
Olympiads in Informatics, 2022, Vol. 16, 55–73
© 2022 IOI, Vilnius University
DOI: 10.15388/ioi.2022.06

55

Error Handling in XLogoOnline

Jacqueline STAUB
Department of Computer Science Trier University
email: staub@uni-trier.de

Abstract. This article presents an approach to error handling with Logo novices from first to
sixth grade. While structural programming errors can be mostly prevented using visual program-
ming interfaces, logical errors must be dealt with from the very beginning. We have developed
a turtle graphic task collection with an integrated solution verification to determine logical cor-
rectness of student solutions. Once learners transition from block- to text-based programming,
a sizeable field of possible structural errors opens up. Thanks to static program analysis most
structural programming errors can be detected while the programmer is still typing. Using a de-
bugger, finally, programmers of all ages have the possibility to observe their program’s behavior
while stepping through the code. We summarize the error handling tools provided as part of the
XLogoOnline programming environment and explain how students can use such aids to attain
a constructive attitude towards errors.

Keywords: educational programming, K--6, turtle graphics, Logo, error diagnosis.

1. Introduction

More and more countries have recently started to include computer science (and thus
also programming) in their public curricula. With this, even elementary school stu-
dents now have a chance to learn how to program in various countries around the
world. This political change opens up many opportunities, but also raises unresolved
questions: What should programming instruction look like in kindergarten when chil-
dren are not yet literate? How can a teacher provide individualized support to students
when programming is known to be an error-prone activity and every child in a class
is most likely struggling with errors? We want to clarify these questions by presenting
a spiral curriculum for programming in K-6 as well as an approach to error handling.
This article summarizes the core ideas presented in XLogoOnline (Staub, 2021; Menta
et al., 2019; Forster et al., 2018; Staub et al., 2021).

The recent introduction of computer science in public schools provides children
with the opportunity to explore the exciting world of algorithms by learning to pro-
gram. In order to teach basic programming concepts in an age-appropriate way, both
teaching materials (Komm et al., 2020; Hromkovič and Kohn, 2018; Hromkovic, 2010)

J. Staub56

and learning environments (Trachsler, 2018; Maloney et al., 2010; Cooper et al., 2000;
Hromkovič et al., 2017b; Kohn and Manaris, 2020; Repenning and Ioannidou, 2006)
must be readily available. Around the world, there are millions of students that are ex-
pected to develop the ability to solve problems algorithmically by the time they enter
lower secondary school. Researchers proposed generic frameworks for fostering algo-
rithmic thinking (Dagienė et al., 2021) in computer science as well as concepts with
a focus on programming (Hromkovič et al., 2017a; Hromkovič et al., 2016).

Programming is a creative but error prone (Fitzgerald et al., 2008; Gugerty and
Olson, 1986) form of learning that enables teachers and students to explore and de-
velop algorithms for a wide range of different problem classes. In essence, program-
ming is a form of communication with a computer; for this a language is required that
the computer “understands”. Programming languages, much like natural languages,
have a vocabulary and a grammar. In contrast to natural languages, however, program-
ming languages are more precise and computers lack the ability to interpret ambiguous
statements. As a result, programmers must take special care to express their thoughts
accurately. Errors are inevitable and learning to resolve them is a core competence any
programmer needs to establish.

The spectrum of programming errors ranges from simple structural errors (e.g.,
incorrect punctuation, missing or incorrect arguments, and unbalanced parentheses)
to more complex logical errors (e.g., reversed loop conditions, forgotten invariants).
While both of these error classes are the bread and butter of any programmer regard-
less of age and experience, there are some error classes that are specific to children.
Programming is possible from as young as six or seven years; at that age novices are
able to understand basic programming concepts and anticipate program logic (Ettinger,
2012), but they have difficulty expressing themselves in a written language (Solomon,
1993). In order to prevent structural issues due to typing, block-based programming
interfaces have been developed and are used in various environments nowadays (Wein-
trop, 2019).

It is our firm belief that error handling is one of the most essential skills a young
programmer needs to acquire by the end of their programming education. Programming
environments therefore need to be equipped with error diagnosis tools that are dedicated
to the use in programming classes to handle logical errors from the very beginning and
later on structural errors in addition. In this work, we summarize the tools we employed
in our programming environment XLogoOnline. The environment allows students to be-
gin programming without literacy skills, and provides useful tools for finding, analyzing,
and fixing programming errors throughout programming instruction from kindergarten
to sixth grade.

