
Olympiads in Informatics, 2023, Vol. 17, 99–119
© 2023 IOI, Vilnius University
DOI: 10.15388/ioi.2023.08

99

Understanding and Designing Recursive Functions
via Syntactic Rewriting

Tom VERHOEFF
Mathematics and Computer Science, Eindhoven University of Technology
Groene Loper 5, 5612 AE, Eindhoven, Netherlands
e-mail: t.verhoeff@tue.nl

Abstract. Recursion is considered a challenging programming technique by many students.
There are two common approaches intended to help students understand recursion. One of them
is based on the operational semantics of function execution involving a stack, where students
trace the execution of a recursively defined function for some concrete arguments. The other
approach is based on the axiomatic semantics involving inductive reasoning with the contract of
the recursively defined function. The former approach is not so helpful when designing recursive
functions, whereas the latter can be helpful (being a special case of divide and conquer) but con-
tracts can be hard to discover.

In this article, I will show a third approach. It is based neither on an operational nor an
axiomatic semantics. Rather, it involves a rewriting semantics using program transformation
by substitution, thereby inlining function calls. We show that this approach not only may help
understanding, but can also be used to design recursive functions.

Keywords: computer science, education, programming, recursion.

1. Introduction

I have written about recursion before (Verhoeff, 2018, 2021) and until recently I would
not have thought to have something significant to add. But while preparing a program-
ming Q&A session for first-year mathematics students, I was struck by a (for me) new
idea, which is the topic of this article.

Verhoeff (2018) presents the two common approaches to understand recursion.
As example, consider the following Python code for the recursively defined function
print_bit_strings (we left it undocumented for now on purpose):

 1 def print_bit_strings(n: int, s: str = "") -> None:
 2 if n == 0:
 3 print(s)
 4 else:

T. Verhoeff100

The call print_bit_strings(2) prints

00
01
10
11

One could wonder why there is a need for this extra parameter s, and why the recursive
call on line 6 has argument s + b rather than b + s.

To understand this, students could use the operational approach, where they trace the
execution of a specific call of the recursive function in question through multiple levels
of subsequent recursive calls. Beginning programmers perceive this execution as magi-
cal and confusing, because there is a single definition of the given recursive function,
but multiple calls are simultaneously executing that same piece of code independent of
each other. That is, each invocation can be at a different location in that code, and the
parameters and other local variables can have different values. The execution of a re-
cursive function traverses an imaginary dynamic call tree (Verhoeff, 2018, §3.1), where
each node corresponds to the execution of a call, which then gives rise to zero or more
subsequent recursive calls. The active invocations form a root path in this tree, and the
‘instruction pointer’ and values of local variables are stored on a stack, that grows and
shrinks as the root path.

For example, the call print_bit_strings(2, "s") gives rise to the call tree in
Fig. 1. This approach helps in understanding how a stack machine can correctly execute
a recursively defined function in an imperative programming language. But in my ex-
perience it is neither helpful for reasoning about (the correctness) of recursive function
definitions nor for designing them.

Alternatively, there is the axiomatic approach (Verhoeff, 2018, §4), which requires a
specification of the recursive function in terms of a contract consisting of a precondition
and a postcondition, such that

if ● the precondition is satisfied before the function call,
then ● the postcondition is satisfied after the function call.

 5 for b in "01":
 6 print_bit_strings(n - 1, s + b)

The call print_bit_strings(2) prints

00
01
10
11

One could wonder why there is a need for this extra parameter s, and why the
recursive call on line 6 has argument s + b rather than b + s.

To understand this, students could use the operational approach, where they
trace the execution of a specific call of the recursive function in question through
multiple levels of subsequent recursive calls. Beginning programmers perceive
this execution as magical and confusing, because there is a single definition of
the given recursive function, but multiple calls are simultaneously executing that
same piece of code independent of each other. That is, each invocation can be at
a different location in that code, and the parameters and other local variables
can have different values. The execution of a recursive function traverses an
imaginary dynamic call tree (Verhoeff, 2018, §3.1), where each node corresponds
to the execution of a call, which then gives rise to zero or more subsequent
recursive calls. The active invocations form a root path in this tree, and the
‘instruction pointer’ and values of local variables are stored on a stack, that
grows and shrinks as the root path.

For example, the call print_bit_strings(2, "s") gives rise to the call
tree in Figure 1. This approach helps in understanding how a stack machine can
correctly execute a recursively defined function in an imperative programming
language. But in my experience it is neither helpful for reasoning about (the
correctness) of recursive function definitions nor for designing them.

