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Abstract. On the base of the IOI Syllabus, the following problem was stated: what additional 
mathematical knowledge (including one invented by jury before OI and by contestants during 
OI) and other branches of knowledge are permissible in tasks? Socrates’ idea (a human has vast 
latent knowledge which can be extracted by corresponding quests) is involved. Mathematical 
knowledge, special (physics, chemistry, geography) knowledge, general, or common knowledge 
are considered. It is demonstrated that the well-known notion “Turing-complete language” does 
not include time and cannot be called computationally universal. The Time dependent tasks and 
the corresponding time checker are proposed.
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1. Introduction

The International Olympiad in Informatics Syllabus (2022) (https://ioinformat-
ics.org/page/syllabus/12) provides all necessary knowledge (“included topics”) 
in mathematics to be involved in Olympiad tasks and “forbidden to be necessary” 
knowledge (“excluded topics”). 

Consider arising problems on example of the ancient.

Task 1 “Heads-feet”. Given natural numbers H, F in 2 .. 1000. Geese and cats together 
have H heads and F feet. How many geese and how many cats are there? If it is impos-
sible, output 0 0. 

Firstly, the task must be “culturally neutral”. For instance, “Geese and platypuses” 
belong to Australian culture (although “wombats” were at IOI’2013). 

“Included topics” are not enough to solve this task. The contestant is to use “latent 
knowledge” not related to mathematics and informatics. It is also stipulated in Syllabus 
(2022): Contestants are not expected to have knowledge of these topics. … However … 
The ISC may wish to include such a competition task in order to broaden the scope of the 
IOI… the ISC will make sure that the task can reasonably be solved without prior knowl-
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edge of the particular topic, and that the task can be stated in terms of √ … concepts in 
a precise, concise, and clear way.

If we add an explanation: a goose has one head and two feet; a cat has one head and 
four feet then the task losses sense: arbitrary numbers can be substituted (fabulous geese 
and cats… is used to be added; we proposed “naturalness” (Pankov, 2008) to avoid such 
technique). Also, such addition violate the demand “short and elegant formulations” 
(Dagienė et al., 2007).

If we add, as usually, strict mathematical formulation of task: find such natural 
numbers G and C that G + C = H and 2 ∙ G + 4 ∙ C = F then, firstly, it becomes almost 
a solution, and secondly, Linear algebra is an “explicitly excluded topic” in Syllabus 
(2022).

Meanwhile, if this task is given without such addition and the contestant (or their 
coach) protests: Linear algebra is an “explicitly excluded topic” in Syllabus (2022) that 
is why I could not solve this task” then the jury may respond: Neither linear equations 
nor other notions of Linear algebra are mentioned in the task. If you reduce the task to 
a system of linear equations then it’s your problem. The task can be solved, for instance, 
by brute force method. 

We will consider the tasks without redundant mathematical formulation; “thin”, 
“light”, “little”, ratio of car length to road length … mean “neglectable”.

The general problem arises: What “latent knowledge” not related to mathematics and 
informatics is permitted?

Besides of “included topics” and “explicitly excluded topics” listed in Syllabus 
(2022), there are unbounded mathematical topics including ones invented by the authors 
of tasks and the jury before the OI and by contestants during the OI (Pankov et al., 2015; 
Pankov et al., 2018). What mathematical topics can be meant latently?

In Section 2 we discuss various mathematical topics including such “discoverable 
ones”.

We proposed wider use of the achievements of science and technologies to create 
tasks (Pankov, 2010). Section 3 discusses “special knowledge” being necessary to solve 
such tasks.

Section 4 reviews the “latent general knowledge” of life and imagery ability for suc-
cessfully solving of the tasks.

In Section 5 we propose a new type of tasks on measuring real time, discuss and 
improve “universal algorithmic language”.
Remark. Issues under discussion in this article cannot be covered by any general defini-
tions or explanations. They can be demonstrated by examples only.

2. Mathematical Knowledge

The following tasks use topics which are not mentioned or are explicitly excluded from 
Syllabus (2022). Nevertheless, they can be posted and be solved successfully. 