Section 2 provides a overview on the linguistic features of the famous programming
language Logo and its decade-old traditions yet without diving into the application do-
main turtle graphics. More detail on our curriculum, the turtle philosophy, and the con-
crete implementation of these ideas in XLogoOnline follow in Section 3. Finally, Sec-
tion 4 and Section 5 discuss the concrete details of how error handling is managed in
XLogoOnline before concluding.

Error Handling in XLogoOnline 57

2. The Logo Programming Language

More than 50 years ago, there first emerged the idea of creating dedicated programming
languages that could be used in an educational context with children and adolescents.
Although computers were anything but a commodity at that time and the few available
models were mostly reserved for universities, thanks to the initiative of Seymour Papert
and his team (Papert, 1980; Solomon et al., 2020), school kids as young as secondary
or even primary school were able to enjoy the pleasure of programming. Papert and
colleagues built the foundation and revolutionized the field of programming education
by designing a programming language that specifically targeted to the needs of novices.
The resulting language, Logo, is distinguished by its exceptionally minimal and elegant
syntax, which (despite its age) still stands out today due to three unique attributes:

Whitespace as statement delimiter:●● Instead of classical statement delimiters like
semicolons or line breaks (as known from Java or Python respectively), Logo
allows any number of statements to be placed side by side without an additional
delimiter other than a bare space. Three procedure calls foo, bar and baz can
thus be simply concatenated without requiring any additional characters in be-
tween: foo bar baz
Whitespace as argument delimiter and no brackets:●● Like many other program-
ming languages, Logo supports parameters for procedures. How many parameters
a procedure can take depends on its specification; from the linguistic point of
view any number of arguments are possible. Moreover, while arguments in other
programming languages usually are surrounded by parentheses and require to be
separated by a dedicated syntactic character, say a comma, Logo allows a simple
and elegant alternative – no parentheses required and arguments are separated by
a single white space: mod 4 2
Deliberate reduction to the minimum:●● Cognitive load in programming is
reflected (among others) by the number and complexity of the programming con-
cepts used (Hromkovič et al., 2017b). Instead of overburdening students with
a multitude of different programming constructs in one go, the Logo philosophy
proposes to construct their own more complex language elements. In a truly con-
structivist manner, the programming language “grows” together with the pro-
grammer’s proficiency level.

In addition to these purely linguistic aspects, Logo is also famous for its world-re-
nowned application domain Turtle Graphics. The concept of the Turtle as well as a cor-
responding curriculum for K–6 are presented in the following section.

3. A Spiracl Curriculum for Programming Classes in K-6

Turtle Graphics has stood the test of time and proved a valuable way of introducing
beginners to programming. The principle is based on the visualization of the program

J. Staub58

execution by means of a virtual or physical computing agent, i.e., the “turtle”. This
turtle is, in essence, an object whose position and orientation in space can be changed
programmatically. Students understand the turtle as a tangible representation of the
abstract executions mechanism used in a computer. In order to control its behavior,
students need to learn the turtle’s “mother tongue” Logo which initially consists of four
simple commands:

Forward●● : The turtle moves straight ahead [by a given number of pixels].
Back●● : The turtle moves backwards [by a given number of pixels].
Right●● : The turtle turns to the right [a given angle].
Left●● : The turtle turns to the left [a given angle].

With these four basic commands it is possible to solve simple navigation tasks of the
form “guide the turtle from A to B without visiting C along the way” (as illustrated in
Fig. 1) to more complex geometric tasks (as shown in Fig. 2). All of these tasks could
be posed both in a block-based and text-based interface. One aspect that distinguishes
navigation tasks from simple geometry tasks is that for pure navigation in a grid no
parameters are required (i.e., unit distances and angles can be used) whereas geometry
tasks profit from parameterized basic commands.

Our approach proposes a spiral approach for programming instruction from kinder-
garten to grade six. Notable milestones in the intended learning progress can be sum-
marized in three stages:

 1.	 Stage 1 (kindergarten to 2nd grade): In the youngest age group, children
work in a block-based interface with basic commands that do not include pa-
rameters (i.e., the forward and back movement commands cause mo-
tion at unit distances while the right and left rotation commands only
perform 90 degree turns). In this framework, learners immerse themselves in
the following task types: (i) building sequences of basic commands, (ii) creat-

Fig. 1. Navigation task. Fig. 2. Geometry task.

