
Olympiads in Informatics, 2022, Vol. 16, 35–42
© 2022 IOI, Vilnius University
DOI: 10.15388/ioi.2022.04

35

What is the Competitive Programming Curriculum?

Antti LAAKSONEN
Department of Computer Science, University of Helsinki
e-mail: ahslaaks@cs.helsinki.fi

Abstract. Competitive programmers learn algorithms and data structures that belong to univer-
sity computer science curricula. In this paper we go through the “Algorithms and Complexity” 
knowledge area in the ACM/IEEE curriculum guidelines and determine which of the topics can 
be learned through competitive programming. After that, we discuss in detail some topics that are 
different in competitive programming and university courses.

Keywords: data structures, algorithms, curricula, programming contests.

1. Introduction

Solving competitive programming problems can teach many important algorithms and 
data structures discussed in university algorithms courses. However, there are also dif-
ferences: some topics are usually only covered either in competitive programming or 
university courses, but not in both of them. For example, segment trees are used pri-
marily in competitive programming, while Fibonacci heaps are typically only seen in 
university courses.

There are no clear lists of topics that appear in competitive programming or univer-
sity courses. The IOI Syllabus (2020) roughly specifies the topics that can be expected 
in the International Olympiad in Informatics, but there are many topics that are not 
included in the IOI Syllabus but still appear in other contests, such as the Internation-
al Collegiate Programming Contest or Google Code Jam. The ACM/IEEE curriculum 
guidelines (2013) suggest topics that should be included in computer science curricula 
in universities.

This paper consists of two parts. In the first part, we go through the topics of the 
“Algorithms and Complexity” knowledge area in the ACM/IEEE curriculum guidelines 
and determine which topics can be learned through competitive programming. In the 
second part, we discuss in detail some differences between competitive programming 
and university textbook topics.



A. Laaksonen36

2. Comparison to ACM/IEEE Curriculum Guidelines

The purpose of the ACM/IEEE curriculum guidelines is to recommend topics that should 
be included in university computer science curricula. The topics have been divided into 
three categories as follows:

Core-Tier1 topics are the most fundamental topics and a computer science cur-●●
riculum should cover them all.
Core-Tier2 topics are also important and a computer science curriculum should ●●
cover all or almost all of them.
Elective topics are more advanced topics, and a computer science curriculum ●●
should also cover many of them.

In this section we go through the topics of the “Algorithms and Complexity” knowl-
edge area in the guidelines. For each topic, we determine if it can be typically learned 
through competitive programming, i.e., by learning techniques that are needed in pro-
gramming contests.

2.1. Basic Analysis

The challenge in most competitive programming problems is to create efficient algo-
rithms. While competitive programmers routinely work with time complexities and use 
the Big O notation, not all topics in this group are covered in typical competitive pro-
gramming training.

Interestingly, the formal definition of the Big O notation has been included in the 
Core-Tier1 category in the guidelines, while its use belongs to Core-Tier2. However, 
in competitive programming, it is essential to be able to use the Big O notation when 
designing algorithms, but it is not necessary to know its formal definition.

Category Topic In Contests?

Core-Tier1 Differences among best, expected, and worst case behaviors of an algorithm Yes
Core-Tier1 Asymptotic analysis of upper and expected complexity bounds Yes
Core-Tier1 Big O notation: formal definition No
Core-Tier1 Complexity classes, such as constant, logarithmic, linear, quadratic, and exponential Yes
Core-Tier1 Empirical measurements of performance Yes
Core-Tier1 Time and space trade-offs in algorithms Yes
Core-Tier2 Big O notation: use Yes
Core-Tier2 Little o, big omega and big theta notation No
Core-Tier2 Recurrence relations Yes
Core-Tier2 Analysis of iterative and recursive algorithms Yes
Core-Tier2 Some version of a Master Theorem No



What is the Competitive Programming Curriculum? 37

2.2. Algorithmic Strategies

Most of the topics in this group belong to fundamental competitive programming skills. 
The only exception is the branch-and-bound technique which can be regarded as an 
advanced technique rarely seen in programming contests. The branch-and-bound tech-
nique is used to optimize exhaustive search algorithms, while most competitive pro-
gramming problems deal with polynomial algorithms. In programming contests, it is 
often possible to get partial points by implementing a brute force algorithm, but it is not 
needed to optimize the algorithm.