A popular at initial stages of OIs and of mathematical Olympiads (with a fixed 
large N)
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Task 2 “Last digit”. Given integer number N in 2 .. 10^12, what is F(N) := (last digit of 
7^N in decimal system)? 

Most of contestants will be successful in such a task.
If the contestant (or their coach) protests: “Fermat’s little theorem is not included 

in Syllabus (2022) that is why I could not solve this task” then the jury may respond: 
“You could count F(2), F(3), F(4), F(5)… and note a regularity”. That is, the ability to 
make small mathematical discoveries in addition to knowledge within Syllabus (2022) 
is meant at OIs. 

Geometry in 3D is explicitly excluded in (Syllabus, 2022). But

Task 3 “Null-transportation”. There are three distinct 10^6 × 10^6-squares A, B, C on 
a plane, crossing a boundary of a square is prohibited. Each square has its own coor-
dinate system 0 <= x, y <= 10^6. All numbers are integer. The cost of passing from a 
point A(i, j) to points A(i + 1, j) or A(i − 1, j) or A(i, j + 1) or A(i, j − 1) (if they belong to 
the square), as well as for squares B and C, is 2 Euros. The cost of null-transportations 
A(i, j) ↔ B(i, j) or C(i, j) ↔  B(i, j) is 10 Euros. Given numbers x, y, u, v in 0 .. 10^6, 
find the minimal cost of passing from the point A(x, y) to the point C(u, v).

Obviously, any way of “common” search in the graph with 3∙(10^6 + 1)^2 vertices is 
hopeless. However, most of contestants will be successful in this task.
Remark. If the contestant protests: “3D-Manhattan metrics is explicitly excluded in Syl-
labus (2022) that is why I could not solve this task” then the jury may respond: “Neither 
a 3D-space nor Manhattan metrics are mentioned in the text of task. If you interpret the 
media as a 3D-space then it is your problem”. If the contestant protests: “There are not 
algorithms to find an optimal way in such a vast graph during one second” then the jury 
may respond: “If you interpret the media as a graph then it’s your problem”.

Euler’s formula for planar graphs is not mentioned in Syllabus (2022).

Task 4 “Triangles”. Let us call an intersection (point only) of two drawn segments 
as “node”, the drawn segment between two nodes without inner nodes as “fragment” 
and a drawn triangle without drawn inner points as “domain”. Let a triangle UVW be 
drawn, number N of nodes is 3, number F of fragments is 3, number D of domains is 1. 
The operation “draw a segment splitting any domain into two domains” was executed 
some times. Given numbers N and D in 10 .. 10^6, N − 2 <= D <= 2N − 6, find num-
ber F. If it is impossible, output 0.

Example 4.1. 1st operation: draw segment UP, point P is in VW; 2nd operation: draw 
segment VQ, point Q is in UP; 3rd operation: draw segment WQ. The result is N = 5; 
F = 8; D = 4.

At first, contestants will be frightened by arbitrariness but after some attempts most 
of them will be successful in this task.
Remark. If the contestant’s coach protests: “Euler’s formula for planar graphs is not an 
included topic in Syllabus (2022)” then the jury may respond: “There are other ways 
to solve the task, for instance, constructing a sequence of operations yielding given N 
and D.”
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For convenience, we will use the denotation [∙] also for rounding down to integer.
“Calculus” is explicitly excluded in Syllabus (2022). 
Nevertheless, we (Pankov, 2013) proposed tasks of type.

Task 5 “Minimization”. Given a natural number F in 1 .. 10^300; find such natural 
number X that the expression H(X) := X^3 + F / (X + 1) is minimal; if there are some 
such numbers then output the greatest of them.

The author of the task is obliged to calculate the derivative H′(X) and to prove that it 
increases for (real) X > 0. But the contestant who does not know the notion “derivative” 
can easily guess (feel) that H(X) is a unimodal function, guess and implement the fol-
lowing effective algorithm. H(0) = F + 1, H(X) > X^3. Hence, it is enough to consider 
X between L = 0 and M = 10^100.

