30% or more. The notification about the sudden increase will appear,
and the similarity rate before and now will be shown in the message above. The
color representing this alarm will be orange.

When none of the conditions are met for alarm during the submission process, the
seat will blink in green, and a notification about the submission will be seen (Fig. 4):

Every single process described works with the help of a socket, which gives us real-
time data.

4. Experiments

4.1. How our Code Operates

Our project’s innovative system presents a novel approach to plagiarism detection. The
remover method pre-processes code submissions by filtering out common structures and
removing comments. The cppChecker method handles C++ code, demonstrating adapt-
ability to different syntaxes. The comparer method manages real-time comparisons us-
ing async for concurrent processing. This systematic process ensures a comprehensive
evaluation of multiple C++ files.

As mentioned above, the plagiarism checker employs the Longest Common Se-
quence algorithm. No external libraries were implemented when writing the plagiarism
checker tool. Moreover, when creating the system, Node.js was chosen because of its
advantages, versatility, and benefits. Also, the Express library was selected to facilitate
API development. React, and AntDesign were used on the front end to create a clear and
visually appealing UI (user interface).

The project is organized in a repository1, containing the backend and the front end.
The backend includes the plagiarism checker mentioned above and the APIs.
At the front end of the web application, there are three pages: Users, Alarms, and

Seats. Corresponding to those pages, there are three primary APIs: the “Sections”,
“Alarms”, and the “Users” API. The corresponding API is called on each page, display-
ing the data on the screen. The Users page has been designed to showcase the relevant
information retrieved from the “Users” API. The information (Names, Surnames, User-
names, and emails) is in a tabular format. All the alarms related to the submissions are
displayed on the alarms page. There are three main types of alarms: plagiarism, which is
shown in red; scoring preceding after-event alarm, which is shown in yellow; and sud-
den increase alarm, shown in orange. The alarms page derives the needed data from the
“Alarms” API, which takes the data from alarms, users, and alarm_types tables. Finally,
there is a Seats page that displays the seats and the configuration of the contestants. This
page requires data from the “Sections” API. The “Sections” API takes data from submis-
sions.json and the sections, users, and submissions tables.

1 https://github.com/NihadMammadli/SDP

Analysis and Evaluation of the Contestant’s Progress in Real-time Coding Contests 59

On the seat page, upon user selection, a collapsed form displays the contestant’s most
recent submission, revealing the code and common line similarity rate. This structured
approach ensures that cases of plagiarism are clearly seen at the end of the process.

4.2. CMS Structure

The Content Management System (CMS) is a foundational element, providing a struc-
tured framework for managing and organizing code submissions. Its architecture facili-
tates efficient real-time comparisons and assessments, contributing to the overall success
of the plagiarism detection tool. CMS has been used in contests such as IOI since 2017
and has become a strong nominee, becoming the established standard for the IOI (Ha-
sanov et al., 2021). Our implementation of the CMS is crucial for conducting efficient
real-time comparisons in our project. It dramatically enhances the effectiveness of our
plagiarism detection tool. Incorporating CMS into our project involves following a spe-
cific procedure. This included setting up and running the CMS, creating separate admin
and contestant user accounts, and defining commands designed for the contestant users.
As part of our workflow, we generated content tests, established test cases, and executed
the code submission process using the contestant user’s credentials. The data generated
during this submission process is redirected to a dedicated database integrated with our
Node.js code. This integration allows us to perform real-time plagiarism checks as data
flows through our system.

4.3. Our Architecture

The architecture goes as follows (see Fig. 5):
Competitor makes their submission to CMS.1.
The newly submitted code gets stored in the “Submissions” table in DB (SQL 2.
Postgres).
Socket.js continuously checks for new submissions in real time. DB returns the 3.
submission ID to socket.js when a new submission has been made.
Socket.js requests the newly submitted code from Python Downloader.py.4.
Python Downloader.py requests the newly submitted code from CMS and returns 5.
the requested code to Python Downloader.py.
Python Downloader.py sends the code it got from CMS to the Socket.js.6.
Socket.js sends the code to Checker.js to check for plagiarism in new submis-7.
sions.
After checking for plagiarism, it sends the alarm to the “Alarms” table and the 8.
similarity score to the “Similarities” table, and it gets stored in DB. At the same
time, for quicker access, the Checker inserts submissions in JSON format to
Submissions JSON.
The Admin requests the data (Alarms/Seats/Competitors) through React CMS, 9.
which takes it from Data.js. Data.js requests the submissions from Submissions

M. Mammadli, N. Mammadli, J. Hasanov60

JSON and returns them to Node.js. Later, Node.js returns the data to React CMS,
and the Admin sees the needed data.

