Olympiads in Informatics, 2020, Vol. 14, 77-85 77
© 2020 101, Vilnius University
DOI: 10.15388/101.2020.06

Operator Utilization and Abstract Conceptions

David GINAT

Tel-Aviv University, Science Education Department
Ramat Aviv, Tel-Aviv, Israel 69978
e-mail: ginat@post.tau.ac.il

Abstract. Algorithmic challenges occasionally embed the utilization of specified operators. Suit-
able operator utilization is tied to recognition and capitalization on its characteristics, which
should be unfolded and comprehended. In seeking comprehension, one may invoke abstraction
perspectives with which to view the operators’ concrete features. We display invocations of such
perspectives in problem solving of several “unplugged” challenges, and mention our experience
with students. Problem solving of such challenges elaborates on comprehension and verification.
It enhances conceptual practice, without programming considerations. Practice of the interplay
between the abstract and the concrete elevates problem solving competence and confidence.

Keywords: abstraction, problem solving.

1. Introduction

Abstraction is a primary notion in computer science (CS). Common themes of abstrac-
tion include top down, design patterns, abstract data types, divide & conquer, recursion,
and more. They are related to design, problem solving, and the mixture of both. Prob-
lem solving abstractions are relevant at various levels in solving algorithmic challenges
(Wing, 2006; Ginat and Blau, 2017). Problem solvers may need to think concurrently
at multiple levels of abstraction and “move” back and forth between the concrete and
the conceptual. The concrete involves direct consideration of the givens of a problem
to solve. The conceptual may encapsulate a perspective of hiding, or ignoring details
and a perspective of relating to properties of recognizable parts (Frorer et al., 1997).
Algorithmic problem solvers, including IOI contestants, should invoke perspectives of
both kinds.

One element in various IOl tasks is that of operator utilization. An operation or func-
tion is specified, and contestants are requested to repeatedly use it, in a suitable and ef-
ficient way. Some examples are the task Sorting a Three-Valued Sequence in 101 1996;
the task Median Strength in IOI 2000; and the task XOR in IOI 2002. In the 1996 task,
the given operator was a simple exchange operation; in the 2000 task, the given operator



78 D. Ginat

was a function that finds the median of three different values; and in the 2002 task, the
given operator was an invert operation (called xor) on a rectangle of black/white pixels
in a matrix. In all the three tasks, problem solvers had to relate to properties of the given
operator, and capitalize on its characteristics. They also had to ignore details, while fo-
cusing on particular parts (e.g., focusing on “imagecorners” in the 2002 task).

All the three operators in the above tasks are simple operators. In addition, the task
goals are simply defined (though not easily reached). The solutions require significant
insight, but do not require complex computational structures. Correctness verification is
fundamental; and efficiency consideration appear in various forms — optimality (in the
1996 task), various time-complexity levels (in the 2000 task), (Horvath and Verhoeff,
2002), and lower bound measures (in the 2002 task).

Operator utilization may be practiced. Suitable practice may enhance experience and
familiarity with recognizing, and capitalizing on operator characteristics. Such prac-
tice may reduce gaps between abstract perspectives and concrete implementations, and
strengthen operator utilization conceptions. The reduction of gaps between one and
her object of thought may be a means for enhancing abstraction capabilities (Hazzan,
2002).

Practice of operator utilization may be offered with programming, as in the above
IOI tasks. It may also be conducted “unplugged” (Fellows et al., 2005). The former
involves conceptual notions combined with applied implementation. The latter may
exclude implementation considerations, while solely focusing on relevant abstraction
conceptions. This may occur with exploration of hidden patterns and properties of op-
erators, as well as with proof considerations. The tasks may be of various levels of diffi-
culty. A tutor may conduct gradual practice and examination of her students’ conceptual
competencies, elaborate on abstraction perspectives, and develop student awareness and
capabilities.

In this paper we demonstrate “unplugged” practices of operator utilization, with sev-
eral examples that involve simple operators — skip, reverse, and xor. The opera-
tors’ utilizations are requested in tasks that involve both algorithmic design and proof
consideration. The tasks and their solutions are displayed in the next section. We embed-
ded these tasks in-between programming challenges, at the beginning of the training
of our top 30 students (before reaching the IOl level). In the last section we relate to
abstraction facets of these tasks, elaborate on their role, and indicate our experience with
students.