Algorithm: Repeat {Let P := [(3*L + M)/4]; Q := [(L + 3*M)/4]; if H(P) > H(Q) then 
L := P else M := Q} until M − L <= 5. Calculate and compare H(L), …, H(M).

“Non-trivial calculations on floating point numbers, manipulating precision errors; 
trigonometric functions” are explicitly excluded in Syllabus (2022).

Some countries, organizations, companies, firms (alleged sponsors) have central-
symmetric elements on their coat-of-arms, logos.

Corresponding modifications of the following task may be in their honor (Pankov 
et al., 2009).

Task 6 “Regular polygon”. Given integer numbers N in 2..2023, K in 1..64. The center 
of the regular 64-polygon is in (0; 0), the 1st vertex is in (N; 0), vertices are numbered 
counterclockwise. Find such integers X and Y that the Kth vertex is within the square 
(X, X + 2) × (Y, Y + 2). If there exist some such pairs output one of them.

Remark. The task to find a square [X, X + 1) × [Y, Y + 1) is close to unresolvable one 
due to the following theorem of constructive mathematics: the problem of distinguishing 
a computable real number from zero is unsolvable.

The author’s solution of the task is a little rational-numbers-interval-analysis-soft. 
Trigonometric functions are not used in the solution; coordinates of vertices are calcu-
lated by formulas for vectors, such as V[1] := (N; 0); V[17] := (0; N); V[9] := (V[1] + 
V[17]) / |(V[1] + V[17])| * N … (Euclidean distances, Pythagorean theorem are in-
cluded in Syllabus (2022)). 

But such solution takes about half of hour to type even for an experienced con-
testant. And the contestant writes a program for floating point numbers X1, Y1 in a 
minute: 

Let X1 := N * cos(2.*pi/64.*(K − 1)); Y1 := N*sin(2.*pi/64.*(K − 1)); 
X := floor(X1); If X1 − X < 0.5 then X := X − 1; Y := floor(Y1); If Y1 − Y < 0.5 then 

Y := Y − 1;
Output (X, Y).
Because of high accuracy of the built-in functions cos and sin such program should 

pass all tests successfully.
Will the jury accept this solution? Checking of texts of programs is permitted only 

to detect (Cheating, 2022): contestants must not attempt to submit illegal programs as 
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discussed above [not perform explicit input and output operations…] … to gain access 
…to store information…to access any machine … to reboot… 

3. Special Knowledge

In our opinion, the tasks based on real facts and scientific laws are useful for the contes-
tants because they are natural, they demonstrate the diversity of the world and prepare 
for a future fruitful activity.

Consider some branches of knowledge.

3.1. Physics

Velocity is a common physical notion. Nevertheless, by our experience, even simple 
tasks with piecewise-uniform speed are very difficult for contestants (see Section 5 be-
low for probable reason of it).

Task 7 “Villages”. (Kyrgyzstan, Republican OI, IV stage, 2022). There are five villages 
on a straight road. The car started from the beginning of the road at 5.00 am. From 6.00 
am to 7.00 am the cattle go to the pasture along villages, so the car speed within villages 
is 6 km/h, otherwise the car speed is 60 km/h. Find the coordinates (in meters) of the car 
in M minutes after 5.00 am.

Input: M < 216; coordinates of villages (km) 0 < B1 < A1 < B2 < A2 < B3 < A3 < B4 
< A4 < B5 < A5 < 216.

Gravitation, the lever law (by our opinion, it is natural and can be felt or guessed 
from the example). 

Task 8 “Weighing” (Kyrgyzstan, National OI, I stage, 2023). Points … −3, −2, −1, 0, 1, 
2, … are marked on a long ruler at equal distances between them. The ruler is suspended 
in the middle, at the point 0. There is plenty of a flour, a light bag for flour, and weights of 
natural numbers (given) P kg and (given) Q kg. A bag of flour and weights can be hung 
on a ruler, only at marked points. There cannot be two loads at same point. It is required 
to weigh (given) Z kg of flour. 

