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Abstract. A figure may convey an idea, an argument and even a proof, sometimes better than 
words. It may also elicit an idea, an argument and a proof. In problem solving, a figure may give 
a “feel” of a problem. A self-generated figure may help getting insight, or serve as a means for 
representing one’s inner associations, or mental model of the problem. This paper presents self-
generated figures in algorithmic problem solving. Students of our IOI advanced stage demonstrat-
ed constructive utilization of self-generated figures in solving challenging sequence processing 
tasks. The figures elicited associations of hidden patterns, whose recognition yielded elegant and 
efficient algorithmic solutions. We advocate the application and examination of self-generated 
figures in algorithmic problem solving. 
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1. Introduction 

One of the essential problem solving heuristics is that of drawing a figure (Polya, 1945; 
Schoenfeld, 1985; Van Meter & Garner, 2005). Figure drawing is apparent in geometri-
cal problem solving (e.g., Nunokawa, 2004), in the solution of word problems (e.g., Van 
Essen & Hamaker, 1990), in physics problem solving (e.g., Maries & Chandralekha, 
2017), and more. In geometry, drawing involves dynamic examination and manipulation 
of the givens; in word problems it includes modelling, or representation of relations be-
tween objects; and in physics it involves both. These facets are evident in problem solv-
ing in computer science and algorithmics as well. For example, in OOP figures are used 
for modelling, or representing the “world”, while in graph algorithms they are used for 
examining different execution progression scenarios. Algorithmics also involves the tool 
of visualization, which offers the display of entity values during execution of computer 
programs (Sorva et al., 2013).

Drawing of figures, and visualization offer means for analysis and comprehension 
of given problems and their solutions. Yet, current algorithms textbooks do not advo-
cate the drawing of self-generated figures during the process of problem solving. Text-



D. Ginat14

books use a lot of illustrations – of data structures, relations, functions, generic algo-
rithmic ideas (e.g., binary search), and more. They exemplify and advocate heuristics 
such as problem decomposition, divide and conquer, backward reasoning, inductive 
reasoning, and more (e.g., Cormen et al. 1990), but do not underline the invocation of 
the heuristic of visual analysis of a given task. Visual analysis may be very helpful. In 
our experience with problem solvers, upon IOI training at all level, not many invoked 
this heuristic, but those who did invoke it often demonstrated its illuminating role in 
attaining sound solutions. Some of these students’ self-generated drawings yielded 
elegant solutions together with their justifications. The drawings elicited constructive 
connections between elements, helped consolidating ideas and observations, and en-
abled external representation of inner mental models (Johnson-Laird, 1980) of posed 
problems.

In the next section we display illustrations of these phenomena, in the sub-domain 
of sequence processing. Sequences (and lists) involve a variety of fundamental tasks, 
from max computation, through searching and sorting, to string matching and more 
(e.g., Manber, 1986). The illustrations illuminate visual analyses that were offered by 
students. In the last section we discuss these findings of self-generated drawings, and 
argue the heuristic’s relevance for teaching, displaying it to students, and encouraging 
them to employ it.

2. Visual Analysis Illustrations 

This section shows three different scenarios of visual associations demonstrated by 
students. Each scenario involves a task that we posed during the third, advanced stage 
of our national activity towards the IOI. About 30 students reach this stage every year, 
and its early tasks require basic algorithmic knowledge, limited to 1D arrays, functions, 
recursion, searching and sorting, and complexity measures. Yet, the problem solving 
is not elementary. On the way to this stage, as well as in its early practices, students 
attempt algorithmic challenges whose solutions required capitalization on hidden, un-
folded patterns. The tutors’ challenge is to pose tasks that require little knowledge, but 
involve challenging problem solving for that stage. Diverse sequence processing tasks 
are suitable. The illustrations below include three such tasks.

The following task was one (the easier) of the six tasks of IOI 2005 in Poland. The 
phrasing here is shorter and less formal. 

Mean Sequence. Given an increasing sequence of N positive integers, output the 
number of mean-sequences of length N+1 of the given sequence; where a mean-se-
quence is a sequence of non-decreasing integers, such that the mean of the i-th and the 
i+1-th integers is the value of the i-th element in the input sequence.
Example: For the input 4 9 16 21 23 the output should be 3, as there are 3 mean-
sequences (of 6-integers) that fulfill the required condition: 2 6 12 20 22 24 and   
3 5 13 19 23 23 and 1 7 11 21 21 25. Notice that every integer in the input se-
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quence is the mean of two corresponding integers in each of the above sequences. 
Also notice, that a sequence starting with 0 may not be a valid mean-sequence, as the 
sequence will be: 0 8 10 22 20 26, which is decreasing between the 4-th and the 
5-th integers. For a similar reason, sequences starting with -1, or 4, may also not be 
valid mean-sequences.

