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Abstract. Recursion is considered a challenging programming technique by many students. 
There are two common approaches intended to help students understand recursion. One of them 
is based on the operational semantics of function execution involving a stack, where students 
trace the execution of a recursively defined function for some concrete arguments. The other 
approach is based on the axiomatic semantics involving inductive reasoning with the contract of 
the recursively defined function. The former approach is not so helpful when designing recursive 
functions, whereas the latter can be helpful (being a special case of divide and conquer) but con-
tracts can be hard to discover.

In this article, I will show a third approach. It is based neither on an operational nor an 
axiomatic semantics. Rather, it involves a rewriting semantics using program transformation 
by substitution, thereby inlining function calls. We show that this approach not only may help 
understanding, but can also be used to design recursive functions.

Keywords: computer science, education, programming, recursion.

1. Introduction

I have written about recursion before (Verhoeff, 2018, 2021) and until recently I would 
not have thought to have something significant to add. But while preparing a program-
ming Q&A session for first-year mathematics students, I was struck by a (for me) new 
idea, which is the topic of this article.

Verhoeff (2018) presents the two common approaches to understand recursion. 
As example, consider the following Python code for the recursively defined function 
print_bit_strings (we left it undocumented for now on purpose):

 1 def print_bit_strings(n: int, s: str = "") -> None:
 2     if n == 0:
 3         print(s)  
 4     else:
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The call print_bit_strings(2) prints

00
01
10
11

One could wonder why there is a need for this extra parameter s, and why the recursive 
call on line 6 has argument s + b rather than b + s.

To understand this, students could use the operational approach, where they trace the 
execution of a specific call of the recursive function in question through multiple levels 
of subsequent recursive calls. Beginning programmers perceive this execution as magi-
cal and confusing, because there is a single definition of the given recursive function, 
but multiple calls are simultaneously executing that same piece of code independent of 
each other. That is, each invocation can be at a different location in that code, and the 
parameters and other local variables can have different values. The execution of a re-
cursive function traverses an imaginary dynamic call tree (Verhoeff, 2018, §3.1), where 
each node corresponds to the execution of a call, which then gives rise to zero or more 
subsequent recursive calls. The active invocations form a root path in this tree, and the 
‘instruction pointer’ and values of local variables are stored on a stack, that grows and 
shrinks as the root path.

For example, the call print_bit_strings(2, "s") gives rise to the call tree in 
Fig. 1. This approach helps in understanding how a stack machine can correctly execute 
a recursively defined function in an imperative programming language. But in my ex-
perience it is neither helpful for reasoning about (the correctness) of recursive function 
definitions nor for designing them.

Alternatively, there is the axiomatic approach (Verhoeff, 2018, §4), which requires a 
specification of the recursive function in terms of a contract consisting of a precondition 
and a postcondition, such that

if ●  the precondition is satisfied before the function call,
then ●  the postcondition is satisfied after the function call.

 5         for b in "01":
 6             print_bit_strings(n - 1, s + b)

The call print_bit_strings(2) prints

00
01
10
11

One could wonder why there is a need for this extra parameter s, and why the
recursive call on line 6 has argument s + b rather than b + s.

To understand this, students could use the operational approach, where they
trace the execution of a specific call of the recursive function in question through
multiple levels of subsequent recursive calls. Beginning programmers perceive
this execution as magical and confusing, because there is a single definition of
the given recursive function, but multiple calls are simultaneously executing that
same piece of code independent of each other. That is, each invocation can be at
a different location in that code, and the parameters and other local variables
can have different values. The execution of a recursive function traverses an
imaginary dynamic call tree (Verhoeff, 2018, §3.1), where each node corresponds
to the execution of a call, which then gives rise to zero or more subsequent
recursive calls. The active invocations form a root path in this tree, and the
‘instruction pointer’ and values of local variables are stored on a stack, that
grows and shrinks as the root path.

For example, the call print_bit_strings(2, "s") gives rise to the call
tree in Figure 1. This approach helps in understanding how a stack machine can
correctly execute a recursively defined function in an imperative programming
language. But in my experience it is neither helpful for reasoning about (the
correctness) of recursive function definitions nor for designing them.