Find the minimum possible length of the segment occupied by the weights. Example 
8.1. (with comments): P = 2 (hung at “1”), Q = 50 (hung at “2”), Z = 102 (hung at 
“−1”) → 3. 

Task 9 “Non-symmetrical scale” (Kyrgyzstan, Republican OI, III stage, 2023). Giv-
en natural numbers P, Q, Z in 1 .. 2023. The (very light) bowls of the scale are sus-
pended at distances P and Q (horizontally) from the suspension point of the scale. To 
weigh Z kg how many 1-kg-kettlebells are necessary? Example 9.1. P = 20, Q = 10, 
Z = 1993 → 998. 

Gravitation, properties of liquid.
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Task 10 “Rain”. (Kyrgyzstan, Republican OI, II stage, 2023). Given integer number 
K in 4 .. 6. K thin rectangular walls were built on the plane in “north-south” or “east-
west” directions (two walls can be intersected). It is raining, raining… How much 
water do the walls hold? (“zero” can also be).

Input. The first row contains K. The next K rows contain five natural numbers X1, 
Y1, X2, Y2, Z in 1 .. 10, the coordinates of the end-points and height of the i-th wall, 
i = 1  .. K.

Properties of snow (snow is not “solid” in physical terminology; it is a unique 
object). 

Task 11 “Snow” (Kyrgyzstan, Republican OI, III stage, 2006). Let the streets in the 
city [Bishkek] form a rectangular grid (with coordinates), all blocks are 1 × 1. The 
firm Lоgic [sponsor] is located at a given crossing (X, Y). Two friends wish to come to 
Lоgic. Now the first is at the crossing (X1, Y1), the second is at the crossing (X2, Y2). 
Because of the plentiful snowing they wish to minimize the trampled path (the sum 
of paths trampled by the first, by the second and by the both going together). Write a 
program calculating the minimal length of path.

Law of reflection.

Task 12 “Mirrors”. Given integer numbers P and Q in 1 .. 10^6. The rectangle ABCD 
is made of four mirror segments, |AB| = |CD| = P, |AС| = |B| = Q. The ray came out 
of the vertex A along the bisector of the angle BAC. What vertex will the ray come in? 
Example 12.1.: 6000 1500 → B

If the contestant is doubt in their memory or guessing on the law then the example 
confirms it. 

Law of impulse conservation.

Task 13 “Carts”. (Kyrgyzstan, Republican OI, III stage, 2023). All data are integer. 
The “zero” point was marked on a horizontal long straight road. Two small carts 
move without friction along the road. If they collide then they concatenate and then 
move together. Their weights S1 and S2 (kilograms), initial locations J1 ≠ J2 (meters), 
and initial velocities Y1 and Y2 (meters/second) are given. Where will the first cart be 
after U(seconds)? Give the answer as a fraction.

Example 13.1. U = 8, S1 = 7, S2 = 7, J1 = 50, J2 = 51, Y1 = 1, Y2 = 0 → 9/2
X-rays, tomography.

General task 14 “Restoration”. To restore an object (an image) by its projections (by 
sums along columns, rows). 

3.2. Chemistry

Task 15 “Equalization”. Chemical elements are denoted by an uppercase letter or 
by an uppercase letter and a lowercase letter; number of such atoms in the mole-
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cule (less than 100), if it is greater than one, is written after. Given molecules M1, 
M2, M3. Find such a non-negative (the least possible) integer numbers N1, N2, N3 
that N1 ∙ M1 + N2 ∙ M2 = N3 ∙ M3. If it is impossible, output 0 0 0.

Example 15.1. H2 O2 H2O → 2 1 2. Example 2. Bb17Bb3 Sx2 Bb22 → 11 0 10.
Remark. “Chemical language for molecules” is non-formal, writings may be more or 
less detailed. To avoid questions, “Bb” is written twice in one molecule and “Sx” is 
not used. 