2.3. Fundamental Data Structures and Algorithms

In competitive programming it is important to know how to use efficient algorithms 
and data structures available in the standard library of the used programming language. 

Category Topic In Contests?

Core-Tier1 Brute-force algorithms Yes
Core-Tier1 Greedy algorithms Yes
Core-Tier1 Divide-and-conquer Yes
Core-Tier1 Recursive backtracking Yes
Core-Tier1 Dynamic programming Yes
Core-Tier2 Branch-and-bound No
Core-Tier2 Heuristics Yes
Core-Tier2 Reduction: transform-and-conquer Yes

Category Topic In Contests?

Core-Tier1 Simple numerical algorithms, such as computing the average of a list of numbers, 
finding the min, max, and mode in a list, approximating the square root of a number, 
or finding the greatest common divisor

Yes

Core-Tier1 Sequential and binary search algorithms Yes
Core-Tier1 Worst case quadratic sorting algorithms (selection, insertion) Yes
Core-Tier1 Worst or average case O(N log N) sorting algorithms (quicksort, heapsort, mergesort) Partially
Core-Tier1 Hash tables, including strategies for avoiding and resolving collisions Partially
Core-Tier1 Binary search trees

Common operations on binary search trees such as select min, max, insert, •	
delete, iterate over tree

Partially

Core-Tier1 Graphs and graph algorithms
Representations of graphs (e.g., adjacency list, adjacency matrix)•	
Depth- and breadth-first traversals•	

Yes

Core-Tier2 Heaps Partially
Core-Tier2 Graphs and graph algorithms

Shortest-path algorithms (Dijkstra’s and Floyd’s algorithms)•	
Minimum spanning tree (Prim’s and Kruskal’s algorithms)•	

Yes

Core-Tier2 Pattern matching and string/text algorithms (e.g., substring matching, regular 
expression matching, longest common subsequence algorithms)

Yes



A. Laaksonen38

For example, in C++, the function sort can be used to efficiently sort an array, the 
class unordered_map implements a hash table, and the class priority_queue 
implements a heap. However, it is not necessary to know how these algorithms and data 
structures actually work.

This is a fundamental difference between competitive programming and university 
courses: you can be a successful competitive programmer without knowing, for exam-
ple, the quicksort algorithm, which is a basic algorithm taught in almost any introductory 
university course. Such knowledge is not needed in competitive programming because 
you can use the standard library which provides efficient sorting algorithms. However, 
you should know how to implement algorithms and data structures that are not in the 
standard library, such as the union-find data structure needed for Kruskal’s algorithm.

Note that Prim’s and Kruskal’s algorithms accomplish the same task, and most com-
petitive programmers seem to prefer Kruskal’s algorithm which can be extended to some 
more advanced problems. While it is interesting to know two different algorithms for 
determining minimum spanning trees, there is not much use for Prim’s algorithm in 
programming contests.

2.4. Basic Automata Computability and Complexity

The topics of this group are outside the scope of competitive programming.

2.5. Advanced Computational Complexity

The topics of this group are outside the scope of competitive programming.

2.6. Advanced Automata Theory and Computability

The topics of this group are outside the scope of competitive programming.

2.7. Advanced Data Structures Algorithms and Analysis

This group has both topics that are regarded as basic topics in competitive programming, 
such as topological sorting, and advanced topics that are only needed in some difficult 
problems, such as linear programming.

Many balanced trees, such as AVL trees and red-black trees, are difficult to imple-
ment, and in many cases one can just use standard library implementations, such as 
the classes map and set in C++. However, balanced trees may be needed in some 
advanced competitive programming problems where it is required to, for example, split 
and merge arrays. One popular way to solve such problems is to use the treap data 
structure whose implementation is relatively easy (if you know a good way to imple-
ment it).



What is the Competitive Programming Curriculum? 39

It is not clear which data structures exactly belong to “advanced data structures”. At 
least the two mentioned data structures, B-trees and Fibonacci heaps, are not necessary 
in competitive programming because you can use other data structures instead of them.

3. Competitive Programming vs. University Courses

This section discusses in detail some topics that are different in competitive program-
ming and university courses. In general, competitive programmers prefer techniques that 
are easy to implement, and try to use algorithms and data structures provided in standard 
libraries of programming languages.