(2, "s")

(1, "s0")

(0, "s00") (0, "s01")

(1, "s1")

(0, "s10") (0, "s11")

Figure 1: Call tree for print_bit_strings(2, "s"), only showing parameters

Alternatively, there is the axiomatic approach (Verhoeff, 2018, §4), which
requires a specification of the recursive function in terms of a contract consisting
of a precondition and a postcondition, such that

• if the precondition is satisfied before the function call,

• then the postcondition is satisfied after the function call.

The docstring for print_bit_strings(n, s) could read:

7 """Print s + t for all strings t over "01" of length n,
8 in lexicographic order.
9

10 Assumption: n >= 0
11 """

2

Fig. 1. Call tree for print_bit_strings(2, "s"), only showing parameters.
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The docstring for print_bit_strings(n, s) could read:

That is, its precondition is n >= 0 and its postcondition is: ‘for all strings t over 
"01" of length n, strings s + t have been printed’. To reason about the call with 
parameters (n, s), we assume as induction hypothesis that calls with parameters 
(n_, s_) where n_ < n work as specified by the contract. The design of function 
print_bit_strings can be argued as follows. The goal is to prove that lines 2–6 
satisfy the contract, under the assumption that the recursive call on line 6 satisfies its 
contract; that is, it satisfies ‘if n > 0, then for all strings u of length n - 1 over 
"01", it prints strings s + b + u’.

If ●  n == 0, then there is only one string t of length n, viz. the empty string. Ob-
serve that s extended with the empty string equals s (line 3). Thus, the contract 
is fulfilled by printing just s.
If ●  n > 0 then extensions of length n over "01" start with a single bit, say b, in 
"01", followed by n - 1 more bits over "01". Thus, by the induction hypoth-
esis, the loop on lines 5–6 prints all required strings.

In this reasoning style, the induction hypothesis is sometimes referred to as the re-
cursive leap of faith (Roberts, 1986; Rubio, 2018). I find this terminology unfortunate, 
because faith has nothing to do with it. There is already good terminology, viz. induction 
hypothesis. Trusting the compiler, runtime system, and hardware to execute recursive 
definitions faithfully, could be called a leap of faith. Students need to understand this 
implementation only once, e.g., by tracing an execution through the call tree and ob-
serving the role of the stack. But this is not needed (nor helpful) to understand specific 
recursive definitions, and certainly not for designing them.

2. Syntactic Rewriting

There is a third kind of semantics for programming languages, viz. based on rewriting. 
It is typically used to describe the semantics of more advanced language constructs in 
terms of simpler language constructs. For example, i += 1 can be rewritten into i = 
i + 1. That way, the meaning of += is defined, without the need to speak of how += 
works operationally, nor how to reason about it axiomatically. This rewriting is a purely 
syntactic operation and is also called a semantics-preserving program transformation. 
One sometimes calls the notation += syntactic sugar, because it does not make the 
language more expressive. It is a mere abbreviation that can be eliminated by rewriting, 
also known as syntactic desugaring.

 7     """Print s + t for all strings t over "01" of length n,
 8     in lexicographic order.

9 

 10     Assumption: n >= 0
 11     """
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2.1. Rewriting Function Calls, by Inlining

In the absence of recursion, the function mechanism is syntactic sugar for abbreviations 
that can be eliminated by a program transformation. Consider a void1 function definition 
without return statements of the form

The call func(expr_1, expr_2, ...) can be eliminated as follows.
Replace the call1.  func(expr_1, expr_2, ...) by

where param_1, param_2, ... are local variables.
Systematically rename any local variables in2.  body whose name clashes with a 
name occurring in the context of the call.

When the expressions expr_i are free of side effects, also known as referential trans-
parency (which will be the case in our examples), Step 1 can be replaced by a double 
substitution:

1.a. Replace the call func(expr_1, expr_2, ...) by body,
1.b. in which all occurrences of parameters param_i are simultaneously replaced 

by the corresponding argument expressions (expr_i). The parentheses are 
needed to guarantee the proper evaluation order.

The result of this transformation is a program that is semantically equivalent to the origi-
nal program. As a compiler optimization technique and as a code refactoring technique, 
it is also known as inlining. In Lambda Calculus, the double substitution corresponds to 
𝛽-reduction.

For example, consider the Python function definition

Then we can rewrite as follows

1 In some programming languages void functions are known as procedures. In Python, their body does not 
contain return expr. For non-void functions and return, see Appendix A.

