
Olympiads in Informatics, 2022, Vol. 16, 3–11
© 2022 IOI, Vilnius University
DOI: 10.15388/ioi.2022.01

3

Posing Creative Reduction Tasks

David GINAT1, Shlomit ARIAN1, Oren BECKER2

1Tel-Aviv University, Science Education Department, Ramat Aviv, Tel-Aviv, Israel 69978
2Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, UK
e-mail: ginat@post.tau.ac.il, shlomit.arian@gmail.com, oren.becker@gmail.com

Abstract. Reduction is a fundamental computer science (CS) notion (Schwill, 1994). In solving
reduction tasks one must think at the problem level, in order to recognize suitable correlations
between problems. Thinking at the problem level involves recognition of declarative features
of problems. This requires a high level of abstraction. Reduction is well apparent in the more
advanced stages of CS studies, but it is also relevant at earlier stages. It may serve as an impor-
tant means for practice and awareness of abstraction. We designed reduction tasks for the earlier
tutoring and training of algorithms students. Our designs are illustrated with three creative tasks of
different characteristics. Student solutions for each task are presented and discussed. The students
demonstrated different levels of abstraction, insight and flexibility in solving the tasks.

Keywords: reduction, abstraction, task design.

1. Introduction

Algorithmic problem solving involves various techniques, among them divide-&-
conquer, backtracking, greedy computation, dynamic programming, and means end
analysis. One additional approach is that of transformation, sometimes in the form of
reduction. Reduction involves mapping from one problem to another based on strong
correspondence between the problems. While it is primarily known as a technique for
proving intractability of problems (e.g., NP-complete), it is also relevant in algorithmic
problem solving. For example, the problem of Maximum bipartite matching is solved by
reducing it to the Maximum flow problem, with constructing a network in which flows
correspond to bipartite matchings (Cormen et al., 1990).

Reduction is based on concise and efficient mapping from the entities of a source
problem S to corresponding entities in a target problem T, so that the solution of Prob-
lem-T yields the solution to Problem-S. The example above demonstrates the relevance
of reduction with an advanced algorithmic problem, yet it may be as relevant in solving
simpler problems. Since the principal theme of reduction is exploitation of problem cor-
respondence, it requires the problem solver to think at the highest, problem level of Per-
renet et al.’s abstraction levels of algorithm perception (2005). Thinking at the problem

D. Ginat, S. Arian, O. Becker4

level may deepen one’s algorithmic conceptions, which may sometimes tend to focus on
the operational “how” of a computation rather than on the declarative “that” of problem
features (see (Ryle, 1946) for “how” and “that”). Awareness and practice of the latter are
important for competent algorithmic problem solving.

Problem solvers naturally seek problems that are analogous, or similar to their posed
problem. Often, they borrow notions, or schemes from other similar problems. When
strong analogy in the form of equivalence is recognized, one may borrow another prob-
lem’s complete solution. The solution may be modified, in adaptation to a given prob-
lem, or may be used as a black box, whose inner components are hidden. Reduction
encapsulates the latter.

The challenge in reduction involves two phases – Phase-I, of finding a suitable Prob-
lem-T to which the posed Problem-S will be reduced; and Phase-II, of providing a con-
cise and efficient transformation of the input of Problem-S to the input of Problem-T.
There may also be a need to adjust the output of Problem-T to the output of Problem-S.
In Phase-I, the search for a suitable Problem-T requires familiarity with potentially can-
didate problems, and flexibility upon the examination of correspondence (e.g., noticing
that the minimum in a list of negative numbers is the maximum of their absolute-values
list). In Phase-II, one should capitalize of Problem-T’s features, and develop an elegant
and efficient transformation of Problem-S’s input to Problem-T’s input (and later, pos-
sibly adjust Problem-T’s output). The processing of the input transformation should not
intervene with T’s black box computation.