2. Unplugged Operator Utilizations

The tasks in this section involve rather simple algorithmic schemes, but not necessar-
ily trivial algorithmic properties. In some of the tasks the goal may not be achieved for
every input, or initial state. The problem solver should recognize the initial states for
which the goal is attainable and the initial states for which it is unattainable. For the
former case, an algorithm should be developed, and for the latter case verification of



Operator Utilization and Abstract Conceptions 79

unattainability should be devised. In another task the goal may always be reached, but a
minimal number of operator invocations is required. An argument of minimality should
be formulated. Both of the algorithmic schemes and the sound argumentations are based
on recognized properties, and involve the abstraction perspectives of relating to proper-
ties of recognizable parts and ignoring subordinate details.

Some tasks are rather simple, and some are more challenging. The tasks are short,
and different from the 10I tasks mentioned above. Yet, the considerations necessary
in their solutions contribute to the practice of abstract conceptions. The first two tasks
involve sorting.

Skipping pairs. The operator skip (i, j), 0<i,j<N, skips the two adjacent inte-
gers, in the locations i, 1+1 in a list of integers, into the locations j, j+1 (respec-
tively). Given a random permutation of the integers 1..N, N>10, sort the permutation
using the given operator, or output “Sorting is impossible”.

The task specification hints that there may be inputs for which sorting may not be ob-
tained. One sorting scheme may be based on the following: skip the integer 1, together
with the integer next to it to the beginning of the permutation; then skip the integer 2;
then — the integer 3; and so on. If at the end of this process the rightmost two integers are
ordered, then we are done. But what if they are not in order? Can we correct this situation
by additional invocations of skip? Perhaps there is a better algorithmic scheme? We
relate to relevant ordering properties.

The situation in which two integers are not in order is called inversion (Knuth,
1973). The sorting goal — an ordered permutation — involves 0 inversions. Two proper-
ties that are relevant to examine are: 1. The number of inversions in the initial permuta-
tion; and 2. The change in the number of inversions by the operator. In examining the
latter, we examine “what happens” when we skip a pair of integers over a third integer,
say from right to left. If both of the integers are greater than the third, then the change
in the number of inversions is +2; if they are smaller than the third, then the change is
-2; if one is smaller and one is greater, then the change is 0. This yields the following

parity property:

In every invocation of skip, the change in the number of inversions
is an even number (vegardless of the skip length). Thus, the initial par-
ity of the number of inversions never changes.

The above observation implies that if the initial number of inversions is odd, then
the goal cannot be obtained, since the number of inversions may never reach 0. Thus, if
the rightmost pair of integers is unordered at the end of the skipping process, then sort-
ing cannot be attained. All in all, the recognition of the unattainable cases involved the
operator s property — no change in the parity of the number of inversions. The next task
involves sorting with a different operator.

Reversing 3 and 4 tuples.
A. The operator reverse3 (1), I<i<N-2, reverses the order of three adjacent in-
tegers in a list, the left one of them being in location i. Given a random permutation



80 D. Ginat

of the integers 1..N, N>100, sort the permutation using the given operator, or output
“Sorting is impossible”.

B. Answer part-A when the operator is reverse4 (i), 1<i<N-3, which reverses
the order of four adjacent integers.

In part-A, we may immediately notice that the middle element serves as an “axis”, and
its location does not change in an application of the operator. The two end elements are
swapped. This implies that the operator does not change the parity of the locations of the
three elements. Therefore, elements in the odd locations will always remain in the odd
locations, and so is the case with elements in the even locations. The operator will yield
sorting if and only if all the odd integers are initially in the odd locations.

In part-B no element serves as an axis, and each of the four elements changes the
parity of its location. In seeking relevant properties on which to capitalize, it may be
beneficial to simplify the task and initially focus on a particular subset of the input.
One such subset may be that of reversed permutations that should be inverted. Upon
examining short cases of such permutations, one may notice that the cases of N=4,5,8,9
may be sorted (inverted), and the cases of N=6,7.10,11 are problematic. In the cases of
N=8,9 one may use N=4,5 as generic templates that will be repeatedly used, in a roll-
ing scheme, in which integers will be rolled to their desired destinations. This may be
extended for larger values of N for which sorting is possible.