 13 def func(param_1, param_2, ...):
 14     body # containing param1, param2, ..., but no return

 15     param_1, param_2, ... = expr_1, expr_2, ...
 16     body

 17 def f(x, y):
 18     z = x * y
 19     print(z)

 20     f(z - 1, z + 1)
 21     print(z)

22 

 23 # inline call: x, y = z - 1, z + 1
24 
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Note that in this case the parentheses are really needed to preserve the evaluation order 
of operators. When they are not needed, we silently omit them.

Non-recursive function definitions can be completely eliminated by inlining all their 
calls. This may result in faster execution, at the expensive of a larger code foot print. 
Recursive function definitions cannot be completely eliminated this way. Well, they can, 
provided we allow infinite program texts. Conceptually, there is nothing wrong with an 
infinite program text. Termination of the recursion corresponds to guaranteeing that only 
a finite (though unbounded) part of that infinite program gets executed.

2.2. Rewriting if-statements, by Deleting Dead Branches

It turns out that for the examples in §3 we also need rewriting rules for if-statements 
with constant conditions. These are the two relevant rewrite rules:

and

2.3. Rewriting Expressions, by Constant Folding

The final rewrite step that we use in the examples below is that of evaluating an expres-
sion involving only constants. As a compiler optimization technique this is known as 
constant folding. We label such rewrites by simplify.

 25     z1 = (z - 1) * (z + 1) # z1: fresh local variable
 26     print(z1)
 27     print(z)

 28     if True:
 29         statement_suite_1
 30     else: # unreachable
 31         statement_suite_2

32 

 33 # delete dead else-branch
34 

 35     statement_suite_1

 36     if False: # unreachable
 37         statement_suite_1
 38     else:
 39         statement_suite_2

40 

 41 # delete dead if-branch
42 

 43     statement_suite_2
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3. Example for Understanding Via Rewriting

Let’s rewrite the call print_bit_strings(2):

 44     print_bit_strings(2)
45 

 46 # inline call: n, s = 2, ""
47 

 48     if 2 == 0:
 49         print("")  
 50     else:
 51         for b in "01":
 52             print_bit_strings(2 - 1, "" + b)

53 

 54 # delete dead if-branch: 2 != 0 ; simplify: 2 - 1 == 1 ; "" + b == b
55 

 56     for b in "01":
 57         print_bit_strings(1, b)

58 

 59 # inline call: n, s = 1, b; rename local variables
60 

 61     for b1 in "01":
 62         # print_bit__strings(1, b1)
 63         if 1 == 0:
 64             print(b1)
 65         else:
 66             for b2 in "01":
 67                 print_bit_strings(1 - 1, b1 + b2)

68 

 69 # delete dead if-branch: 1 != 0 ; simplify: 1 - 1 == 0
70 

 71     for b1 in "01":
 72         for b2 in "01":
 73             print_bit_strings(0, b1 + b2)

74 

 75 # inline call: n, s = 10, b1 + b2; rename local variable
76 

 77     for b1 in "01":
 78         for b2 in "01":
 79             # print_bit_strings(0, b1 + b2)
 80             if 0 == 0:
 81                 print(b1 + b2)
 82             else:
 83                 for b3 in "01":



Understanding and Designing Recursive Functions via Syntactic Rewriting 105

So, by equational reasoning, the recursive function applied to argument 2 is equiva-
lent to 2 nested for-loops. It is now believable that for argument n, the call is equiva-
lent to n nested for-loops, since each recursive call adds a level of nesting:

The role of (accumulation) parameter s can apparently be viewed as collecting the 
state of all enclosing for-loops. We see that recursion enables one to write programs 
with a variable number of nested for-loops. Without recursion this is often not possible 
in an imperative programming language. However, see §4 for a way of doing it in Python 
without recursion.

To my delight, the IntelliJ IDE can do the refactoring steps of inlining calls of recur-
sive functions and deleting dead branches in if-statements, but only for Java. It can’t 
do them for Python (neither can VS Code). It can inline nonrecursive Python function 
calls, but not for direct recursive functions. Surprisingly, if the recursive function is 
duplicated and turned into a pair of mutually recursive functions, the IDE will refactor 
their function calls properly.