3.1. Range Queries

Range query structures play an important role in competitive programming. For exam-
ple, using a segment tree (see e.g. Laaksonen, 2020, Section 9.2.2) it is possible to main-
tain an array of  elements and process two types of queries in O(log ) time: (1) modify 
an array value, (2) find the maximum value in a given range (subarray).

For some reason, simple range query structures, such as segment trees, are rarely 
discussed outside competitive programming. Instead, other methods are used to solve 
problems. For example, Cormen et al. (2009, Chapter 14) shows how modified red-
black trees can be used to create dynamic tree structures. This approach yields O(log ) 
operations like segment trees, but it would be very difficult to implement red-black 
trees during a contest.

Category Topic In Contests?

Elective Balanced trees (e.g., AVL trees, red-black trees, splay trees, treaps) Yes
Elective Graphs (e.g., topological sort, finding strongly connected components, matching) Yes
Elective Advanced data structures (e.g., B-trees, Fibonacci heaps) No
Elective String-based data structures and algorithms (e.g., suffix arrays, suffix trees, tries) Yes
Elective Network flows (e.g., max flow [Ford-Fulkerson algorithm], max flow – min cut, 

maximum bipartite matching)
Yes

Elective Linear Programming (e.g., duality, simplex method, interior point algorithms) Partially
Elective Number-theoretic algorithms (e.g., modular arithmetic, primality testing, integer 

factorization)
Partially

Elective Geometric algorithms (e.g., points, line segments, polygons. [properties, 
intersections], finding convex hull, spatial decomposition, collision detection, 
geometric search/proximity)

Yes

Elective Randomized algorithms Yes
Elective Stochastic algorithms Yes
Elective Approximation algorithms Yes
Elective Amortized analysis Yes
Elective Probabilistic analysis Yes
Elective Online algorithms and competitive analysis No



A. Laaksonen40

There are some popular problems that can be solved using range queries, but are 
usually solved using another method outside competitive programming. For example, 
a typical way to count the number of inversions in a permutation in O( log ) time is 
to use a modified mergesort algorithm (see e.g. Cormen et al., 2009, p. 42). However, 
the problem can also be solved using a segment tree that allows us to go through the 
permutation from left to right and efficiently count the number of previous elements 
that are larger than the current element.

3.2. Hashing

Hash tables are often used in competitive programming as standard library data struc-
tures. For example, the C++ classes unordered_map and unordered_set are 
based on hash tables. While it is not necessary to implement hash tables and resolve 
collisions, it is important to understand that hash table data structures may be slow on 
some inputs.

Some contest systems, such as Codeforces, allow users to send additional inputs 
(called “hacks”) to contest problems. If a solution is based on hashing, it may be pos-
sible to hack it by constructing an input where a large number of elements is assigned 
the same hash value. While hash table operations usually take O(1) time, in this case 
they can take O() time. For example, it is possible to construct inputs where the C++ 
classes unordered_map and unordered_set are too slow if they are used in a 
typical way. We have observed that many students assume that hash tables are always 
efficient in practice, and it is instructive to see that there are indeed inputs where they 
are not efficient.

Another topic where hashing is used in competitive programming are string algo-
rithms. Like in the Karp-Rabin pattern matching algorithm (1989), we can compare 
substrings of strings in O(1) time after preprocessing the strings using the hash values 
of the substrings (see e.g. Laaksonen, 2020, Section 14.2). A speciality in competitive 
programming is that it is often assumed that there are no collisions, i.e., if two sub-
strings have the same hash value, they also have the same content. When hashing is 
properly implemented (Pachocki and Radoszewski, 2013), many string problems can 
be solved using the technique.

3.3. Binary Search

A traditional way to use binary search is to efficiently search for values in a sorted array 
in O(log ) time. In competitive programming binary search is not often used in that 
way, because we can either use a standard library implementation of binary search (such 
as the lower_bound and upper_bound functions in C++) or we can use an efficient 
data structure that is available in the standard library.

Instead, binary search is often used as an algorithm design technique: when we know 
that a function () has value 0 when  <  and value 1 when  ≥ , we can efficiently 



What is the Competitive Programming Curriculum? 41

find the smallest  value such that () = 1 using binary search (see e.g. Laaksonen, 
2020, Section 4.3.2). Surprisingly, this way to use binary search is not often discussed in 
algorithms textbooks. In some cases the reason may be that there is another way to solve 
the problem without using binary search.