4.4. Our Setup

Our team uses the most recent version of CMS in the system. We have integrated the
plagiarism checker tool, visual boards to monitor submissions, and alarms to detect in-
stances of cheating. The alarm mechanism mentioned above provides real-time alerts to
identify potential cheating events of the contestants. Moreover, the logs with the alarm
type and submissions are kept for further investigation of cheating cases when needed.

The upcoming IOI contest of 2024 will be held in Egypt in September. We intend
to refine our system even more to ensure it is ready for use in coding competitions such
as IOI. Our system for “Analysis and evaluation of the contestant’s progress in real-
time Coding Contests” has been tested by simulating all possible scenarios. It included
identifying different kinds of alarms and automating the users’ submission process. The
testing aimed to replicate the potential occurrences at IOI24, demonstrating the effec-
tiveness of our system in maintaining fairness and integrity in coding competitions.

5. Conclusion

The literature review provides a comprehensive background on plagiarism detection in
programming. The increase in the usage of online platforms for contests has brought a
considerable challenge regarding the integrity of the evaluation process. Our team pro-

Fig. 5. Architecture Diagram.

Analysis and Evaluation of the Contestant’s Progress in Real-time Coding Contests 61

posed a novel system that uses sophisticated methods when analyzing the structure of
codes submitted by the contestants and their behavior throughout the process to address
the issue arising. It is essential to ensure fairness and authenticity in such competitions.
Our system aims to provide a broad solution to plagiarism detection in competitions
by using tools like the LCS (Longest Common Subsequence) algorithm and Node.js,
as well as complex and sophisticated methodologies like structure-oriented similarity
detection.

Through experiments and simulations, the system was validated for the accuracy
of the approach used. It demonstrated the ability to detect instances of plagiarism ac-
curately in real time. Thanks to alarms and monitoring dashboards, the system offers a
framework for contest organizers to detect and analyze potential cheating incidents in
real time.

We are committed to refining and enhancing our system since Egypt has an upcom-
ing IOI 2024 competition. We hope to contribute to the coding competition society and
offer a fair environment for competitive programming contestants.

The studies highlight the importance of integrity during competitions and mecha-
nisms and technologies that ensure the quality of the competitive nature of the competi-
tions. A robust framework will be provided through the system proposed by our team to
maintain a fair and competitive environment.

References

Burrows, S., Tahaghoghi, S.M.M., Zobel, J. (2007). Efficient and effective plagiarism detection for large code
repositories. Software-Practice & Experience, 37(2), 151–175

Đurić, Z., Gasevic, D. (2013). A Source Code Similarity System for Plagiarism Detection. The Computer Jour-
nal, 56(1), 70–86. https://doi.org/10.1093/comjnl/bxs018

Gitchell, D., Tran, N. (1999). Sim: a utility for detecting similarity in computer programs. Proceedings of the
Thirtieth SIGCSE Technical Symposium on Computer Science Education, New Orleans, Louisiana, USA,
24–28 March, pp. 266–270. ACM New York, NY, USA.

Hage, J., Rademaker, P., van Vugt, N. (2010). A comparison of plagiarism detection tools. ISSN: 0924-3275.
Retrieved from http://www.cs.uu.nl/research/techreps/repo/CS2010/2010-015.pdf

Hage, J., Rademaker, P., Van Vugt, N. (2011). Plagiarism detection for Java: a tool comparison. In: Proceedings
of the 1st Computer Science Education Research Conference, CSERC ‘11, Heerlen, The Netherlands, 7–8
April, pp. 33–46, ACM New York, NY, USA.

Hasanov, Jamaladdin, Gadirli, Habil, Bagiyev, Aydin. (2021). On Using Real-Time and Post-Contest Data to
Improve the Contest Organization, Technical/Scientific Procedures and Build an Efficient Contestant Prepa-
ration Strategy. Olympiads in Informatics. 23–36. DOI: 10.15388/ioi.2021.03.