A first glace over the task yields several observations.
Once an integer is chosen as the starting point, the rest of the sequence is deter- ●
mined.
The output may not exceed by more than 1 the difference between the “closest”  ●
two integers in the input. (In the example of the problem statement, the two clos-
est integers are 21 23, thus the output may not exceed 3.)
A hasty conclusion from the previous observation may lead to the assertion that  ●
the value mentioned in the observation will be the output. Yet this may not al-
ways be the case; e.g, for the input sequence 4 6 10 20 22 the output should 
be 0 (and not 3).

Following the first observation, problem solvers who follow a brute-force approach 
often seek a solution based on examining separately each sequence yielded from a start-
ing point that enables the first two mean sequence points (the point before the first input 
value and its successive mean sequence point). This solution requires O(N×D) time and 
O(N) space, where D is the difference between the first two input points.

Other problem solvers regard the latter solution inefficient and seek a hidden pattern 
on which to capitalize. One such problem solver, whom we interviewed, conjectured 
that the starting points of legal sequences may be adjacent to one another, and form 
a range of consecutive integers. In order to examine his conjecture, he had a visual as-
sociation. His idea was to start with a range of size D+1 and view each of the input in-
tegers as a hinge for flipping the initial range “forward”, through the input points while 
possibly chopping it. He viewed the process of “flipping” the range, as a “rod shrinking 
through the input values”, and examined his idea with: 4 9 16 21 27 32 37.

The visualization in Fig. 1 displays an elegant algorithmic idea, and informally 
also shows its justification. Although the figure only shows an example, and does not 
display formal notations, one may extract an argument of correctness from the figure. 
In a sense, it offers a hand-in-hand design + justification, and yields the following task 
solution.

The output is the size of the range remaining from “passing” the ini-
tial range of successive candidates through the input sequence, in a 
manner of flipping a “shrinking rod” through a series of hinges.

The solution scheme enables an on-the-fly computation. All in all, the “flipping” 
process requires O(N) time and O(1) space. The computation visualized in Fig. 1 dis-
plays a scenario that represents the students’ inner mental model of the task solution. 
The figure elegantly expresses an intuitive, elegant idea, without any notations. 
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* * *
The next illustration involves visualization related to ordering. Ordering is a funda-

mental notion in algorithmics. While the natural tendency may be to simply examine 
integers, a figure that displays heights of values may help reaching beneficial associa-
tions. 

Widest Inversion. Given a sequence of N different integers, output the widest inver-
sion in the sequence, which is the maximal distance between two unordered integers, 
i.e., the larger of them is to the left of the smaller.
Example: For the input 4 3 8 9 1 6 10 7 the output should be 5, due to the dis-
tance between the 8 and the 7. Notice that there are many inversions in this sequence, 
e.g., the inversions of 4 and 1, of 4 and 3, of 3 and 1, of 9 and 7, and more.
(We first introduced this task in Ginat (2008), with diverse correct and incorrect solu-

tions. Here, we examine it with respect to the relevance of drawing a figure.) One of the 
problem solvers of this task chose to examine it with several examples, for which she 
drew figures of bars. Below is one of the figures, for an input which is a permutation of 
the integers 1..11.

The student indicated that in the beginning she examined the brute-force solution, 
which computes the widest inversion for each input value as a left-end of an inversion. 
Obviously, the computation is inefficient, as it requires repeated “passes” over the input. 
In addition, the student mentioned that it was difficult for her to gain insight into the task 

 A hasty conclusion from the previous observation may lead to the assertion that the 
value mentioned in the observation will be the output. Yet this may not always be 
the case; e.g, for the input sequence  4  6  10  20  the output should be 0 (and not 3). 

Following the first observation, problem solvers that follow a brute-force approach often 
seek a solution based on examining separately each sequence yielded from a starting 
point that enables the first two mean sequence points (the point before the first input 
value and its successive mean sequence point). This solution requires O(N×D) time and 
O(N) space, where D is the difference between the first two input points. 