3.4. Dijkstra’s Algorithm

The usual way to implement Dijkstra’s algorithm in textbooks (see e.g. Cormen et al., 
2009, Section 24.3) is to build a heap that contains a distance to each node of the graph. 
Initially each distance is infinite, and the distances are updated during the algorithm 
using the decrease-key heap operation. This implementation works in O( log ) time 
where  and  represent the number of nodes and edges, assuming each element is 
reachable from the starting node.

The problem in such an implementation is that heap implementations in standard 
libraries (such as the priority_queue class in C++) typically don’t support the 
decrease-key operation. For this reason, it would be necessary to implement a custom 
heap instead of using the standard library data structure. However, in competitive pro-
gramming, another version of Dijkstra’s algorithm is used (see e.g. Laaksonen, 2020, 
Section 7.3.2) which doesn’t update the distances in the heap but instead adds a new 
distance to the heap when a distance changes. This allows us to use a standard library 
heap implementation in the algorithm. It can be shown that this version of Dijkstra’s 
algorithm also works in O( log ) time even if the number of elements in the heap 
may be larger than in the textbook implementation.

This is an example of a tendency that can be seen in competitive programming: new 
ways are invented to use standard library algorithms and data structures whenever pos-
sible, which makes implementations shorter and saves time during contests.

3.5. Divide-and-conquer

The divide-and-conquer technique is often regarded as a basic algorithm design tech-
nique. For example, Kleinberg and Tardos (2006) devote an entire chapter to the tech-
nique, and discuss algorithms such as mergesort, finding the closest pair of points and 
the FFT algorithm. However, using the divide-and-conquer technique is rarely required 
in competitive programming problems.

It seems that the divide-and-conquer technique is often used indirectly in competitive 
programming problems. While mergesort is an important algorithm, it is not necessary 
to implement it because we can use the standard library implementation, such as the 
sort function in C++, which may use mergesort. The FFT algorithm is required in 
some advanced competitive programming problems, but it is often used as a prewritten 
black box algorithm.

There is another way to solve the closest pair of points problem that differs from 
the traditional divide-and-conquer algorithm which divides the points into two sets and 



A. Laaksonen42

recursively solves the problem for each group and then combines the results. Instead, we 
can process the points from left to right and use a balanced binary tree to maintain a set 
of relevant points (see e.g. Laaksonen, 2020, Section 13.2.2). In this implementation, we 
can think that the divide-and-conquer idea is hidden in the balanced binary tree and it 
can’t be seen in the main algorithm.

4. Conclusion

Competitive programming covers many, but not all, of the algorithm design and data 
structures topics in the “Algorithms and Complexity” knowledge area in the ACM/IEEE 
curriculum guidelines. There are also topics that are different in competitive program-
ming and university courses, and there are competitive programming approaches that 
rarely appear in textbooks.

Some theoretical topics are only rarely needed in competitive programming. How-
ever, an interesting question for future work is what competitive programmers really 
know besides the topics relevant in programming contests. For example, do they usually 
know how the heap data structure works, even if it is not necessary to implement a heap 
during a contest?

References

ACM/IEEE (2013). Curriculum Guidelines for Undergraduate Programs in Computer Science. Available online 
at: https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C. (2009). Introduction to Algorithms (Third Edition). MIT 
Press.

IOI Syllabus (2020). Available online at: https://ioinformatics.org/files/ioi-syllabus-2020.pdf
Karp, R.M., Rabin, M.O. (1989). Efficient randomized pattern-matching algorithms. IBM Journal of Research 

and Development, 31(2), 249–260.
Kleinberg, J., Tardos, E. (2006). Algorithm Design. Addison–Wesley.
Laaksonen, A. (2017). A Competitive programming approach to a University introductory algorithms course. 

Olympiads in Informatics, 11, 87–92.
Laaksonen, A. (2020). Guide to Competitive Programming: Learning and Improving Algorithms Through Con-

tests (Second Edition). Springer.
Pachocki, J., Radoszewski, J. (2013). Where to use and how not to use polynomial string hashing. Olympiads 

in Informatics, 7, 90–100.

A. Laaksonen works as a university lecturer at the Department of 
Computer Science of the University of Helsinki. He is one of the orga-
nizers of the Finnish Olympiad in Informatics and has written a book 
on competitive programming. He is also a developer of the CSES on-
line judge.