3.3. Geography, Astronomy

Task 16 “Above the equator”. All numbers are integer. Western longitude is denoted 
with “−“. Given (N in 2..360) distinct points with latitudes (in −179..180 degrees) on 
the equator. A geostationary satellite can cover (K in 1..30) degrees on the equator. How 
many geostationary satellites are necessary to cover all points? Example 16.1. K = 2, 
N = 4 / 50 −179 179 −45 → 3.

Task 17 “Satellite”. Angles are measured in degrees. All numbers (except V) are in-
teger. There is a planet P (its center C) with a satellite (S) far from the Earth (E). The 
straight-line EC is in the plane of the circular orbit of S. Denote the angle between EC 
and CS as A (if S is to the left of EC then let “−A” be written). When S is before or be-
hind P (|A| < K), S is not seen. When S is seen, we can measure A but we cannot detect 
whether S is farer or nearer than C. Suppose that the angular velocity of S be (rational 
number) V /hour.

By results of series of N observations on A at 0, 1, 2, …N − 1 hours find the minimal 
value of V. 

Input: numbers K in 2..45, N in 2..5 / N numbers in −90..90 (“0” means “not seen”) .
Example 17.1. 30 2 / −84 −84 → 12/1. Example 17.2. 30 2 / 84 86 → 2/1. 
Example 17.3. 30 3 / 31 0 −32 → 63/2.

3.4. Linguistics

Similar tasks for Kyrgyz language were used to be given. To be “culturally neutral”:

General Task 18 “Ciphering”. A number in 1..99 (without the sign “−“) was written 
in lowercase letters. Each letter was changed (bijective) to an uppercase letter. One of 
the letters was erased (or: One of the letters was changed; or Any letter was added …). 
Restore the greatest possible value of the number.

Example 18.1. WZ → 10. Example 18.2. QWQZSKKG → 59. 



P.S. Pankov, A.A. Belyaev94

4. General, or Common Terminology and Knowledge

Notions of language, odometer are mentioned in Syllabus (2022) as examples. 
Traditional notions are persons (IOI participants, players, travelers), animals (it 

is better that their properties in the task be similar to their actual ones, for instance, 
jumping frog at IOI’2002; hounds and moths with GPS; warms as mathematical tasks 
characters from ancient times), ways, roads, crosses, villages (as points or segments on 
highways) and cities (large, with rectangular street grid), walls (as segments on a plane), 
cars (as points), pixels … 

We proposed voxels, timexels, 2D-printers, 3D-printers, future (3D + T)-printers for 
wider using (Pankov et al., 2021). 

Various natural tasks can be composed on the notions of (ideal, thin, inextensible) 
rope and other idealized household items.

Task 19 “Rope”. Given a rope of length L and a graph, all its arcs have lengths 1 and 
are thin tubes. Rope is arranged within arcs, without touching itself. Can Rope be drawn 
through all arcs without self-touching? If it is possible, find the minimal time to do it. 

Every language carries its own specific notions. Examples:
Latin “formula”, “registration”, “optimization” and many others; Ancient Greek 

“program”, “axiom” and many others. It is difficult to explain them but they became 
international and can be used. 

Fijian “taboo” (and its versions in other Pacific Ocean languages) is convenient to be 
used in some Olympiad tasks but it would not be “culturally neutral”. 

Kyrgyz “irgöö” is more general than the word “synergetic” (Kenenbaeva, 2014). It 
yields self-ordering in stochastic processes. As statistics is an “explicitly excluded topic” 
in Syllabus (2022), such process can be imitated by “arbitrary operations, operations in 
arbitrary order”, as in Task 4. Will such task be “culturally neutral”?

The next layer is “relations”: neighbors, friends, teacher and students, teammates…
Many verbs mean various facts, laws, operations: glue, cut, paint (are used for 

graphs), pour (see Task 10), fold …

Task 20 “Folding”. Given a number N and a (large) polygon glued of equal 1 × 1-squares. 
We can fold it by lines of gluing. How many foldings are necessary to obtain a (multi-
layer) polygon with area not greater than N? 

Every native speaker has vast knowledge about and some skills. What of it can be 
used in tasks?

For example, is latent knowledge in Task 1 related to common one or to zoological 
one? 