Why do some cases pose difficulties? We may seek the solution by relating to the
notion of the number of inversions, as in the first task. In the reversed permutations of
lengths N=6,7,10,11, the number of inversions is odd, while in N=4,5,8,9 it is even. This
leads us to the change in the parity of the number of inversions of the operator. Indeed,
as in the first task, here too, the parity of the number of inversions is not changed by the
operator. This property of the operator paves the way for explaining unattainability of
half of the initially-inverted cases.

At this stage we may widen the range of cases, and examine the general case. As in
part-A, rolling may be a useful scheme for “bringing” each of the permutation elements
to its final destination. However, as in the previous task, some rightmost elements may
not be in order at the end of rolling. If the parity of the number of inversions is initially
odd, then obviously sorting may not be attained.

But what if that parity is even among the last four integers, and they are still not or-
dered? Does this mean unattainability? Perhaps not. Perhaps a more involved ordering
scheme is needed? Further abstract conceptions of ordering may shed additional light.
We leave the answers to the interested reader.

At this stage we turn to two different tasks with the operator xor. In the first task, the
focus is on optimality, with respect to the number of operator invocations. In the second
task unattainability is relevant again.

Uniform color 1.

A. The cells in an N-cell row (N>100) are randomly colored black and white. The
operator xor1D (i, J), I<I, 7N, inverts the color of each of the cells between the
i-th and the j-th cells (including i and 7). Transform the whole row into white with
a minimal number of operator invocations.



Operator Utilization and Abstract Conceptions 81

B. An additional operator is provided — xor2D (i, j), 1<I, J<N, which inverts
the color of each of the cells between the i-th and the 7-th cells in both of the rows.
Transform the whole matrix into white with a minimal number of invocations.

In part-A, the elements on which to focus are the vertical sides that separate between
black and white cells, and between black end-cells and the “out”. We name the total
number of these sides S. Notice that S is always even. The goal is to reduce it to 0. A
single employment of xor1D may reduce S by at most 2, since the relevant impact of
xorlD is only on the end sides of a given rectangle, and not on the inner sides. An
observation of ignoring details is that the lengths and locations of chosen rectangles are
unimportant, as long as the two ends of each rectangle are sides that separate between
black and white. The total number of invocations is S/2. It is the minimum.
In part-B, rectangles’ dimensions may be 1D or 2D. Below is an example matrix.

Should we consider not only vertical sides, but also horizontal sides? Not quite. The
change in the horizontal sides derives from the change in the vertical sides. The horizon-
tal sides may be ignored. We may view xor2D as reducing S by at most 4 vertical sides
that separate between black and white.

The algorithmic solution will be divided into two stages — a stage of employing
xor2D and a stage of employing xor1D. The operator xor2D will be applied as long
as it can reduce S by exactly 4 in each invocation. Then xor1D will be applied on the
remaining sides that separate vertically between black and white.

Can S be reduced by 3? In addition, should we specify how we choose a rectangle
for an application of the operator xor2D, among several choices? The answers to
these questions should be part of an argument for minimality of the number of operator
invocations. If the answers to these questions are “no”, then we may argue for mini-
mality, as each stage of the two stages of the algorithmic solution above would involve
a minimal number of steps

Uniform color 2.

A. The cells in an NxM matrix (N,M>100) are randomly colored black and white.
The operator xor2 (i, j,d), 1<i<N, 1<3<M, inverts the colors of the cell <i,j>
and its adjacent cell in direction d, where d is one of four values — I, r, u, d (left,
right, up, down). Transform the whole matrix into white, or output “Transformation
is impossible”.

B. Answer part-A when the operator xorL is provided instead of xor2.
XorL (i, j,dl,d2) inverts the colors of 3 cells in an I or d shape — the cell
<1i,3>, and its adjacent cells in the directions d1 and d2.

C. Answer part-A when the operator xor3 is provided instead of the previous two.
Xor3 (i, j,d), I<i<N, 1<5<M, inverts the colors of: cell <i,7>, its adjacent cell
in direction d, and the next cell in direction d.



82 D. Ginat

In part-A We start by trying to whiten the matrix in a “snake-like” path, starting in the
top-left cell and ending in one of the bottom corners, while repeatedly applying the
operator on a cell in the path and on the next, adjacent one. All the cells in the path,
apart from the last one will become white. There are initial states for which the last
cell will become white, and initial states for which it will not. This is justified by the
following invariant property.

The parity of the number of white cells (as well as back cells) never
changes.

If the initial parity of the number of white cells is different from the total number of
cells in the matrix, then the goal may not be achieved.