Finally, it is important to note the difference between tracing the execution and re-
writing the program as ways of understanding recursion. Execution tracing suffers from 
the exponential blow up in branching recursion, whereas syntactic program rewriting 
does not. The latter reasons about the (unexecuted) program as a whole.

4. Designing Recursive Function Definitions

The rewriting approach described in the previous section to help understand recursive 
function definitions can also be used to help design such functions. The steps are as 
follows.

Write down a non-recursive program that solves a particular instance of the prob-1. 
lem.

 84                     print_bit_strings(0 - 1, b1 + b2 + b3)
85 

 86 # delete dead else-branch: 0 == 0
87 

 88     for b1 in "01":
 89         for b2 in "01":
 90             print(b1 + b2)

 91     # print_bit_strings(n)
 92     for b1 in "01":
 93         for b2 in "01":
 94             ...
 95                 for bn in "01":
 96                     print(b1 + b2 + ... + bn)
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Decide which part will be done in a single layer of the recursion, which part will 2. 
be handled by recursion, and which part is handled by preceding layers. Focus on 
the perspective of that single layer.
Introduce appropriate parameters to feed in data that comes from the preceding 3. 
layers, and modify and pass them on to the lower layers. In particular, there will 
also be a parameter for the problem size.
Decide on the base case(s).4. 
Define the recursive function; in particular, introduce an5.  if-statement to distin-
guish the base case(s) and the ‘general’ case that adds a single layer.

4.1. First Design Example

As an example, consider the problem of printing all bit strings of length n.
A straightforward non-recursive program for1.  n = 3 consisting of 3 nested 
for-loops:

A single layer of the recursion does one2.  for-loop, say with control variable b2, 
the loops nested inside will be handled by the recursive call, and the outer loops 
were done in the preceding layers:

Note that the part handled by recursion concerns a generalization, be-
cause those for-loops do not just contain print(b3). Rather, they contain 
print(b1 + b2 + b3). So, the generalization is that the recursive call must 
print s = b1 + b2 extended with b3. That first part must come in via an 
extra parameter, say s. This also means that the call itself will receive that 
parameter, but then its value will be b1, received from the preceding layers. 
For the top-level call, we can take s = "", because it is the unit of string 
concatenation.

 97     for b1 in "01":
 98         for b2 in "01":
 99             for bn in "01":
 100                 print(b1 + b2 + b3)

 101     # print_bit_strings(3)
 102     ##################
 103     for b1 in "01":  # preceding layers
 104     ##################
 105         for b2 in "01":  # < this will be done in one layer
 106             ##########################
 107             for b3 in "01":          # handled by
 108                 print(b1 + b2 + b3)  # recursion
 109             ##########################
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Thus, we obtain the following structure:3. 

In case4.  n == 0, there are no for-loops, and only a print statement, which 
can be fed with the parameter s.

This leads to the following definition, which we have seen before:5. 

Note the default value s = "", corresponding to an empty context of preceding 
recursive layers.

In this approach, one can use the IDE refactoring technique known as extract func-
tion. It will introduce appropriate parameters to feed in values that are must be sup-
plied.

4.2. Second Design Example

Consider a binary tree of depth 2 (Fig. 2, left). How can it be used to create a binary tree 
of depth 3? One way is to copy the binary tree of depth 2 and combine the two instances 
with a fork on top (Fig. 2, middle). This is the view we followed in the preceding ex-
ample. But one can also grow a binary fork on each of the leaves of the binary tree of 
depth 2 to get a binary tree of depth 3 (Fig. 2, right).

 110     ##################
 111     for b1 in "01":  # preceding layers
 112     ##################
 113         # print_bit_strings(2, b1) # call being designed
 114         for b2 in "01":
 115             print_bit_strings(1, b1 + b2) # recursive call
 116             # which should inline as
 117             # for b3 in "01":
 118             #     print(b1 + b2 + b3)

 119 def print_bit_strings(n: int, s: str = "") -> None:
 120     """Print s + t for all strings t over "01" of length n,
 121     in lexicographic order.

122 

 123     Assumption: n >= 0
 124     """

125 

 126     if n == 0:
 127         # t == ""
 128         print(s)
 129     else:
 130         # n > 0, write t == b + u for b in "01"
 131         for b in "01":
 132             print_bit_strings(n - 1, s + b)
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Let’s see how that alternative choice can be worked out in case of function print_
bit_strings.