(2, "s")

(1, "s0")

(0, "s00") (0, "s01")

(1, "s1")

(0, "s10") (0, "s11")

Figure 1: Call tree for print_bit_strings(2, "s"), only showing parameters

Alternatively, there is the axiomatic approach (Verhoeff, 2018, §4), which
requires a specification of the recursive function in terms of a contract consisting
of a precondition and a postcondition, such that

• if the precondition is satisfied before the function call,

• then the postcondition is satisfied after the function call.

The docstring for print_bit_strings(n, s) could read:

7 """Print s + t for all strings t over "01" of length n,
8 in lexicographic order.
9

10 Assumption: n >= 0
11 """

2

Fig. 1. Call tree for print_bit_strings(2, "s"), only showing parameters.

Understanding and Designing Recursive Functions via Syntactic Rewriting 101

The docstring for print_bit_strings(n, s) could read:

That is, its precondition is n >= 0 and its postcondition is: ‘for all strings t over
"01" of length n, strings s + t have been printed’. To reason about the call with
parameters (n, s), we assume as induction hypothesis that calls with parameters
(n_, s_) where n_ < n work as specified by the contract. The design of function
print_bit_strings can be argued as follows. The goal is to prove that lines 2–6
satisfy the contract, under the assumption that the recursive call on line 6 satisfies its
contract; that is, it satisfies ‘if n > 0, then for all strings u of length n - 1 over
"01", it prints strings s + b + u’.

If ● n == 0, then there is only one string t of length n, viz. the empty string. Ob-
serve that s extended with the empty string equals s (line 3). Thus, the contract
is fulfilled by printing just s.
If ● n > 0 then extensions of length n over "01" start with a single bit, say b, in
"01", followed by n - 1 more bits over "01". Thus, by the induction hypoth-
esis, the loop on lines 5–6 prints all required strings.

In this reasoning style, the induction hypothesis is sometimes referred to as the re-
cursive leap of faith (Roberts, 1986; Rubio, 2018). I find this terminology unfortunate,
because faith has nothing to do with it. There is already good terminology, viz. induction
hypothesis. Trusting the compiler, runtime system, and hardware to execute recursive
definitions faithfully, could be called a leap of faith. Students need to understand this
implementation only once, e.g., by tracing an execution through the call tree and ob-
serving the role of the stack. But this is not needed (nor helpful) to understand specific
recursive definitions, and certainly not for designing them.

2. Syntactic Rewriting

There is a third kind of semantics for programming languages, viz. based on rewriting.
It is typically used to describe the semantics of more advanced language constructs in
terms of simpler language constructs. For example, i += 1 can be rewritten into i =
i + 1. That way, the meaning of += is defined, without the need to speak of how +=
works operationally, nor how to reason about it axiomatically. This rewriting is a purely
syntactic operation and is also called a semantics-preserving program transformation.
One sometimes calls the notation += syntactic sugar, because it does not make the
language more expressive. It is a mere abbreviation that can be eliminated by rewriting,
also known as syntactic desugaring.

 7 """Print s + t for all strings t over "01" of length n,
 8 in lexicographic order.

9

 10 Assumption: n >= 0
 11 """

T. Verhoeff102

2.1. Rewriting Function Calls, by Inlining

In the absence of recursion, the function mechanism is syntactic sugar for abbreviations
that can be eliminated by a program transformation. Consider a void1 function definition
without return statements of the form

The call func(expr_1, expr_2, ...) can be eliminated as follows.
Replace the call1. func(expr_1, expr_2, ...) by

where param_1, param_2, ... are local variables.
Systematically rename any local variables in2. body whose name clashes with a
name occurring in the context of the call.

When the expressions expr_i are free of side effects, also known as referential trans-
parency (which will be the case in our examples), Step 1 can be replaced by a double
substitution:

1.a. Replace the call func(expr_1, expr_2, ...) by body,
1.b. in which all occurrences of parameters param_i are simultaneously replaced

by the corresponding argument expressions (expr_i). The parentheses are
needed to guarantee the proper evaluation order.

The result of this transformation is a program that is semantically equivalent to the origi-
nal program. As a compiler optimization technique and as a code refactoring technique,
it is also known as inlining. In Lambda Calculus, the double substitution corresponds to
𝛽-reduction.

For example, consider the Python function definition

Then we can rewrite as follows

1 In some programming languages void functions are known as procedures. In Python, their body does not
contain return expr. For non-void functions and return, see Appendix A.