Error Handling in XLogoOnline 59

ing programs under constraints, (iii) working with colors, (iv) covering longer
distances with repeat, (v) shortening repetitive program sequences with re-
peat.
 2.	 Stage 2 (3rd and 4th grade): After the first stage, students transition from the
previous navigation-based tasks to the more traditional geometry tasks. For
this purpose, the basic commands forward, back, right and left are
extended with parameters (i.e. the two movement commands allow to draw
lines of arbitrary length and the rotation commands can cause rotations of ar-
bitrary angles), while the interface stays block-based. In terms of content, this
second stage focuses on the following concepts: (i) building sequences of basic
commands, (ii) creating programs under restrictions, (iii) working with colors,
(iv) shortening repetitive program sequences using repeat, (v) sequences of
repeat, (vi) nested repeat.
 3.	 Stage 3 (5th and 6th grade): Finally, the transition from block-based to text-
based programming takes place. While the Turtle Graphics application area
remains the same, this step mainly changes the input form and the depth of
the concepts covered in the curriculum. Students engage in the following types
of tasks: (i) they form longer sequences of basic instructions, (ii) they shorten
repetitive program sequences using repeat, (iii) they define their own proce-
dures, (iv) and use these procedures as subroutines, (v) they parameterize their
own procedures, (vi) they define and use their own parameterized subroutines.

More information about the currciulum and its specific contents are provided in REF
(Hromkovic, 2010).

The following section presents the programming environment XLogoOnline and its
approach to error handling dedicated to the above curriculum.

4. Error Handling in XLogoOnline

The XLogoOnline programming environment aims at students’ autonomous error re-
covery by providing assistance in three domains: (i) the environment proactively diag-
noses structural errors in text-based Logo programs, (ii) it automatically detects logical
errors thanks to a task specification system with integrated solution verification, and
(iii) it provides a debugger for students to investigate logical errors on their own.

4.1. Reporting Structural Errors

We refer to structural errors as any error that causes the execution pipeline to terminate
unexpectedly; be it syntactic errors (which are already apparent during the construction
of the parse tree), semantic errors (such as naming errors, missing or redundant argu-
ments. Note that these programs parse legitimately but then fail during interpretation),
or more general runtime errors (e.g., type errors, index errors, or other problems that are
detected at runtime).

J. Staub60

XLogoOnline follows the philosophy of reporting structural errors proactively, that
is as early on as possible. For this purpose, the program text is continuously parsed
on every keystroke in order to immediately detect syntactical errors in the parse tree.
Moreover, the environment tries to turn as many runtime errors as possible into static
errors that can be detected before the program is executed. This can be achieved using
static program analysis and combined with the check for syntactic errors.

All detected errors are localized in the source code (i.e., the respective token stream)
in order to find the exact position in the program text, see Fig. 3. Afterwards, the cor-
responding text is visually highlighted in the editor and a corresponding error mes-
sage is added. In the formulation of error messages we make sure that the language is
understandable (that is, we use few words that are written in the language learners are
acquainted with from the curriculum) but we also take care of formulating error mes-
sages consistent throughout all cases.

4.2. Detecting Logical Errors in Turtle Graphics

Logical errors, unlike structural errors, do not cause the execution pipeline to fail, but
rather produce unexpected results. Such errors can arise in any contexts and must be
handled differently than structural programming errors. In fact, what may look like
an error in one context may be intentional in another. That is, without insight into the
specific objectives of a given program, it is not possible to discern correct from incor-
rect solutions.

In order to still automatically detect logical errors, XLogoOnline provides
predefined tasks with exact specifications of permissible solutions (Staub et al., 2021)
(user manual provided in the Appendix). Several grid cells can be connected in a navi-
gation task in which one or more target cells are to be visited in any or a predefined
order. Additionally, certain cells can be forbidden and also the commands available
in a solution can be restricted. Moreover, even the available command set can be
restricted by a task. A formal specification allows to discern correct solutions from
incorrect ones (see Fig. 4).

Fig. 3. An example of how XLogoOnline visualizes errors in the environment.
All of these cases can be detected statically.

Error Handling in XLogoOnline 61

4.3. Resolving Logical Errors in Logo

Although it is possible to detect logical errors automatically if the objective and the
specification of an admissible solution are known, automatically locating logical errors
is neither easy nor didactically desired. The problems used in our curriculum deliberate-
ly allow more than one solution. For example, Fig. 5 shows a problem in which a given
picture is to be drawn without making right turns. In our experience, this task elicits
multiple different solution strategies (e.g., Fig. 6), that all adhere to the given condition
and solve the problem. This flexibility should be maintained in order to encourage the
exchange of ideas within the class and the comparison of different strategies.