The mapping between problems S and T requires abstraction, in perceiving prob-
lems as objects. So is the conception of T’s computation as a black box (Perrenet et al.,
2005). The focus is on matching structural features of the two problems. Structural
matching requires competent pattern recognition (Mayer & Wittrock, 1996; Muller &
Haberman, 2008). Armoni et al. (2006) illuminated CS student difficulties with these
abstraction elements in reductive thinking, among them reduction to the solution, rather
than to the problem, and the need to look inside the black box. Ginat and Armoni (2006)
showed an example of student difficulties in turning to the notion of complement, when
solving the problem of finding a minimum-weight set of edges in a weighted graph,
such that each graph cycle has a representative in that set. Students examined graph
cycles, rather than turning to a simple reduction.

IOI competitions and training involve problems whose solutions require analogy as-
sociations, various transformations, and possibly reductions to other problems. Prob-
lem solvers should develop and demonstrate abstraction competencies of thinking at
the problem level (in addition to the algorithm level) and matching between structural
features. In addition, they should develop creativity in applying mapping between prob-
lems, and demonstrate awareness of the importance of sound as well as efficient utiliza-
tion of black boxes.

We designed throughout the years learning and practice materials for developing and
enhancing the above competencies among students, already at early stages of our IOI
training. In what follows, we display tasks developed and posed to trainees following
our national competition. We also posed some of the tasks to CS students in the second
and third years of their undergraduate studies.

Posing Creative Reduction Tasks 5

The paper illustrates our design and experience with three creative reduction tasks. In
the illustrations we describe the design steps and considerations. One design started from
a chosen Problem-T, another started from a selected transformation, and a third – from
an invented Problem-S. The solution of each task required different flexibility elements.
When Problem-S was posed to the students, Problem-T was sometimes provided and
sometimes not. We display our experience with students. The student solutions reflect
different levels of abstraction and insight into the tasks. The reader may be interested to
try solving a task before reading its design description.

2. Task Designs and Solutions

The three tasks presented in this section do not require knowledge beyond searching &
sorting and the time complexities of their common algorithms. Each task presentation
starts with its design description, continues with the task specification, and ends with
our experience with students. In the cases where Problem-T was not provided when
Problem-S was posed, students had to demonstrate both phases I and II of the solution
process mentioned in the Introduction. When Problem-T was provided, only phase II
was relevant. This was still challenging for quite a few.

Arithmetic Shuffle

First, Problem-T was chosen. The problem input is a list of N integers, and the output
is the number of pairs of identical integers; e.g., for the input 5 3 3 2 3 3 the output
will be 6. This problem can be solved in O(NlogN) time by first sorting the list, and then
counting the number of identical pairs in the ordered outcome.

Next, a transformation was chosen. Its output had to be in a format adequate to
Problem-T. We chose an N-integer sequence. The transformation was chosen to be:
<x1… xN> → <x1–1…xN–N>. That is, for each element in the original sequence, the
transformation subtracts its location from its value.

Then, candidates for Problem-S were explored. We sought a natural meaning of
identical elements in the transformed sequence. To do so, we wrote the expression for
identity of elements explicitly: xi – i = xj – j. This equation is equivalent to xi – xj = i – j.
The new formulation suggested a natural meaning.

An identical pair of elements in the transformed sequence (Problem-
T’s input) corresponds to a pair of elements in the original sequence
(Problem-S’s input), for which the difference between the values
equals the difference between the locations.

Notice that the above new formulation, of xi – xj = i – j may be regarded as an arith-
metic shuffle of the original relation xi – i = xj – j.

A first attempt of Problem-S was formulated.

D. Ginat, S. Arian, O. Becker6

Given a list of N integers x1 … xN how many pairs are there such that
xi – xj = i – j?

Then, an analysis of the first attempt was conducted. The naïve, brute-force solu-
tion of the formulated problem is to examine each pair of numbers in the sequence.
The time complexity of that is O(N2), which is far worse than the O(NlogN) – the time
complexity of applying the transformation and then solving Problem-T efficiently with
the transformed list.

Lastly, a refined Problem-S was designed, to make it more appealing. We replaced
the condition xi – xj = i – j with the more natural condition |xi – xj| = |i – j|. The solution
of this formulation of Problem-S is slightly more challenging, as one has to properly
handle absolute values. Yet, it is based on the same observations, and its time complexity
remains O(NlogN). We let the reader complete the analysis of this formulation.