 13 def func(param_1, param_2, ...):
 14 body # containing param1, param2, ..., but no return

 15 param_1, param_2, ... = expr_1, expr_2, ...
 16 body

 17 def f(x, y):
 18 z = x * y
 19 print(z)

 20 f(z - 1, z + 1)
 21 print(z)

22

 23 # inline call: x, y = z - 1, z + 1
24

Understanding and Designing Recursive Functions via Syntactic Rewriting 103

Note that in this case the parentheses are really needed to preserve the evaluation order
of operators. When they are not needed, we silently omit them.

Non-recursive function definitions can be completely eliminated by inlining all their
calls. This may result in faster execution, at the expensive of a larger code foot print.
Recursive function definitions cannot be completely eliminated this way. Well, they can,
provided we allow infinite program texts. Conceptually, there is nothing wrong with an
infinite program text. Termination of the recursion corresponds to guaranteeing that only
a finite (though unbounded) part of that infinite program gets executed.

2.2. Rewriting if-statements, by Deleting Dead Branches

It turns out that for the examples in §3 we also need rewriting rules for if-statements
with constant conditions. These are the two relevant rewrite rules:

and

2.3. Rewriting Expressions, by Constant Folding

The final rewrite step that we use in the examples below is that of evaluating an expres-
sion involving only constants. As a compiler optimization technique this is known as
constant folding. We label such rewrites by simplify.

 25 z1 = (z - 1) * (z + 1) # z1: fresh local variable
 26 print(z1)
 27 print(z)

 28 if True:
 29 statement_suite_1
 30 else: # unreachable
 31 statement_suite_2

32

 33 # delete dead else-branch
34

 35 statement_suite_1

 36 if False: # unreachable
 37 statement_suite_1
 38 else:
 39 statement_suite_2

40

 41 # delete dead if-branch
42

 43 statement_suite_2

T. Verhoeff104

3. Example for Understanding Via Rewriting

Let’s rewrite the call print_bit_strings(2):

 44 print_bit_strings(2)
45

 46 # inline call: n, s = 2, ""
47

 48 if 2 == 0:
 49 print("")
 50 else:
 51 for b in "01":
 52 print_bit_strings(2 - 1, "" + b)

53

 54 # delete dead if-branch: 2 != 0 ; simplify: 2 - 1 == 1 ; "" + b == b
55

 56 for b in "01":
 57 print_bit_strings(1, b)

58

 59 # inline call: n, s = 1, b; rename local variables
60

 61 for b1 in "01":
 62 # print_bit__strings(1, b1)
 63 if 1 == 0:
 64 print(b1)
 65 else:
 66 for b2 in "01":
 67 print_bit_strings(1 - 1, b1 + b2)

68

 69 # delete dead if-branch: 1 != 0 ; simplify: 1 - 1 == 0
70

 71 for b1 in "01":
 72 for b2 in "01":
 73 print_bit_strings(0, b1 + b2)

74

 75 # inline call: n, s = 10, b1 + b2; rename local variable
76

 77 for b1 in "01":
 78 for b2 in "01":
 79 # print_bit_strings(0, b1 + b2)
 80 if 0 == 0:
 81 print(b1 + b2)
 82 else:
 83 for b3 in "01":

Understanding and Designing Recursive Functions via Syntactic Rewriting 105

So, by equational reasoning, the recursive function applied to argument 2 is equiva-
lent to 2 nested for-loops. It is now believable that for argument n, the call is equiva-
lent to n nested for-loops, since each recursive call adds a level of nesting:

The role of (accumulation) parameter s can apparently be viewed as collecting the
state of all enclosing for-loops. We see that recursion enables one to write programs
with a variable number of nested for-loops. Without recursion this is often not possible
in an imperative programming language. However, see §4 for a way of doing it in Python
without recursion.

To my delight, the IntelliJ IDE can do the refactoring steps of inlining calls of recur-
sive functions and deleting dead branches in if-statements, but only for Java. It can’t
do them for Python (neither can VS Code). It can inline nonrecursive Python function
calls, but not for direct recursive functions. Surprisingly, if the recursive function is
duplicated and turned into a pair of mutually recursive functions, the IDE will refactor
their function calls properly.

Finally, it is important to note the difference between tracing the execution and re-
writing the program as ways of understanding recursion. Execution tracing suffers from
the exponential blow up in branching recursion, whereas syntactic program rewriting
does not. The latter reasons about the (unexecuted) program as a whole.

4. Designing Recursive Function Definitions

The rewriting approach described in the previous section to help understand recursive
function definitions can also be used to help design such functions. The steps are as
follows.

Write down a non-recursive program that solves a particular instance of the prob-1.
lem.