Due to the numerous possible correct solutions and individual ways of thinking,
we do not intend to solve the localization of logical errors automatically. By making

Fig. 4. Two examples illustrating how XLogoOnline automatically detects
correct and incorrect solutions in grid-based navigation tasks.

Fig. 5. Sample task.

J. Staub62

students solve logical errors independently, they can gain insights that would otherwise
be denied to them. In this sense the last tool presented here pursues a different objective
than the previous two we present a debugger that enables programmers to fix logical
errors on their own.

XLogoOnline provides a reverse debugger, which allows to manually analyze er-
roneous programs one step after another. At the push of a button, an instruction is
executed, allowing the user to compare his or her mental image of program execution
with reality. Based on this experience, novices can draw conclusions about the location
and the nature of an underlying logical error. Using a simple stack, the program state
can be stored in each step allowing previous stages to be reached easily and enabling
the course of an error to be replayed as often as desired.

5. Conclusion

For several decades, our community has been using block-based learning environments
to provide beginners with a smooth start into programming. There are various reasons
why block-based environments are useful: some (like ourselves) see a potential to reach
young children who would otherwise struggle with writing. Others, meanwhile, consider
structural programming errors a threat for all programmers, independent of their age
and experience. Consequentially, opinions also diverge on the question when to switch
from block- to text-based programming. Some suggest that blocks should be used well
into tertiary education, while we argue that there is no need to stick with block-based
environments for so long. We showed an approach of error handling that is employed
in the XLogoOnline programming environment and which encourages the autonomous
handling of programming errors; both logical and structural ones.

Various text-based learning environments for novices have a reactive approach to
handle errors. That is, they report errors only during runtime. This decision causes
a long and oftentimes frustrating process to start once execution begins: for each fixed
structural error, programmers need to re-execute their code, possibly receiving yet an-
other red flag which needs to be fixed before starting all over again. We argue that a pro-
active approach to error handling can help students skip over this tedious phase more
quickly. Our approach allows structural errors to be located and reported at compile
time which may lead to a majority of all structural programming errors to be detected
and potentially resolved before execution even starts.

Fig. 6. Two solutions that are equivalently valid.

Error Handling in XLogoOnline 63

References

Cooper, S., Dann, W., and Pausch, R. (2000). Alice: a 3-d tool for introductory programming concepts. Jour-
nal of computing sciences in colleges, 15(5), 107–116.

Dagienė, V., Hromkovic, J., and Lacher, R. (2021). Designing informatics curriculum for k-12 education:
From concepts to implementations. Informatics in Education, 20(3), 333–360.

Ettinger, A.B. (2012). Programming robots in kindergarten to express identity. Industrial Engineering,
2012.

Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy, L., Simon, B., Thomas, L., and Zander, C. (2008).
Debugging: finding, fixing and flailing, a multi-institutional study of novice debuggers. Computer Science
Education, 18(2), 93–116.

Forster, M., Hauser, U., Serafini, G., and Staub, J. (2018). Autonomous recovery from programming errors
made by primary school children. In: Sergei N. Pozdniakov and Valentina Dagienė, editors, Informatics in
Schools. Fundamentals of Computer Science and Software Engineering, volume 11169, pages 17–29, S.l.
Springer. 11th International Conference on Informatics in Schools: Situation, Evolution, and Perspectives,
ISSEP 2018; Conference Location: St. Petersburg, Russia; Conference Date: October 10–12, 2018.

Gugerty, L. and Olson G. (apr 1986). Debugging by skilled and novice programmers. SIGCHI Bull., 17(4),
171–174.

Hromkovic, J. (2010). Einführung in die Programmierung mit LOGO, volume 206. Springer.
Hromkovič, J. and Kohn, T. (2018). Einfach informatik 7–9: Programmieren. sekundarstufe i. begleitband.

Einfach Informatik.
Hromkovič, J., Kohn, T., Komm, D., and Serafini, G. (2016). Examples of algorithmic thinking in program-

ming education. Olympiads in Informatics, 10(1–2), 111–124.
Hromkovič, J., Kohn, T., Komm, D., Serafini, G., et al. (2017a). Algorithmic thinking from the start. Bulletin

of EATCS, 1(121).
Hromkovič, J., Serafini, G., and Staub, J. (2017b). Xlogoonline: a single-page, browser-based programming

environment for schools aiming at reducing cognitive load on pupils. In International Conference on
Informatics in Schools: Situation, Evolution, and Perspectives, pages 219–231. Springer.