Problem-S. Values and Locations Distances. Given a list of N integers, output the
number of pairs of elements in the list, for which the distance between their values
equals the distance between their locations.
Example: For the input 6 5 4 1 2 the output will be 7, – due to the pairs 6 and
5, 5 and 4, 6 and 4, 1 and 2, 6 and 2, 5 and 2, and 4 and 2.
Problem-T. The number of pairs of identical elements in a list of N integers.
Problem-T was not provided to the students.
A non-negligible amount of students struggled with this task. Quite a few offered the

brute-force solution, sometimes with erroneous attempts to avoid some comparisons.
Other students simplified the condition of “distance” between the values to “difference”,
which may be negative. This did help them realize the original arithmetic shuffle speci-
fied earlier, where no absolute values are involved. They recognized the relevance of
Problem-T and invoked it. Their output was correct in the cases where the results of the
subtractions in both sides of the equation xi – xj = i – j have the same sign. The better
students showed further insight and provided the full answer.

The main challenge here was to represent Problem-S’s specification mathemati-
cally, and possibly attempt various manipulations in stages – first manipulations when
the absolute values requirement is removed, and then when it is returned. One had to
demonstrate creative flexibility of the train of thought. Competence in employing the
heuristic of simplification, together with flexible manipulations, expressed abstraction
in the sense that one did not immediately seek the “how” of the computation, but rather
carefully examined the “that” of Problem-S, sought insight into its hidden patterns, and
only then looked for a relevant Problem-T and a suitable transformation.

Padding Transformation

First, a transformation was characterized. In the previous task the sizes of the input and
output of the transformation were equal. However, the sizes of the inputs of problems S
and T may not necessarily be equal. One should also be acquainted with cases in which

Posing Creative Reduction Tasks 7

the sizes are different. The idea here was to focus on this notion, without embedding
additional challenges.

Next, a common transformation feature was sought and chosen. Decidability proofs
employ the feature of padding when the sizes of the inputs of problems S and T differ.
Padding is occasionally applied when the input of Problem-S should be augmented. The
augmentation may be conducted in different ways. One of them is that of repeatedly
adding to the input the same value in a quantity needed, in order to “bring it” to the size
of the input of Problem-T.

Then, the relation between the inputs was defined. The problems S and T may be
similar, but differ from one another in a relative value, or position that should be pro-
cessed. One such case, in which padding may be useful is the following.

If Problem-S will compute the i-th largest element in a sequence and
Problem-T will compute the j-th largest, and j < i; then Problem-S
may be solved by transforming its input to Problem-T, and padding
its input in a corresponding augmentation.

At this stage, Problem-S and Problem-T were formulated. The described augmenta-
tion depends on the values of i and j above. We chose these values to be simple, as the
focus is on invoking the notion of padding. The values of i and j were chosen to be N/2
and N/3 respectively.

 Problem-S will compute the median in an unordered array Arr of N
different values, and Problem-T will compute the “thirdian” – the el-
ement that is larger than one third of the elements of Arr and smaller
than two thirds of the elements.

Finally, the details of Problem-S’s input augmentation were written and evaluated.
An O(N) reduction computation was formulated, as presented below.

Find the Max element of Arr, and add to Arr the N/2 values:
Max+1, … , Max+N/2; i.e. pad Arr with large values to be 3/2 of its
original size.

The resulting task was the following.
Problem-S. Median. Given an array of N distinct values, output its median.
Problem-T. “Thirdian”. Given an array of N distinct values, output its “thirdian”,
which is the element that is larger than one third of the elements and smaller than two
thirds of the elements.
Problem-T was provided to the students.
We posed the task to a limited group of students. Unfortunately, padding solutions

were not offered. The students turned to reduce the size of Arr. The main theme that was
demonstrated was the removal of elements smaller than the median of Arr, one by one.
One removal version involved a utilization of Problem-T as an operator, with repeated
calls for the removal of single “thirdians”, one at a time. This reflects a degenerated
transformation and exploitation of Problem-T.

D. Ginat, S. Arian, O. Becker8

Another version involved sorting of Arr, and the removal of an amount of the small-
est elements of Arr that will “shift” the median to the “thirdian” position. Students
erred with the correct number of removed elements. And, obviously, the computation
complexity exceeded O(N).