 84 print_bit_strings(0 - 1, b1 + b2 + b3)
85

 86 # delete dead else-branch: 0 == 0
87

 88 for b1 in "01":
 89 for b2 in "01":
 90 print(b1 + b2)

 91 # print_bit_strings(n)
 92 for b1 in "01":
 93 for b2 in "01":
 94 ...
 95 for bn in "01":
 96 print(b1 + b2 + ... + bn)

T. Verhoeff106

Decide which part will be done in a single layer of the recursion, which part will 2.
be handled by recursion, and which part is handled by preceding layers. Focus on
the perspective of that single layer.
Introduce appropriate parameters to feed in data that comes from the preceding 3.
layers, and modify and pass them on to the lower layers. In particular, there will
also be a parameter for the problem size.
Decide on the base case(s).4.
Define the recursive function; in particular, introduce an5. if-statement to distin-
guish the base case(s) and the ‘general’ case that adds a single layer.

4.1. First Design Example

As an example, consider the problem of printing all bit strings of length n.
A straightforward non-recursive program for1. n = 3 consisting of 3 nested
for-loops:

A single layer of the recursion does one2. for-loop, say with control variable b2,
the loops nested inside will be handled by the recursive call, and the outer loops
were done in the preceding layers:

Note that the part handled by recursion concerns a generalization, be-
cause those for-loops do not just contain print(b3). Rather, they contain
print(b1 + b2 + b3). So, the generalization is that the recursive call must
print s = b1 + b2 extended with b3. That first part must come in via an
extra parameter, say s. This also means that the call itself will receive that
parameter, but then its value will be b1, received from the preceding layers.
For the top-level call, we can take s = "", because it is the unit of string
concatenation.

 97 for b1 in "01":
 98 for b2 in "01":
 99 for bn in "01":
 100 print(b1 + b2 + b3)

 101 # print_bit_strings(3)
 102 ##################
 103 for b1 in "01": # preceding layers
 104 ##################
 105 for b2 in "01": # < this will be done in one layer
 106 ##########################
 107 for b3 in "01": # handled by
 108 print(b1 + b2 + b3) # recursion
 109 ##########################

Understanding and Designing Recursive Functions via Syntactic Rewriting 107

Thus, we obtain the following structure:3.

In case4. n == 0, there are no for-loops, and only a print statement, which
can be fed with the parameter s.

This leads to the following definition, which we have seen before:5.

Note the default value s = "", corresponding to an empty context of preceding
recursive layers.

In this approach, one can use the IDE refactoring technique known as extract func-
tion. It will introduce appropriate parameters to feed in values that are must be sup-
plied.

4.2. Second Design Example

Consider a binary tree of depth 2 (Fig. 2, left). How can it be used to create a binary tree
of depth 3? One way is to copy the binary tree of depth 2 and combine the two instances
with a fork on top (Fig. 2, middle). This is the view we followed in the preceding ex-
ample. But one can also grow a binary fork on each of the leaves of the binary tree of
depth 2 to get a binary tree of depth 3 (Fig. 2, right).

 110 ##################
 111 for b1 in "01": # preceding layers
 112 ##################
 113 # print_bit_strings(2, b1) # call being designed
 114 for b2 in "01":
 115 print_bit_strings(1, b1 + b2) # recursive call
 116 # which should inline as
 117 # for b3 in "01":
 118 # print(b1 + b2 + b3)

 119 def print_bit_strings(n: int, s: str = "") -> None:
 120 """Print s + t for all strings t over "01" of length n,
 121 in lexicographic order.

122

 123 Assumption: n >= 0
 124 """

125

 126 if n == 0:
 127 # t == ""
 128 print(s)
 129 else:
 130 # n > 0, write t == b + u for b in "01"
 131 for b in "01":
 132 print_bit_strings(n - 1, s + b)

T. Verhoeff108

Let’s see how that alternative choice can be worked out in case of function print_
bit_strings.

The non-recursive program is the same as above in §4.1.1.
A single layer of the recursion does one2. for-loop, but now the recursion will do
the outer for-loops and the preceding layers did the inner loops:

This may look strange, but bear with me. Apparently, in the recursion, bit
strings of length one shorter are produced, and these still need to be extended
and printed. So, again, we see a generalization: rather then just print all bit
strings, we need to apply a function to them, and this function is going to be
an extra parameter, say f. The call we are designing receives this parameter,
which represents the work to be done in the preceding layers (inner loops) For
the top-level call, we can take f = print. The recursive call will receive a
function (as parameter) that adds one for-loop around the given f.
Thus, we obtain the following structure:3.