Kohn, T. and Manaris, B. (2020). Tell me what’s wrong: a python ide with error messages. In Proceedings of
the 51st ACM Technical Symposium on Computer Science Education, pages 1054–1060.

Komm, D., Hauser, U., Matter, B., Staub, J., and Trachsler, N. (2020). Computational thinking in small
packages. In International Conference on Informatics in Schools: Situation, Evolution, and Perspectives,
pages 170–181. Springer.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., and Eastmond, E. (2010). The scratch programming lan-
guage and environment. ACM Transactions on Computing Education (TOCE), 10(4), 1–15.

Menta, R., Pedrocchi, S., Staub, J., and Dominic Weibel, D. (2019). Implementing a reverse debugger for
logo. In: Sergei N. Pozdniakov and Valentina Dagiene,˙editors, Informatics in Schools. New Ideas in
School Informatics, volume 11913, pages 107–119, Cham, 2019. Springer. 12th International Conference
on Informatics in Schools: Situation, Evolution and Perspectives (ISSEP 2019); Conference Location:
Larnaca, Cyprus; Conference Date: November 18–20.

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. Basic Books, Inc., USA.
Repenning, A. and Ioannidou, A. (2006). Agentcubes: Raising the ceiling of end-user development in educa-

tion through incremental 3d. In: Visual Languages and Human-Centric Computing (VL/HCC’06). IEEE,
p.p. 27–34.

Solomon, C., Harvey, B., Kahn, K., Lieberman, H., Miller, M.L., Minsky, M., Papert, A., and Silverman, B.
(2020). History of logo. Proceedings of the ACM on Programming Languages, 4(HOPL), 1–66.

Solomon, P. (1993). Children’s information retrieval behavior: A case analysis of an opac. J. Am. Soc. Inf.
Sci., 44, 245–264.

Staub, J. (2021). Programming in K–6: Understanding Errors and Supporting Autonomous Learning. PhD
thesis, ETH Zurich, Zurich.

Staub, J., Chothia, Z., Schrempp, L., and Wacker, P. (2021). Encouraging task creation among programming
teachers in primary schools. In: International Conference on Informatics in Schools: Situation, Evolution,
and Perspectives, pages 135–146. Springer.

Trachsler, N. (2018). Webtigerjython-a browser-based programming ide for education. Master’s thesis, ETH
Zurich.

Weintrop, D. (2019). Block-based programming in computer science education. Communications of the
ACM, 62(8), 22–25.

J. Staub64

J. Staub holds the chair of Computer Science and its Didactics at the
University of Trier. She studied computer science at ETH Zurich and
completed the teaching degree for high school level at the same uni-
versity. Starting in 2016, she conceived the programming environment
XLogoOnline as part of her doctoral studies, which is designed as a
tool to explore errors in programming education with novices and to
enable the teaching of computer science concepts in a spiral curriculum
from kindergarten to high school. XLogoOnline is a learning platform
that is currently offered in seven different languages and is now used
in schools around the world. Prior to her appointment at the University
of Trier, she was a postdoctoral researcher at the Ausbildungs- und Be-
ratungszentrum für Informatikunterricht at ETH Zurich and worked as
a lecturer at the University of Teacher Education Graubünden (PHGR).
As part of her work at the University of Trier, she promotes teacher ed-
ucation in computer science in the Rhineland-Palatinate area, contin-
ues the development of the programming environment XLogoOnline,
and uses it to study error handling among programming novices.

Error Handling in XLogoOnline 65

Appendix

User Manual

This Document serves as a reference guid for educators using

XLogoOnline Mini or the built-in competition mode LogoOlympia

J. Staub66

Version 1.0 / August 2021 Page 1/8

Contents
1. Create Exercises .. 2

2. Validate Exercises ... 3

2.1. Solution ... 4

2.2. Constraints ... 5

3. Store and Load Exercises .. 6

4. Competition .. 8

4.1. Score Board and End Competition .. 8

Error Handling in XLogoOnline 67

Version 1.0 / August 2021 Page 2/8

1. Create Exercises

To create a new exercise (or edit a

previously loaded one) you first need to

open the Menu and then click the

Create exercises button

This brings up the -Tool Dialog .

 The -area holds the exercise title and description.

 The -area represents the grid, on which exercises can be solved.

 The -area allows to add and remove exercises as well as to switch between

different exercises.