It seems that students demonstrated different kinds of impasse. Perhaps their lack
of experience with the heuristic of auxiliary construction hindered them from choos-
ing the direction of padding the original input. They followed a direction of “in place”
computation, with reduction of Arr’s size. In addition, Problem-S involved the notion
of median, and this may have led some in the direction of ordering calculations, even
at the cost of a very inefficient solution. Thinking at the problem level of Perrenet et al.
(2005) was very limited, and there was no capitalization on the similarity between the
two problems for providing a transformation that yields a single, elegant reduction to
Problem-T.

Location-Value Relation

First, Problem-S was designed. A special case of a previously invented problem – the
Widest inversion (Ginat, 2008) – may be solved in a simpler way than the original, gen-
eral problem. The input of the Widest inversion problem is a list of N positive integers,
and the output is the largest distance between two unordered integers in the list; e.g., for
the input 2 5 4 6 3 the output will be 3. The solution is not that simple.

In the special case where the list is a permutation of the integers 1 to N, an elegant
solution may capitalize on the particular property of a permutation, which is:

When the input is a permutation of 1..N, the range of values is exactly
the range of locations.

Next, we sought a transformation. We examined a simple example, and looked at
the possibility of transforming a given permutation, such as 2 5 4 1 3 to a list of the
locations of the permutation values: 4 1 5 3 2 (e.g., the 1-st value in the new list is
4 since 1 appears in the 4-th place in the original permutation). Upon looking at these
two lists one may notice the following:

The “Largest drop” – the largest difference between two unordered
integers – in the new list is the widest inversion in the original list.

Thus, if the Largest drop is a simple problem it may become Problem-T. In an analy-
sis of this problem, one may notice that the computation is simple – an O(N) time, of
one “pass” over the input, where the difference between every newly read value and the
current Max is examined. We obtained the following task.

Problem-S. Permutation Inversion. Given a permutation of the integers 1..N, in an
arbitrary order, output the largest distance between two unordered integers.
Example: For the input 1 6 2 4 7 5 3 the output will be 5, which is the distance
between 6 and 3.

Posing Creative Reduction Tasks 9

Problem-T. Largest Drop. Given a permutation of the integers 1..N, in an arbitrary
order, output the largest difference between two unordered integers. The output in
the above example will be 4. This difference occurs twice – between 6 and 2, and
between 7 and 3.
Problem-T was sometimes provided to the students.
When Problem-T was not provided to the students, they offered two kinds of solu-

tions to Problem-S – a brute-force O(N²)-time solution, in which the distance between
every pair of integers is checked; and an insightful O(N) solution which capitalizes on
the observations italicized in the above design.

When we provided Problem-T with Problem-S, and requested a reductive solution,
some students indeed offered the above elegant reduction. However, others still did
not see the correspondence between the problems, and turned to a brute-force solution.
Since they were obliged to solve by reduction, some of them used Problem-T as an
operator which receives only a pair of values. Their solution called Problem-T’s (black
box) algorithm O(N²) times, a separate call for each pair examined by their brute-force
solution.

Some created a list of pairs <i,j>, such that i is greater than j, and is the furthest loca-
tion of an integer smaller than the integer whose location is j, in the original input. For
example, for the input in Problem-S’s specification, the list of pairs will be the follow-
ing: <7,2>, <7,4>, <7,5>, <7,6>. (The 7 in all the pairs is due to the location of 3; the 2
in the first pair is due to the location of 6; the 4 in the second pair is due to the location
of 4; the 5 in the third pair is due to the location of 7; etc.) Each pair was computed
separately, thus the time complexity is O(N²).

Both of these inefficient solutions express a “reduction by obligation”. The first,
“operator based” solution utilizes a degenerated variant of Problem-T’s solution, and
demonstrates limited abstraction at the problem level. The second solution expresses a
slightly higher abstraction by invoking Problem-T’s solution only once, but lacks suf-
ficient insight of the correlation between the problems.