 133 # print_bit_strings(3)
 134 ##################
 135 for b1 in "01": # handled by recursion
 136 ##################
 137 for b2 in "01": # < this will be done in one layer
 138 ##########################
 139 for b3 in "01": # preceding
 140 print(b1 + b2 + b3) # layers
 141 ##########################

 142 # print_bit_strings(2, f)
 143 def g(s: str) -> None:
 144 for b2 in "01":
 145 f(s + b2)
 146

Figure 2: Binary tree of depth 2 (left); two ways (middle, right) of constructing
a binary tree of depth 3 from trees of depth 2.

133 # print_bit_strings(3)
134 ##################
135 for b1 in "01": # handled by recursion
136 ##################
137 for b2 in "01": # < this will be done in one layer
138 ##########################
139 for b3 in "01": # preceding
140 print(b1 + b2 + b3) # layers
141 ##########################

This may look strange, but bear with me. Apparently, in the recursion,
bit strings of length one shorter are produced, and these still need to be
extended and printed. So, again, we see a generalization: rather then just
print all bit strings, we need to apply a function to them, and this function
is going to be an extra parameter, say f. The call we are designing receives
this parameter, which represents the work to be done in the preceding
layers (inner loops) For the top-level call, we can take f = print. The
recursive call will receive a function (as parameter) that adds one for-loop
around the given f.

3. Thus, we obtain the following structure:

142 # print_bit_strings(2, f)
143 def g(s: str) -> None:
144 for b2 in "01":
145 f(s + b2)
146

147 print_bit_strings(1, g)
148 # which should eventually inline as
149 # for b1 in "01":
150 # g(s + b1)
151

152 # where def f(s: str) -> None:
153 ########################
154 for b3 in "01": # preceding
155 print(s + b3) # layers
156 ########################

4. In case n == 0, there are no for-loops and f can just be applied to "".

5. This leads to the following recursive definition:

9

Fig. 2. Binary tree of depth 2 (left); two ways (middle, right)
of constructing a binary tree of depth 3 from trees of depth 2.

Understanding and Designing Recursive Functions via Syntactic Rewriting 109

In case4. n == 0, there are no for-loops and f can just be applied to "".
This leads to the following recursive definition:5.

Let’s now see if we can understand this recursive definition by rewriting the call
print_bit_strings(2):

 147 print_bit_strings(1, g)
 148 # which should eventually inline as
 149 # for b1 in "01":
 150 # g(s + b1)

151

 152 # where def f(s: str) -> None:
 153 ########################
 154 for b3 in "01": # preceding
 155 print(s + b3) # layers
 156 ########################

 157 def print_bit_strings(n: int,
 158 f: Callable[[str], None] = print
 159) -> None:
 160 """Apply f to each string over "01" of length n,
 161 in lexicograhpic order.

162

 163 Assumption: n >= 0
 164 """
 165 if n == 0: # only the empty string has length 0
 166 f("")
 167 else: # n > 0
 168 def g(s: str) -> None:
 169 for b in "01":
 170 f(s + b)

171

 172 print_bit_strings(n - 1, g)

 173 print_bit_strings(2)
174

 175 # inline call: n, f = 2, print
176

 177 if 2 == 0:
 178 print("")
 179 else:
 180 def g(s: str) -> None:
 181 for b in "01":
 182 print(s + b)

T. Verhoeff110

183

 184 print_bit_strings(2 - 1, g)
185

 186 # delete dead if-branch: 2 != 0 ; simplify: 2 - 1 == 1
187

 188 def g(s: str) -> None:
 189 for b in "01":
 190 print(s + b)

191

 192 print_bit_strings(1, g)
193

 194 # inline call: n, f = 1, g; rename new local function g -> g2
195

 196 def g(s: str) -> None:
 197 for b in "01":
 198 print(s + b)

199

 200 if 1 == 0:
 201 g("")
 202 else:
 203 def g2(s: str) -> None: # renamed local function
 204 for b in "01":
 205 g(s + b)

206

 207 print_bit_strings(1 - 1, g2)
208

 209 # delete dead if-branch: 1 != 0 ; simplify: 1 - 1 == 0
210

 211 def g(s: str) -> None:
 212 for b in "01":
 213 print(s + b)

214

 215 def g2(s: str) -> None:
 216 for b in "01":
 217 g(s + b)

218

 219 print_bit_strings(0, g2)
220

 221 # inline call g(s + b); rename control variables
222

 223 def g2(s: str) -> None:
 224 for b1 in "01": # renamed control variable
 225 for b2 in "01": # renamed control variable
 226 print((s + b1) + b2)