The non-recursive program is the same as above in §4.1.1. 
A single layer of the recursion does one2.  for-loop, but now the recursion will do 
the outer for-loops and the preceding layers did the inner loops:

This may look strange, but bear with me. Apparently, in the recursion, bit 
strings of length one shorter are produced, and these still need to be extended 
and printed. So, again, we see a generalization: rather then just print all bit 
strings, we need to apply a function to them, and this function is going to be 
an extra parameter, say f. The call we are designing receives this parameter, 
which represents the work to be done in the preceding layers (inner loops) For 
the top-level call, we can take f = print. The recursive call will receive a 
function (as parameter) that adds one for-loop around the given f.
Thus, we obtain the following structure:3. 

 133     # print_bit_strings(3)
 134     ##################
 135     for b1 in "01":  # handled by recursion
 136     ##################
 137         for b2 in "01":  # < this will be done in one layer
 138             ##########################
 139             for b3 in "01":          # preceding
 140                 print(b1 + b2 + b3)  # layers
 141             ##########################

 142     # print_bit_strings(2, f)
 143     def g(s: str) -> None:
 144         for b2 in "01":
 145             f(s + b2)
 146 

Figure 2: Binary tree of depth 2 (left); two ways (middle, right) of constructing
a binary tree of depth 3 from trees of depth 2.

133 # print_bit_strings(3)
134 ##################
135 for b1 in "01": # handled by recursion
136 ##################
137 for b2 in "01": # < this will be done in one layer
138 ##########################
139 for b3 in "01": # preceding
140 print(b1 + b2 + b3) # layers
141 ##########################

This may look strange, but bear with me. Apparently, in the recursion,
bit strings of length one shorter are produced, and these still need to be
extended and printed. So, again, we see a generalization: rather then just
print all bit strings, we need to apply a function to them, and this function
is going to be an extra parameter, say f. The call we are designing receives
this parameter, which represents the work to be done in the preceding
layers (inner loops) For the top-level call, we can take f = print. The
recursive call will receive a function (as parameter) that adds one for-loop
around the given f.

3. Thus, we obtain the following structure:

142 # print_bit_strings(2, f)
143 def g(s: str) -> None:
144 for b2 in "01":
145 f(s + b2)
146

147 print_bit_strings(1, g)
148 # which should eventually inline as
149 # for b1 in "01":
150 # g(s + b1)
151

152 # where def f(s: str) -> None:
153 ########################
154 for b3 in "01": # preceding
155 print(s + b3) # layers
156 ########################

4. In case n == 0, there are no for-loops and f can just be applied to "".

5. This leads to the following recursive definition:

9

Fig. 2. Binary tree of depth 2 (left); two ways (middle, right)  
of constructing a binary tree of depth 3 from trees of depth 2.



Understanding and Designing Recursive Functions via Syntactic Rewriting 109

In case4.  n == 0, there are no for-loops and f can just be applied to "".
This leads to the following recursive definition:5. 

Let’s now see if we can understand this recursive definition by rewriting the call 
print_bit_strings(2):

 147     print_bit_strings(1, g)
 148     # which should eventually inline as
 149     # for b1 in "01":
 150     #     g(s + b1)

151 

 152     # where def f(s: str) -> None:
 153     ########################
 154         for b3 in "01":    # preceding
 155             print(s + b3)  # layers
 156     ########################

 157 def print_bit_strings(n: int, 
 158                       f: Callable[[str], None] = print
 159                      ) -> None:
 160     """Apply f to each string over "01" of length n,
 161     in lexicograhpic order.