 The -area presents the options on how to access or share an exercise. A detailed

explanation can be found in chapter 3.

 The -area holds the turtle as well as other objects that can be placed on the grid.

Furthermore, validations can be configured here, we will explain them in more detail

in chapter 2.

J. Staub68

Version 1.0 / August 2021 Page 3/8

2. Validate Exercises

 The tiles in the -area from left to right are:

1. new tile [+].

2. default tile [white].

3. forbidden tile (visible to the student) [grey].

4. target tile [green].

5. forbidden tile (not visible to the student) [red].

Stepping on a forbidden tile, results in a failure state, while stepping on a target tile,

results in a success state.

By clicking on a tile, you can cycle through the five states a tile can be in.

 In the -area two top and left of the bottom right tile. If the

turtle walks through a wall (in any direction).

 The -area holds 3 times the blue color object. From left to right, they were placed

on a default tile (2), the second one on a target tile (4) and the last on a forbidden tile

(5).

 The object in the -area has a value assigned to it. By default, every object has a

value of 1, by clicking on a tile, you can assign a specific value to it. As soon as any

object has a value assigned (that is not a number) all other objects will have the

default value (empty string).

 The -area holds multiple instances of the strawberry object. The strawberry object

is special, as it has a default value equal to the number of strawberries depicted on

Error Handling in XLogoOnline 69

Version 1.0 / August 2021 Page 4/8

the object. The strawberries range from one to four strawberries and thus a default

value between one and four.

 The -area holds a moveable box (the filled-out object on the left) and a target box

(the right box with the dashed outline). The moveable box can be pushed by the

turtle and the goal is to push a moveable box on every target box. Once this is

achieved, a success state is reached and the constraint get checked.

2.1. Solution

In the Solution tab, in the Text Solution input field, a number can be entered, which then

will work as a sum. The values of all the collected objects, will be summed up and compared

to the target number. If the sum of all collected objects matches the solution, a success state

is reached and the constraints are checked.

If instead of a number, a string is entered into the text solution field, the values of the

collected objects will be concatenated and compared to the given solution. If they match a

success state is reached and the constraints are checked. In this mode, multiple possible

solutions can be separated by || . In the given example above, both BAC as well as ABC

would be accepted as solutions. Another option would be to make the solution AAC and

give both the red cross and the red triangle the value A .

J. Staub70

Version 1.0 / August 2021 Page 5/8

2.2. Constraints

The [X] button can be used to remove a constraint set.

With the [+] button a new constraint set can be added. If a given

program passes any constraint set, it will be considered valid by the

system.

Constraints can be used to limit or ban the use of certain command or all

of them. The options for a single constraint are less than , less or equal

than , equal , not equal , more or equal than or more than . To ban

the use of a command, you can set the constraint type to equal and the

amount to zero, as in the example has been done to the Forward

command. To limit the use of commands altogether, a constraint can be

put on Total Commands . In the example in total up to 4 commands can be used, but none

of them can be the forward command.

Error Handling in XLogoOnline 71

Version 1.0 / August 2021 Page 6/8

3. Store and Load Exercises
Storing exercises can be done from the teacher tool, with the buttons in the bottom left.

 The -button loads the current exercises in the exercise mode to be solved in the

browser. By opening the teacher tool again, the exercises can be modified further

and/or saved.

 The -button creates a competition of all exercises and presents you with a

competition- and storage-key. The storage key is needed to load the exercises in the

future for further modification, while the competition key is needed by participants to

enter a competition.

 The -button will save the exercises to our server and present you with a storage

key, you can use in the future to retrieve the exercises again.

 The -button can be used to download the current exercises to your computer. They

can be uploaded to XLogoOnline on a later date.

 The -button lets you reset the current exercise if you have created multiple

exercises the others will not be affected.

J. Staub72

Version 1.0 / August 2021 Page 7/8

To load an exercise you have to open

the Solve exercises dialog from the

menu

You can either upload one or saved files or load them from the server by specifying one or

more storage keys separated by commas.

Error Handling in XLogoOnline 73

Version 1.0 / August 2021 Page 8/8

4. Competition

To participate in a competition you need

to open the menu and select

Start Competition .

Next you need to enter the competition

key.

4.1. Score Board and End Competition

When you are entered in a

competition the menu contains an

Open Scoreboard as well as

End Competition option.

The End Competition button will

end the competition for the

participant.

The Open Scoreboard button will

pull up the current competitions score

board