Understanding and Designing Recursive Functions via Syntactic Rewriting 111

Now, the extra parameter (f) accumulates the work to be done, and in the base case
it is applied to the empty string. Such a parameter is called a continuation. Observe that
this definition of print_bit_strings is tail recursive and thus can easily be trans-
formed into a while-loop:

227

 228 print_bit_strings(0, g2)
229

 230 # inline call: n, f = 0, g2; rename new local function g -> g3
231

 232 def g2(s: str) -> None:
 233 for b1 in "01":
 234 for b2 in "01":
 235 print((s + b1) + b2)

236

 237 if 0 == 0:
 238 g2("")
 239 else:
 240 def g3(s: str) -> None:
 241 for b in "01":
 242 g2(s + b)

243

 244 print_bit_strings(0 - 1, g3)
245

 246 # delete dead else-branch: 0 == 0
247

 248 def g2(s: str) -> None:
 249 for b1 in "01":
 250 for b2 in "01":
 251 print((s + b1) + b2)

252

 253 g2("")
254

 255 # inline call g2("")
256

 257 for b1 in "01":
 258 for b2 in "01":
 259 print("" + b1 + b2)

260

 261 # simplify: "" + b1 = b1
262

 263 for b1 in "01":
 264 for b2 in "01":
 265 print(b1 + b2)

T. Verhoeff112

Note that here g needs an extra parameter f with default value f, to ensure that
the definition of g is a closure that properly captures the function object currently
bound to the name f at the moment of definition. Without that f parameter, the defini-
tion of g would contain an ‘open’ (un-dereferenced) name f, which will be looked up
during execution of g to find the value bound to f at the moment of execution, rather
than at the moment of definition.

By redefining f directly, print_bit_strings can be simplified to

Note that f here is not defined recursively, since the f in its body is the parameter,
which is bound to the earlier value of f.

Apparently, in Python one can write a non-recursive program that behaves like a
variable number of nested loops. Actually, the program constructs a function that be-
haves like those nested loops. Thus, this is a form of metaprogramming.

 266 def print_bit_strings(n: int) -> None:
 267 """Print all strings over "01" of length n,
 268 i n lexicographic order.

269

 270 Assumption: n >= 0
 271 """
 272 f = print

273

 274 while n > 0:
 275 def g(s: str, f=f) -> None:
 276 for b in "01":
 277 f(s + b)

278

 279 n, f = n - 1, g
280

 281 f("")

 282 f = print
283

 284 for _ in range(n):
 285 def f(s: str, f=f) -> None:
 286 for b in "01":
 287 f(s + b)

288

 289 f("")

Understanding and Designing Recursive Functions via Syntactic Rewriting 113

5. Conclusion

I have described and illustrated how a rewriting semantics can help understand and
design recursive function definitions. This approach complements the traditional ap-
proaches based on operational semantics (execution tracing) and axiomatic semantics
(contracts). I am not claiming that the approach via rewriting is the best, but I do find
it better than execution tracing, because (i) it is purely syntactic, (ii) does not need a
stack to distinguish the states of concurrently active recursive calls, (iii) nor does it
suffer from any exponential blow up. Furthermore, the rewriting approach may help in
discovering and formulating generalized contracts, which are needed for the approach
via axiomatic semantics.

There is a clear relationship to functional programming, whose semantics can be
based on Lambda Calculus, which has a rewriting semantics via 𝛽-reduction (inlining).
Note that a rewriting semantics does not need a stack. In this article, I have shown that
this approach also can work for imperative programs. It thus allows equational reason-
ing on the level of whole programs. However, some care is needed, in particular when
return statements are used and when expressions can have side effects, causing a lack
of referential transparency.

The approach via rewriting would benefit from IDE support for the relevant refactor-
ing techniques, because manual rewriting is tedious and error-prone. Unfortunately, such
support is currently rather limited (JetBrains IntelliJ can do it for Java).

A word of warning is in place concerning the examples. The rewriting approach
can help to come up with recursive definitions. But these definitions may still have
performance issues. There are other techniques to improve the performance of recur-
sively defined functions, e.g., see Verhoeff (2018). Appendix B offers better ways of
printing bit strings in Python. To show the power of a purely functional programming
language, I have included some Haskell programs for generating bit strings in Ap-
pendix C.

I hope also that I have shown some nifty uses of Python. Maybe the recent Python
compiler named Codon (Shajii, 2023) can make Python interesting for use in program-
ming contests such as the IOI.