Other problem solvers regard the latter solution inefficient and seek a hidden pattern 
on which to capitalize. One such problem solver, whom we interviewed, conjectured 
that the starting points of legal sequences may be adjacent to one another, and form a 
range of consecutive integers. In order to examine his conjecture, he had a visual 
association. His idea was to start with a range of size D+1 and view each of the input 
integers as a hinge for flipping the initial range “forward”, through the input points while 
possibly chopping it. He viewed the process of “flipping” the range, as a “rod shrinking 
through the input values”, and examined his idea with:  4  9  16  21  27  32  37. 

 

                   

Figure-1. Visual association of flipping while chopping the initial range of starting-points 
through the input sequence. 

The above visualization displays an elegant algorithmic idea, and informally also shows 
its justification. Although the figure only shows an example, and does not display 
formal notations, one may extract an argument of correctness from the figure. In a sense, 
it offers a hand-in-hand design + justification, and yields the following task solution. 

The output is the size of the range remaining from “passing” the initial range of 
successive candidates through the input sequence, in a manner of flipping a 
“shrinking rod” through a series of hinges. 

Fig. 1. Visual association of flipping while chopping the initial range  
of starting-points through the input sequence.
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by repeatedly looking at series of integers. She sought a representation of the task that 
will be more illuminating. At first, she tried to draw lines between inversion ends in the 
list of integers, but decided that these lines do not clarify the “blurred” picture. Her next 
attempt was to draw a figure of bars, whose heights correspond to the input values, as 
displayed in Fig. 2. This representation helped her realize several observations, which 
“popped from the figure”, regarding left-ends and right-ends of inversions.

A value  ● v may be in several (even many) inversions as a left-end. The only relevant 
value to consider as a right-end for v is the rightmost value u smaller than v. Thus, 
u must be smaller than all the values on its right.
A similar observation is relevant for a value  ● v as a right-end.
The above observations imply that a value may be a ●  candidate for a right-end of 
the widest inversion only if it is smaller than all the values on its right.
Similarly, a value may be a  ● candidate for a left-end of the widest inversion only 
if it is larger than all the values on its left.
In the above figure, the values ●  1, 5, 7, 9 may be candidates for a right-end of the 
widest inversion; and the values 4, 6, 8, 11 may be candidates for a left-end.
The two lists of candidates must be  ● in increasing order, due to the properties of 
candidates. (Question: May a particular value be in both lists of candidates?)

Following the above observations, an O(N) time and space solution will first gener-
ate the two lists of candidates, and then capitalize on their increasing characteristic and 
“run” concurrently over these lists from left to right, while finding for each left-end 
candidate its corresponding right-end match.

All in all, the visual analysis enabled illuminating observations, that stemmed from 
looking at the bar heights and noticing the characteristics of left-ends, right-ends, and 
increasing candidate lists. In our experience, although these characteristics are simply 
phrased, problem solvers often struggle and do not recognize them while “going back 
and forth” over the sequence of integers. The drawn figure assisted in revealing them, 
and invoked constructive associations.

The above solution scheme enables an on-the-fly computation. All in all, the “flipping” 
process requires O(N) time and O(1) space. The computation visualized in Figure-1 
displays a scenario that represents the students’ inner mental model of the task solution. 
The figure elegantly expresses an intuitive, elegant idea, without any notations.  

* * * 
The next illustration involves visualization related to ordering. Ordering is a 
fundamental notion in algorithmics. While the natural tendency may be to simply 
examine integers, a figure that displays heights of values may help reaching beneficial 
associations.  

Widest Inversion. Given a sequence of N different integers, output the widest 
inversion in the sequence, which is the maximal distance between two unordered 
integers, i.e., the larger of them is to the left of the smaller. 
Example: For the input  4  3  8  9  1  6  10  7  the output should be 5, due to the 
distance between the 8 and the 7. Notice that there are many inversions in this 
sequence, e.g., the inversions of 4 and 1, of 4 and 3, of 3 and 1, of 9 and 7, and more. 

(We first introduced this task in Ginat (2008), with diverse correct and incorrect 
solutions. Here, we examine it with respect to the relevance of drawing a figure.) One 
of the problem solvers of this task chose to examine it with several examples, for which 
she drew figures of bars. Below is one of the figures, for an input which is a permutation 
of the integers 1..11. 
 