162 

 163     Assumption: n >= 0
 164     """
 165     if n == 0: # only the empty string has length 0
 166         f("")
 167 else: # n > 0
 168         def g(s: str) -> None:
 169             for b in "01":
 170                 f(s + b)

171 

 172         print_bit_strings(n - 1, g)

 173     print_bit_strings(2)
174 

 175 # inline call: n, f = 2, print
176 

 177     if 2 == 0:
 178         print("")
 179     else:
 180         def g(s: str) -> None:
 181             for b in "01":
 182                 print(s + b)
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183 

 184         print_bit_strings(2 - 1, g)
185 

 186 # delete dead if-branch: 2 != 0 ; simplify: 2 - 1 == 1
187 

 188     def g(s: str) -> None:
 189         for b in "01":
 190             print(s + b)

191 

 192     print_bit_strings(1, g)
193 

 194 # inline call: n, f = 1, g; rename new local function g -> g2
195 

 196     def g(s: str) -> None:
 197         for b in "01":
 198             print(s + b)

199 

 200     if 1 == 0:
 201         g("")
 202     else:
 203         def g2(s: str) -> None: # renamed local function
 204             for b in "01":
 205                 g(s + b)

206 

 207         print_bit_strings(1 - 1, g2)
208 

 209 # delete dead if-branch: 1 != 0 ; simplify: 1 - 1 == 0
210 

 211     def g(s: str) -> None:
 212         for b in "01":
 213             print(s + b)

214 

 215     def g2(s: str) -> None:
 216         for b in "01":
 217             g(s + b)

218 

 219     print_bit_strings(0, g2)
220 

 221 # inline call g(s + b); rename control variables
222 

 223     def g2(s: str) -> None:
 224         for b1 in "01": # renamed control variable
 225             for b2 in "01": # renamed control variable
 226                 print((s + b1) + b2)
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Now, the extra parameter (f) accumulates the work to be done, and in the base case 
it is applied to the empty string. Such a parameter is called a continuation. Observe that 
this definition of print_bit_strings is tail recursive and thus can easily be trans-
formed into a while-loop:

227 

 228     print_bit_strings(0, g2)
229 

 230 # inline call: n, f = 0, g2; rename new local function g -> g3
231 

 232     def g2(s: str) -> None:
 233         for b1 in "01":
 234             for b2 in "01":
 235                 print((s + b1) + b2)

236 

 237     if 0 == 0:
 238         g2("")
 239     else:
 240         def g3(s: str) -> None:
 241             for b in "01":
 242                 g2(s + b)

243 

 244         print_bit_strings(0 - 1, g3)
245 

 246 # delete dead else-branch: 0 == 0
247 

 248     def g2(s: str) -> None:
 249         for b1 in "01":
 250             for b2 in "01":
 251                 print((s + b1) + b2)

252 

 253     g2("")
254 

 255 # inline call g2("")
256 

 257     for b1 in "01":
 258         for b2 in "01":
 259             print("" + b1 + b2)

260 

 261 # simplify: "" + b1 = b1
262 

 263     for b1 in "01":
 264         for b2 in "01":
 265             print(b1 + b2)
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Note that here g needs an extra parameter f with default value f, to ensure that 
the definition of g is a closure that properly captures the function object currently 
bound to the name f at the moment of definition. Without that f parameter, the defini-
tion of g would contain an ‘open’ (un-dereferenced) name f, which will be looked up 
during execution of g to find the value bound to f at the moment of execution, rather 
than at the moment of definition.

By redefining f directly, print_bit_strings can be simplified to

Note that f here is not defined recursively, since the f in its body is the parameter, 
which is bound to the earlier value of f.

Apparently, in Python one can write a non-recursive program that behaves like a 
variable number of nested loops. Actually, the program constructs a function that be-
haves like those nested loops. Thus, this is a form of metaprogramming.

 266 def print_bit_strings(n: int) -> None:
 267     """Print all strings over "01" of length n,
 268 i    n lexicographic order.

269 

 270     Assumption: n >= 0
 271     """
 272     f = print

273 

 274     while n > 0:
 275         def g(s: str, f=f) -> None:
 276             for b in "01":
 277                 f(s + b)

278 

 279         n, f = n - 1, g
280 

 281     f("")

 282      f = print
283 

 284      for _ in range(n):
 285          def f(s: str, f=f) -> None:
 286              for b in "01":
 287                  f(s + b)

288 

 289      f("")
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5. Conclusion

I have described and illustrated how a rewriting semantics can help understand and 
design recursive function definitions. This approach complements the traditional ap-
proaches based on operational semantics (execution tracing) and axiomatic semantics 
(contracts). I am not claiming that the approach via rewriting is the best, but I do find 
it better than execution tracing, because (i) it is purely syntactic, (ii) does not need a 
stack to distinguish the states of concurrently active recursive calls, (iii) nor does it 
suffer from any exponential blow up. Furthermore, the rewriting approach may help in 
discovering and formulating generalized contracts, which are needed for the approach 
via axiomatic semantics.