Acknowledgment

I would like to thank Berry Schoenmakers and Sten Wessel (TU Eindhoven, Nether-
lands) and Radu Negulescu (Ontario, Canada) for helping me improve this article.

References

Roberts, E. (1986). Thinking Recursively (1st Ed.). Wiley.
Rubio-Sánchez, M. (2018). Introduction to Recursive Programming. Taylor & Francis.

T. Verhoeff114

DOI: 10.1201/9781315120850
Shajii, A. et al. (2023). Codon: A Compiler for High-Performance Pythonic Applications and DSLs. In: Proceed-

ings of the 32nd ACM SIGPLAN International Conference on Compiler Construction. ACM, pp. 191–202.
DOI: 10.1145/3578360.3580275

Verhoeff, T. (2018). A Master Class on Recursion. In: Adventures Between Lower Bounds and Higher Altitudes.
Lecture Notes in Computer Science Vol. 11011. Springer, pp. 610–633.
DOI: 10.1007/978-3-319-98355-4_35

Verhoeff, T. (2021). Look Ma, Backtracking without Recursion. (IOI Conference 2021). Olympiads in Informat-
ics, 15, 119–132. DOI: 10.15388/ioi.2021.10

Verhoeff, T. (2023). Git repository with source code for “Understanding and Designing Recursive Functions
via Syntactic Rewriting”. (Accessed 29 April 2023)
https://gitlab.tue.nl/t-verhoeff-software/code-for-understanding-recursion

T. Verhoeff is Assistant Professor in Computer Science at Eindhoven
University of Technology, where he works in the group Software Engi-
neering & Technology. His research interests are support tools for veri-
fied software development and model driven engineering. He received
the IOI Distinguished Service Award at IOI 2007 in Zagreb, Croatia,
in particular for his role in setting up and maintaining a web archive of
IOIrelated material and facilities for communication in the IOI com-
munity, and in establishing, developing, chairing, and contributing to
the IOI Scientific Committee from 1999 until 2007.

Understanding and Designing Recursive Functions via Syntactic Rewriting 115

Appendix A. Python Example with Non-void Function

Eliminating the call of a non-void2 function is a bit more involved than for void func-
tions. To keep things simple, we will assume that the return statements in the function
body occur at tail positions, that is, if the return statement would have been a function
call, it would be the last thing done in the body (a so-called tail call). Now consider a
non-void function definition of the form

A call of this function occurs as a (sub)expression, which is part of some statement, such
as for example

In general, such a call takes the form

where stmt is a void function. Assuming, for simplicity, that the argument expressions
have no side effects, it can be eliminated as follows.

Replace1. stmt(func(expr_1, expr_2, ...) by body.
Replace every occurrence of2. return expr in body by stmt(expr). N.B.
The expression may need to be parenthesized as (expr).
Simultaneously replace all occurrences of parameters3. param_i by their cor-
responding argument expressions (expr_i).
Systematically rename any local variables in4. body whose name clashes with a
name occurring in the context of the call.

If a return statement would not occur in a tail position, then a ‘jump’ to the end of the
body would also be needed. Note, however, that Python does not support goto state-
ments (except on April’s Fool Day 2004).

Here is an example involving the famous recursive factorial function:

2 Non-void functions are sometimes known as fruitful functions. In Python, they contain
return expr.

 290 def func(param_1, param_2, ...):
 291 body # containing 'return expr' in tail positions only

 292 print(func(expr_1, expr_2, ...) + 1)

 293 stmt(func(expr_1, expr_2, ...))

 294 def fac(n: int) -> int:
 295 """For n >= 0, return n factorial.
 296 """
 297 if n == 0:
 298 return 1
 299 else:
 300 return n * fac(n - 1)

T. Verhoeff116

Note that the two return statements occur in tail positions. Let‘s rewrite the statement
print(fac(2)):

In general, print(fac(n)) rewrites to

where there are n + 1 factors in the expression.