 
 
 
 
 
 
 

 
 
 
 
 

                                          4    2    6    8    3     1    5    11  10   7    9     

Figure-2. Bars that represent the input values by height 

The student indicated that in the beginning she examined the brute-force solution, 
which computes the widest inversion for each input value as a left-end of an 
inversion. Obviously, the computation is inefficient, as it requires repeated “passes” 
over the input. In addition, the student mentioned that it was difficult for her to gain 
insight into the task by repeatedly looking at series of integers. She sought a 
representation of the task that will be more illuminating. At first, she tried to draw 
lines between inversion ends in the list of integers, but decided that these lines do 
not clarify the “blurred” picture. Her next attempt was to draw a figure of bars, 
whose heights correspond to the input values, as displayed in Figure-2 above. This 
representation helped her realize several observations, which “popped from the 
figure”, regarding left-ends and right-ends of inversions. 

            
            
            
            
            
            
            
            
            
            
            

Fig. 2. Bars that represent the input values by height.
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* * *
The last illustration involves visualization related to the recognition of a hidden sequence 
property on which to capitalize.

Circular Fence. Given a sequence of N positive integers, each describing the height 
of a column of a fence, in terms of its number of bricks, output the minimal number of 
blocks of bricks that should be transferred between adjacent columns in order to level 
the fence. The total number of bricks in the fence is 3N, and the fence is circular (the 
N-th column is adjacent to the the 1-st column). A transfer of a block of bricks may 
involve any positive number of bricks, which will be moved either to the left or to the 
right of the column from which they are taken.
Example: For the input 5 3 6 2 1 1 the output should be 3, due to a transfer of 
a block of 2 bricks from the column of 5 to the column of 1 cyclically on its left, and 
two more transfers of bricks – 3 bricks from 6 to 2, and then 2 bricks from 2 to 1.
One may first attempt the task for a linear, non-circular fence, with a left end 

and a right end. A single “pass” over the input from left to right will yield the desired 
output. The input will be accumulated, and for every i, 1 ≤ i ≤ N, if the total number 
of bricks accumulated up to (including) the i-th column does not equal i×N, then the 
total number of block-transfers will be increased by 1. The latter operative description 
implies the following declarative observation, which relates to the places of no block 
transfers.  

Let S be the number of autonomous sub-sequences. A sub-sequence is 
regarded autonomous if its total num of bricks is 3 times its num of 
columns, and no prefix of it is has this property (of 3 times the num of 
columns). The output is N-S.

Notice that if the fence in the example of the task statement is regarded linear, then 
the whole fence is one autonomous sequence. It cannot be partitioned into smaller au-
tonomous parts. Since there are 6 columns in the fence, a total of 5 block transfers are 
required. Had the fence been circular, it could be partitioned into 3 autonomous sub-
sequences, and only 3 transfers were required.

The reader may assess the correctness of the declarative observation above, for 
a linear fence. Notice that in the case of a linear fence there is only one partition pos-
sible, since there are given left end and right end. In the case of a circular fence there 
may be a variety of possibilities for partition. We need to find the best partition, i.e., the 
partition that yields as many autonomous sub-sequences as possible.

One way of seeking the best partition is to examine N different cases of a linear 
fence – the case of column-1 as the left end, then column-2 as the left end, then col-
umn-3, and so on. However, this solution is “expensive” time-wise. Its time complexity 
is O(N²).

Two students who sought a more efficient solution drew figures, which elicited their 
associations to a more efficient solution. One of them considered the following input 
of 11 columns 5 2 7 1 1 2 4 6 1 2 2 and examined the accumulated value of re-
maining bricks while levelling the fence on-the-fly, 2 1 5 3 1 0 1 4 2 1 0 (starting 
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from column-1). The leftmost 2 in the latter sequence indicates the number of bricks 
left after leveling column-1, the following 1 indicates the number of bricks left after 
leveling the first two columns, and so on. The last value in that sequence must be 0, as 
the total number of bricks is 3N. Notice that for other inputs, the latter sequence could 
include negative values, which indicate deficits that require transfers of bricks to the left, 
from columns ahead. The student generated Fig. 3.

Fig. 3 shows that when the left-end is column-1, two 0’s are generated, indicating 
2 autonomous sub-sequences. When the student looked at the bars of the figure, he no-
ticed that 1 appears 4 times. If he could “turn” the 1’s to be 0’s, he would have had 
4 autonomous sub-sequences! He realized that this can be obtained by starting the level-
ling from the 3-rd position with 0 accumulated bricks, as shown in Fig. 4.