There is a clear relationship to functional programming, whose semantics can be 
based on Lambda Calculus, which has a rewriting semantics via 𝛽-reduction (inlining). 
Note that a rewriting semantics does not need a stack. In this article, I have shown that 
this approach also can work for imperative programs. It thus allows equational reason-
ing on the level of whole programs. However, some care is needed, in particular when 
return statements are used and when expressions can have side effects, causing a lack 
of referential transparency.

The approach via rewriting would benefit from IDE support for the relevant refactor-
ing techniques, because manual rewriting is tedious and error-prone. Unfortunately, such 
support is currently rather limited (JetBrains IntelliJ can do it for Java).

A word of warning is in place concerning the examples. The rewriting approach 
can help to come up with recursive definitions. But these definitions may still have 
performance issues. There are other techniques to improve the performance of recur-
sively defined functions, e.g., see Verhoeff (2018). Appendix B offers better ways of 
printing bit strings in Python. To show the power of a purely functional programming 
language, I have included some Haskell programs for generating bit strings in Ap-
pendix C.

I hope also that I have shown some nifty uses of Python. Maybe the recent Python 
compiler named Codon (Shajii, 2023) can make Python interesting for use in program-
ming contests such as the IOI.
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Appendix A. Python Example with Non-void Function

Eliminating the call of a non-void2 function is a bit more involved than for void func-
tions. To keep things simple, we will assume that the return statements in the function 
body occur at tail positions, that is, if the return statement would have been a function 
call, it would be the last thing done in the body (a so-called tail call). Now consider a 
non-void function definition of the form

A call of this function occurs as a (sub)expression, which is part of some statement, such 
as for example

In general, such a call takes the form

where stmt is a void function. Assuming, for simplicity, that the argument expressions 
have no side effects, it can be eliminated as follows.

Replace1.  stmt(func(expr_1, expr_2, ...) by body.
Replace every occurrence of2.  return expr in body by stmt(expr). N.B. 
The expression may need to be parenthesized as (expr).
Simultaneously replace all occurrences of parameters3.  param_i by their cor-
responding argument expressions (expr_i).
Systematically rename any local variables in4.  body whose name clashes with a 
name occurring in the context of the call.

If a return statement would not occur in a tail position, then a ‘jump’ to the end of the 
body would also be needed. Note, however, that Python does not support goto state-
ments (except on April’s Fool Day 2004).

Here is an example involving the famous recursive factorial function:

2 Non-void functions are sometimes known as fruitful functions. In Python, they contain 
return expr.

 290 def func(param_1, param_2, ...):
 291     body # containing 'return expr' in tail positions only

 292     print(func(expr_1, expr_2, ...) + 1)

 293     stmt(func(expr_1, expr_2, ...))

 294 def fac(n: int) -> int:
 295     """For n >= 0, return n factorial.
 296     """
 297     if n == 0:
 298         return 1
 299     else:
 300         return n * fac(n - 1)
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Note that the two return statements occur in tail positions. Let‘s rewrite the statement  
print(fac(2)):

In general, print(fac(n)) rewrites to

where there are n + 1 factors in the expression.

 301     print(fac(2))
302 

 303 # inline call: n = 2
304 

 305     if 2 == 0:
 296         print(1)
 297     else:
 298         print(2 * fac(2 - 1))

299 

 300 # delete dead if-branch: 2 != 0 ; simplify: 2 - 1 == 1
301 

 302     print(2 * fac(1))
303 

 304 # inline call: n = 1
305 

 306     if 1 == 0:
 307         print(2 * 1)
 308     else:
 309         print(2 * 1 * fac(1 - 1))

310 

 311 # delete dead if-branch: 1 != 0 ; simplify: 1 - 1 == 0
312 

 313     print(2 * 1 * fac(0))
314 

 315 # inline call: n = 0
316 

 317     if 0 == 0:
 318         print(2 * 1 * 1)
 319     else:
 320         print(0 * 2 * * 1 * fac(0 - 1))