 301 print(fac(2))
302

 303 # inline call: n = 2
304

 305 if 2 == 0:
 296 print(1)
 297 else:
 298 print(2 * fac(2 - 1))

299

 300 # delete dead if-branch: 2 != 0 ; simplify: 2 - 1 == 1
301

 302 print(2 * fac(1))
303

 304 # inline call: n = 1
305

 306 if 1 == 0:
 307 print(2 * 1)
 308 else:
 309 print(2 * 1 * fac(1 - 1))

310

 311 # delete dead if-branch: 1 != 0 ; simplify: 1 - 1 == 0
312

 313 print(2 * 1 * fac(0))
314

 315 # inline call: n = 0
316

 317 if 0 == 0:
 318 print(2 * 1 * 1)
 319 else:
 320 print(0 * 2 * * 1 * fac(0 - 1))

321

 322 # delete dead else-branch: 0 == 0 ; simplify: 2 * 1 == 2
323

 324 print(2 * 1 * 1)

 335 print(n * (n - 1) * ... * 2 * 1 * 1)

Understanding and Designing Recursive Functions via Syntactic Rewriting 117

If the body of a non-void function consists of single return statement, then one can
do equational reasoning directly on the level of expressions rather than statements. For
instance, consider the following definition of function fac:

Now, rewriting call fac(2) is less complicated:

 336 def fac(n: int) -> int:
 337 return 1 if n == 0 else n * fac(n - 1)

 338 fac(2)
339

 340 # inline call: n = 2
341

 342 1 if 2 == 0 else 2 * fac(2 - 1)
343

 344 # delete dead if-branch: 2 != 0 ; simplify: 2 - 1 == 1
345

 346 2 * fac(1)
347

 348 # inline call: n = 1
349

 350 2 * (1 if 1 == 0 else 2 * 1 * fac(1 - 1))
351

 352 # delete dead if-branch: 1 != 0 ; simplify: 1 - 1 == 0
353

 354 2 * 1 * fac(0)
355

 356 # inline call: n = 0
357

 358 2 * 1 * (1 if 0 == 0 else 0 * 2 * 1 * fac(0 - 1))
359

 360 # delete dead else-branch: 0 == 0 ; simplify: 2 * 1 == 2
361

 362 2 * 1 * 1

T. Verhoeff118

Appendix B. Better Python Solutions for Bit Strings

For completeness sake, let me note that the problem of printing all bit strings of a given
length can be solved in a better way. Decompose the problem into:

Constructing all bit strings of a given length.1.
Printing them all.2.

In Python, one might be tempted to construct all those bit strings, by putting them in
a list. But then they are all stored in memory before printing them (or doing whatever
one wants, for instance, count them). For that reason, generator expressions were intro-
duced in Python. They allow on-demand construction. Here is a Python solution based
on Fig. 2 (middle):

It can be invoked to print the bit strings like this:

And here is a solution based on Fig. 2 (right):

 363 from typing import Iterator
364

 365 def generate_bit_strings(n: int) -> Iterator[str]:
 366 """Yield all strings over "01" of length n,
 367 in lexicographic order.

368

 369 Assumption: n >= 0
 370 """
 371 if n == 0:
 372 yield ""
 373 else: # n > 0
 374 yield from (b + u
 375 for b in "01"
 376 for u in generate_bit_strings(n - 1)
 377)

 378 print(*generate_bit_strings(3), sep='\n')

 379 def generate_bit_strings(n: int) -> Iterator[str]:
 380 if n == 0:
 381 yield ""
 382 else: # n > 0
 383 yield from (u + b
 384 for u in generate_bit_strings(n - 1)
 385 for b in "01"
 386)

Understanding and Designing Recursive Functions via Syntactic Rewriting 119

Appendix C. Haskell Solutions for Bit Strings

It is illustrative to see the same definitions in a pure non-strict functional programming
language like Haskell. Using the recursive decomposition in Fig. 2 (middle), combining
two recursively grown trees of size one smaller:

and when growing one tree of size one smaller and splitting all its leaves (Fig. 2, right):

The latter is not efficient, because appending at the end of a list is not efficient in Haskell.
But this can be improved by introducing an accumulation parameter:

Observe that this definition is more efficient, because it now prepends to a list. More-
over, it is tail recursive, and thus the recursion can be compiled into a loop. Also note
that in Haskell, lists are lazy, that is, they are only constructed in so far as needed (like
the generator expressions in Python used in Appendix B).

 392 bitStrings 0 = [""]
 393 bitStrings n = [u ++ [b] | u <- bitStrings (n - 1), b <- "01"]

 394 gbitStrings :: [String] -> Int -> [String]
 395 -- gbitStrings s n = [t ++ u | t <- bitStrings n, u <- s]
 396 -- hence, gbitStrings [""] = bitStrings
 397 gbitStrings s 0 = s
 398 gbitStrings s n = gbitStrings [b : t | b <- "01", t <- s] (n - 1)

 387 bitStrings :: Int -> [String]
 388 -- bitStrings n = list of strings over "01" of length n (n >= 0),
 389 -- in lexicographic order
 390 bitStrings 0 = [""]
 391 bitStrings n = [b : u | b <- "01", u <- bitStrings (n - 1)]