The student noticed that he could also start from the 6-th, 8-th, or 11-th column, 
and obtain the same result of 4 autonomous sub-sequences. He noticed that no matter 
where one starts the cycle, the sequence of accumulation-while-levelling numbers will 
be a shift of the original sequence in Fig. 3. The difference will only be in the location 
of the X-axis of the figure.

All in all, he realized that he may generate the accumulation sequence just once, 
starting from column-1; and then find the number of appearances of the value S that 
appears the maximal number of times. The output will be N-S. The computation of S re-
quires O(NlogN) time, a considerable improvement of the initial O(N²) solution. Careful 
look at the initially drawn figure yielded an observation of the bar height that appeared 
a maximal number of times, and elicited the association of adjusting the X-axis, so that 
this height will be the new 0.

autonomous parts. Since there are 6 columns in the fence, a total of 5 block transfers 
are required. Had the fence been circular, it could be partitioned into 3 autonomous sub-
sequences, and only 3 transfers were required. 

The reader may assess the correctness of the declarative observation above, for a 
linear fence. Notice that in the case of a linear fence there is only one partition possible, 
since there are given left end and right end. In the case of a circular fence there may be 
a variety of possibilities for partition. We need to find the best partition, i.e., the partition 
that yields as many autonomous sub-sequences as possible. 

One way of seeking the best partition is to examine N different cases of a linear fence 
– the case of column-1 as the left end, then column-2 as the left end, then column-3, 
and so on. However, this solution is “expensive” time-wise. Its time complexity is O(N²) 

Two students who sought a more efficient solution drew figures, which elicited their 
associations to a more efficient solution. One of them considered the following input of 
11 columns   5  2  7  1  1  2  4  6  1  2  2   and examined the accumulated value of 
remaining bricks while levelling the fence on-the-fly,  2  1  5  3  1  0  1  4  2  1  0   
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could include negative values, which indicate deficits that require transfers of bricks to 
the left, from columns ahead. The student generated the following drawing. 
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Figure-3. The accumulated value while levelling the fence on-the-fly, starting at column-1. 
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Figure-4. The accumulated value while levelling the fence on-the-fly, starting at column-3. 

           
           
           
           
           

           
           
           
           
           
           

Fig. 3. The accumulated values while levelling the fence on-the-fly, starting at column-1.
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3. Discussion

Visualization is a powerful method that can help one become more familiar with 
a given situation. It may give a “feel” of a posed problem and serve as a means for 
making explicit a detail or a picture in our mind. It may elicit constructive associa-
tions and connections between relevant elements. It may yield ideas. It may assist in 
reaching a plausible solution, as well as justifying it. A picture is sometimes worth 
a thousand words.

We have shown three different occasions of self-generated figures, that considerably 
assisted algorithmic problem solvers. Drawn figures elicited constructive associations 
and encapsulated mental models of posed problems. In the solution of the first task, the 
figure drawn by the problem solver helped him explicitly represent his mental model of 
the problem, with elements that involved a metaphor of rod flipping steps. His drawn 
visual scenario yielded not only the algorithmic solution, but also its intuitive justifica-
tion, without formal mathematical notations.

The solution of the second task involved visual display of integers as bars of differ-
ent heights. The visual display helped seeing ordering characteristics, especially with 
respect to left-end and right-end properties of inversions. The solution of the third task 
involved bars of integers as well, but the elicited associations were related to the recog-
nition of multiple appearances of equal elements. The drawn figure yielded a construc-
tive up/down shift of the X-axis of the represented values, and led to an elegant and 
efficient solution of sequence partitioning. The shift manipulations encapsulated not 
only the solution but also its justification.

Self-generated figures as a heuristic means in problem solving are studied in 
mathematics (e.g., Nunokawa, 2004), physics (e.g., Maries & Chandralekha, 2017), 
and additional domains, but not in computer science (to the best of our knowledge). 
In computer science, figures and visualizations mostly appear as teaching aids and 
computational-tracing means. Yet, self-generated figures may be most beneficial for 
problem solvers, as we have seen here. We believe that this problem solving heuristic 
should be elaborated, exemplified, and studied in the teaching of algorithmics, at all 
levels, including the Olympiad level. The enriching potential of figures may elicit and 
communicate associations and ideas informally, without words, but in a clear, elegant, 
and convincing manner.
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