321 

 322 # delete dead else-branch: 0 == 0 ; simplify: 2 * 1 == 2
323 

 324     print(2 * 1 * 1)

  335     print(n * (n - 1) * ... * 2 * 1 * 1)
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If the body of a non-void function consists of single return statement, then one can 
do equational reasoning directly on the level of expressions rather than statements. For 
instance, consider the following definition of function fac:

Now, rewriting call fac(2) is less complicated:

 336 def fac(n: int) -> int:
 337     return 1 if n == 0 else n * fac(n - 1)

 338     fac(2)
339 

 340 # inline call: n = 2
341 

 342     1 if 2 == 0 else 2 * fac(2 - 1)
343 

 344 # delete dead if-branch: 2 != 0 ; simplify: 2 - 1 == 1
345 

 346     2 * fac(1)
347 

 348 # inline call: n = 1
349 

 350     2 * (1 if 1 == 0 else 2 * 1 * fac(1 - 1))
351 

 352 # delete dead if-branch: 1 != 0 ; simplify: 1 - 1 == 0
353 

 354     2 * 1 * fac(0)
355 

 356 # inline call: n = 0
357 

 358     2 * 1 * (1 if 0 == 0 else 0 * 2 * 1 * fac(0 - 1))
359 

 360 # delete dead else-branch: 0 == 0 ; simplify: 2 * 1 == 2
361 

 362     2 * 1 * 1
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Appendix B. Better Python Solutions for Bit Strings

For completeness sake, let me note that the problem of printing all bit strings of a given 
length can be solved in a better way. Decompose the problem into:

Constructing all bit strings of a given length.1. 
Printing them all.2. 

In Python, one might be tempted to construct all those bit strings, by putting them in 
a list. But then they are all stored in memory before printing them (or doing whatever 
one wants, for instance, count them). For that reason, generator expressions were intro-
duced in Python. They allow on-demand construction. Here is a Python solution based 
on Fig. 2 (middle):

It can be invoked to print the bit strings like this:

And here is a solution based on Fig. 2 (right):

 363 from typing import Iterator
364 

 365 def generate_bit_strings(n: int) -> Iterator[str]:
 366     """Yield all strings over "01" of length n,
 367     in lexicographic order.

368 

 369     Assumption: n >= 0
 370     """
 371     if n == 0:
 372         yield ""
 373     else: # n > 0
 374         yield from (b + u
 375                     for b in "01"
 376                     for u in generate_bit_strings(n - 1)
 377                    )

 378 print(*generate_bit_strings(3), sep='\n')

 379 def generate_bit_strings(n: int) -> Iterator[str]:
 380     if n == 0:
 381         yield ""
 382     else: # n > 0
 383         yield from (u + b
 384                     for u in generate_bit_strings(n - 1)
 385                     for b in "01"
 386                    )
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Appendix C. Haskell Solutions for Bit Strings

It is illustrative to see the same definitions in a pure non-strict functional programming 
language like Haskell. Using the recursive decomposition in Fig. 2 (middle), combining 
two recursively grown trees of size one smaller:

and when growing one tree of size one smaller and splitting all its leaves (Fig. 2, right):

The latter is not efficient, because appending at the end of a list is not efficient in Haskell. 
But this can be improved by introducing an accumulation parameter:

Observe that this definition is more efficient, because it now prepends to a list. More-
over, it is tail recursive, and thus the recursion can be compiled into a loop. Also note 
that in Haskell, lists are lazy, that is, they are only constructed in so far as needed (like 
the generator expressions in Python used in Appendix B).

 392 bitStrings 0 = [""]
 393 bitStrings n = [u ++ [b] | u <- bitStrings (n - 1), b <- "01"]

 394 gbitStrings :: [String] -> Int -> [String]
 395 -- gbitStrings s n = [t ++ u | t <- bitStrings n, u <- s]
 396 -- hence, gbitStrings [""] = bitStrings
 397 gbitStrings s 0 = s
 398 gbitStrings s n = gbitStrings [b : t | b <- "01", t <- s] (n - 1)

 387 bitStrings :: Int -> [String]
 388 -- bitStrings n = list of strings over "01" of length n (n >= 0),
 389 -- in lexicographic order
 390 bitStrings 0 = [""]
 391 bitStrings n = [b : u | b <- "01", u <- bitStrings (n - 1)]