3. Discussion

Reduction is a fundamental CS notion. Although it is mostly apparent in advanced
courses, it may be a relevant tool also in the Introduction to Algorithms level. It requires
recognition of patterns, creativity, and thinking in the problem level. As such, it may be
introduced and practiced by IOI students rather early in their training.

The practice of seeking problem correspondence in reduction, as well as applying
it properly and efficiently, develops one’s analogical thinking and enhances awareness
of essential algorithmic problem solving elements, including moving between different
levels of abstraction (the problem level and the algorithm level), revealing underlying
patterns, and employing flexibility is developing suitable algorithmic schemes.

The first task required the recognition of a mathematical underlying pattern. Al-
though the pattern was simple, one needed flexible manipulations to reveal it. This was

D. Ginat, S. Arian, O. Becker10

also relevant in the third task, where the underlying pattern was a simple location-value
pattern. In the second task one had to demonstrate flexibility in turning to a concise,
elegant construction. All the tasks involved the application of problem solving heuris-
tics – problem simplification in the first task, auxiliary construction in the second, and
a change of representation in the third task. In addition, all the tasks required thinking
at the more abstract problem level, both upon seeking problem characteristics and upon
mapping from Problem-S to Problem-T.

Students demonstrated various levels of the above. Many did not recognize under-
lying patterns, expressed limited flexibility, and did not properly relate to efficiency
considerations. In addition, some students did not fully capitalize on Problem-T’s char-
acteristics. Some invoked its solution repeatedly as an operator, thus demonstrating a
degenerated transformation that “misses the point” of reduction. We believe that prac-
tice and awareness play a key role in developing suitable, desired competencies. Such
a development will help assimilating abstraction, which is one of the most essential
elements in computer science and computational thinking.

References

Armoni, M., Gal-Ezer, J., Hazzan, O. (2006). Reductive thinking in computer science. Computer Science Edu-
cation, 16(4), 281–301.

Cormen, T.H., Leiserson, C.E., Rivest, R.L. (1990). Introduction to Algorithms. MIT Press.
Ginat, D., Armoni, M. (2006). Reversing: an essential heuristic in program and proof design. In: Proc of the 38th

ACM Computer Science Education Symposium - SIGCSE. ACM Press, 469–473.
Ginat, D. (2008). Learning from wrong and creative algorithm design. In: Proc of the 40th ACM Computer Sci-

ence Education Symposium – SIGCSE. ACM Press, 26–30.
Mayer, R.E., Wittrock, M.C. (1990). Problem-solving transfer. Handbook of Educational Psychology, 47–62.
Muller, O., Haberman, B. (2008). Supporting abstraction processes in problem solving through pattern-oriented

instruction. Computer Science Education, 18(3), 187–212.
Perrenet, J., Groot, J.F., Kaasebrood, E. (2005). Exploring students’ understanding of the concept of algorithm:

levels of abstraction. ACM SIGCSE Bulletin, 37(3), 64–68.
Ryle, G. (1946). Knowing how and knowing that. In: Proc of the Aristotelian Society, 46, 1–16.
Schwill, A. (1994). Fundamental ideas of computer science. Bulletin of European Association for Theoretical

Computer Science, 53, 274–295.

D. Ginat – served as the head coach of Israel’s IOI project in the years
1997–2019 (team leader in 1997–2007). He is the head of the Com-
puter Science Group in the Science Education Department at Tel-Aviv
University. His PhD is in the Computer Science domains of distributed
algorithms and amortized analysis. His current research is in Computer
Science and Mathematics Education, with particular focus on various
aspects of problem solving and learning from mistakes.

Posing Creative Reduction Tasks 11

S. Arian – received her M.Sc. in Computer Science from The Aca-
demic College of Tel Aviv-Yaffo. For the last 15 years she is teaching
various computer science courses, including Algorithms, Data Struc-
tures and Computability Theory. Her current research is in computer
science education, particularly about abstraction facets.

O. Becker – served as Israel’s Team Leader for the IOI in the years
2009-2014. He is a postdoctoral researcher at the Department of Pure
Mathematics and Mathematical Statistics at the University of Cam-
bridge. His PhD connected geometric and measurable group theory to
the computer science domain of property testing. His current research
is, in addition, on expander graphs, word maps and random groups.