Are properties of water (liquid) in Task 10 physical or obvious?
Properties of snow cannot be explained formally, mathematically. By what knowl-

edge do contestants solve Task 11?
Obviously, for successful solving of Task 10 the contestant is to have the property of 

measuring imagery (Pankov, 1996).  
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5. On Universal Algorithmic Languages, Time Tasks and Random Phenomena

Nowadays computers cover anyway almost all universe known to the mankind. In our 
turn, we are to cover more aspects of life by Olympiad tasks. Firstly, what algorithmic 
language is suitable for such purposes? 

Well-known statements which are also meant in OI: 

“a system of data-manipulation rules (such as a computer’s instruc-
tion set, a programming language, or a cellular automaton) is said 
to be Turing-complete or computationally universal if it can be used 
to simulate any Turing machine” (https://en.wikipedia.org/
wiki/Turing_completeness).

But by our opinion, such language is neither “complete” nor “universal”. 
A simple command “in (2 ± 0.01) second output 2023” or a natural condition “if 
(1.99 < time < 2.01) and (5.01 < X < 5.02) then …” cannot be written in such lan-
guage.

Probably, “time” was not included in “universal language” because a human does not 
have a built-in timer unlike some animals. But various automats and devices since XIX 
century had. It turns out that developers of this important notion in middle of XX century 
did not pay attention to them.

To broaden the horizons of participants we propose to include the following type of 
tasks in initial stages of OI:

Task 21 “Just-in-time”
Given natural numbers A, B and N. Write a program to output (A + B) in (N +/− 10) 
milliseconds.

Input: A, B in −10^9 .. 10^9, N in 100 .. 1000.
Output: Sum (A + B) and an integer number denoting actual time from running the pro-
gram (milliseconds)
Example 21.1. Input: 5 6 900 Output: 11 905 or 11 897 or …

The full text of the task is at https://cloud.mail.ru/public/S9wJ/dqzHxWPNa
The checker is at https://cloud.mail.ru/public/DTgK/QFx8mrP7K
A text of program is at https://cloud.mail.ru/public/gn17/hpnoEJWjG
This task is also included in: 
      https://olymp.krsu.edu.kg/GeneralProblemset.aspx

Remark. To support the idea of Turing-complete language, the physical Church-Turing 
thesis was proposed, for instance, (Arrighi et al., 2012): any function that can be com-
puted by a physical system can be computed by a Turing Machine.

The following physical system (Pankov et al., 2018a) refutes this thesis. 
The surface (made of tin) consists of six triangles with the following seven vertices 

(in cylindrical coordinates: radial distance; angle; height): A[0] := (0″; 0; 0″); A[K] := 
(15″; π * i/3; (5 + 2 * (−1)^K)″); K = 1 .. 6. 
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The little ball (made of steel) is launched from the point A[1]. It rolls down along 
the “valley” to the point A[0], rolls up a bit along the “ridge” A[0] – A[4], falls off left 
to “valley” A[5] – A[0] or right to “valley” A[3] – A[0] randomly, rolls down to the 
point A[0], rolls up a bit along the “ridge” A[0] – A[2] or along the “ridge” A[0] – A[6] 
respectively etc. Actually, the ball rolls up trice before stop in the point A[0] (for in-
stance, in 4 second). Each launch initiates another function [0, 4] → R3 and none Turing 
Machine can calculate it.

 

6. Conclusion

We hope that this paper would draw attention to more general problem (especially for 
international students): what latent and evident knowledge and skills are necessary for 
successful life, study and work in our changing world? 

Results from the focus group discussions showed that international 
students face challenges in their everyday life, dormitory life, cam-
pus life, social life and academic life. (Gebru et al., 2020)

Eynullayeva et al. (2021) examined whether the cultural adaptation levels of inter-
national students vary according to gender, place of residence, academic achievement 
level, education level, faculty they attend, and their age.

And how can OIs (covering millions young people at initial stages) contribute to 
this problem? 

Fig. 1. Pavel Pankov, Sabina Tagaeva © 2018 Made by Nuraly Niyasbekov.
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