Jeske, H.J., Lall, M., Kogeda, O.P. (2018). A real-time plagiarism detection tool for computer-based assess-
ments. Journal of Information Technology Education. Innovations in Practice, 17, 23.
https://jite.org/documents/Vol17/JITEv17IIPp023-035Jeske3991.pdf

Luke, D., P.S., D., Johnson, S.L., Sreeprabha, Varghese, E.B. (2014). Software Plagiarism Detection Tech-
niques: A Comparative Study. ISSN: 0975–9646. Retrieved from
https://ijcsit.com/docs/Volume%205/vol5issue04/ijcsit2014050441.pdf

Mammadli, N. (2024). SDP. GitHub. https://github.com/NihadMammadli/SDP
Mozgovoy, M., Frederiksson, K., White, D.R., Joy, M.S., Sutinen, E. (2005). Fast plagiarism detection system.

Lecture Notes in Computer Science, 3772/2005, 267–270.
Myers, E.W. (1986). An O(ND) Difference Algorithm and Its Variations. Algorithmica, 2(1–4), pp. 251–266.

http://www.xmailserver.org/diff2.pdf

Prechelt, L., Malpohl, G., Philippsen, M. (2002). Finding Plagiarisms among a Set of Programs with
JPlag. Journal of Universal Computer Science, 8(11), 1016–1038. https://www.researchgate.net/

M. Mammadli, N. Mammadli, J. Hasanov62

publication/2832828_Finding_Plagiarisms_among_a_Set_of_Programs_with_JPlag

Prechelt, L., Malpohl, G., Philippsen, M. (2000, March 28). JPlag: Finding Plagiarisms among a Set of Pro-
grams. DOI: 10.3217/jucs-008-11-1016. URL:
https://www.jucs.org/jucs_8_11/finding_plagiarisms_among_a/Prechelt_L.html

Prechelt, L., Malpohl, G., Philippsen, M. (2002). Finding Plagiarisms among a Set of Programs with JPlag.
Journal of Universal Computer Science, 8(11), 1016–1038.

Schleimer, S., Wilkerson, D.S., Aiken, A. (2003). Winnowing: Local Algorithms for Document Fingerprinting.
In: Proceedings of the ACM SIGMOD International Conference on Management of Data, San Diego, Cali-
fornia, USA, 9–12 June, pp. 76–85. ACM New York, NY, USA.

Sharma, T., Kechagia, M., Georgiou, S., Tiwari, R., Sarro, F. (2021). A Survey on Machine Learning Tech-
niques for Source Code Analysis. ACM Transactions on Software Engineering and Methodology, 0(0), 0–0.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Všianský, R., Dlabolová, D., Foltýnek, T. (2017). Source Code Plagiarism Detection for PHP Language. Euro-
pean Journal of Business Science and Technology, 3(2), 106–117. DOI: 10.11118/ejobsat.v3i2.100

Wise, M.J. (1996). YAP3: Improved Detection of Similarities in Computer Programs and Other Texts. ACM
SIGCSE Bulletin, 28(1), 130–134.

WU, Runfan & LV, Aohui & Zhao, Qiyang. (2022). Detecting Plagiarism as Out-of-distribution Samples for
Large-scale Programming Contests. Olympiads in Informatics. 89–106. DOI: 10.15388/ioi.2022.08.

Yang, H., Lian, W., Wang, S., Cai, H. (2023, May). Demystifying Issues, Challenges, and Solutions for Multilin-
gual Software Development. In: 2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE) (pp. 1840–1852). IEEE. https://chapering.github.io/pubs/icse23haoran.pdf

Yetthapu, Sudheer (2023). Source Code Plagiarism Detection Using JPlag & Stack Overflow Data. Masters
Theses & Specialist Projects. Paper 3620. https://digitalcommons.wku.edu/theses/3620

M. Mammadli is currently a last year student at ADA University pur-
suing her bachelor’s degree in Information Technology. She holds the
position of an IT business analyst at ERP-INTEL LLC.

N. Mammadli is a last year student in the bachelor’s program of “Com-
puter Science” offered by ADA University. Concurrently, he works as
a software developer at ERP-INTEL LLC.

J. Hasanov is an Associate Professor of Computer and Information
Sciences in the School of IT and Engineering at ADA University. Dr.
Hasanov is mainly focused on computer vision problems medical im-
aging and video captioning domains. Additional to the research field,
Dr. Hasanov teaches the management aspects of the IT in production
and operation. Dr. Hasanov has been an ITC member for the period of
2017–2020 and led HTC during IOI 2019.