Part-B is subtler. Since the operator operates on three cells at a time, parity of the
total number of cells of a particular color is not preserved. We start by trying to whiten
the matrix in a “snake-like” path, and progress slightly different in the bottom two lines.
Progression in these two lines may be done concurrently, from left to right, until two
cells remain — the right-bottom cell and an adjacent one. If all the matrix becomes white,
then we are done. But, one or both of the last two cells may be black.

At this point we may seek an illuminating property, or pattern. The operator is ap-
plied on three adjacent cells in every application. It may be useful to divide the matrix
cells into three groups, so that during the “snake like” process, the operator will be ap-
plied on one cell from each group. One way of doing so is by adding an auxiliary number
to each cell in a “diagonal manner” as follows.

B H:

Each cell belongs to groupl, group2, or group3. It is always possible to apply xorL
on three cells, such that each is from a different group. In the above diagram, the size of
groupl is 10 (cells), the size of group? is 9 and the size of group3 is 9. It may be proved
(possibly by induction), that the difference between the sizes of every two groups is at
most 1. This will help us later.

If we implement the “snake like” scheme (with special progress in the two bottom
lines) on the above example matrix, we will end up with an all-white matrix, accept for
the cell numbered 2 in the right column (which will be black).

Why is that? When we count the initial number of black cells in each group, we
notice that that there are three black 1’s, four black 2’s, and five black 3’s. The parity
of the number of black 2°s is different from that of black 1’s and black 3’s. When xorL
is applied, it inverts the color of one cell in each group. This implies the following
invariant property.



Operator Utilization and Abstract Conceptions 83

Every application of xorL maintains the difference of the parities of
the number of black cells between two groups.

The above invariant implies that if there is a parity difference between the initial
number of black cells of two groups, then this difference will remain; and there will
never be a point in which the number of black cells in both groups will be concur-
rently zero. This explains the result of trying to whiten the matrix of the above ex-
ample. All the cells of groupl and all the cells of group3 may be white, but one cell
of group2 may remain black.

We mentioned earlier that in the numbering of cells, the differences between the
amounts of 1’s, 2°s and 3’s are at most 1. This implies that if the parities of the amounts
of black cells are initially equal in the groups, then the matrix can be whitened. If the
amounts of 1’s, 2’s, and 3’s could be larger than 1, then the condition of equal parities
would be an insufficient condition for whitening the matrix, since the amount of black
cells could be 0 in one group and 2 in the other.

In Part-C, it is possible to whiten the whole matrix with the operator Xor3, except
for a 2x2 structure of cells that will remain. In this structure, two groups (out of 1, 2, 3)
will have one representative, and one group will have two representatives. While the
cells of the two groups with one representative may both be white, the two cells of the
third group may be both white or both black. What is a property of the initial number of
black cells that guarantees that these two cells will be white in the end of the whitening
process? We leave this question to the interested reader.

All in all, the key element that paved the way to the solution of part-B was the ab-
stract view of looking at the matrix cells as cells that belong to three interleaved groups
of similar sizes, such that xorL, may be applied each time on one cell of each group.
The resulting invariant property yielded the recognition of the cases in which the matrix
may be whitened and the cases in which it may not.

3. Discussion

The abstract perspectives of ignoring details and relating to particular properties of
recognizable parts are relevant in problem solving. The task solutions presented here
encapsulate them in computations with repeated utilizations of operators. Two opera-
tors were used for sorting and one was used for transforming binary matrix values.

The recognizable parts in the sorting tasks were pairs of integers. Unlike various
sorting schemes, the focus here was not on pair adjacencies, but on pair inversions. The
central element was the invariant property of the parity of the number of inversions.
This property was the key for understanding the operators’ characteristics and their
limitations.

The recognizable parts in the matrix transformation tasks were borders between ma-
trix cells. In the first matrix task, the natural tendency is to look at cell values, which are
colors of areas. But the important recognizable parts are borders between areas; more



R4 D. Ginat

specifically — borders between cells of different colors. The focus here was on the metric
property that relates the initial number of these borders to the amount that can be de-
creased in a single invocation of the operator. Borders between cells inside a given rect-
angle were ignored. So were possible selections between alternative choices of lengths
and locations of rectangles that kept the desired property.

In the second matrix task, the recognizable parts were adjacent cells in a matrix,
which were viewed in a way that suited a single operator application. Two properties
led to the solution of part-B of the task: 1. The partition of the matrix cells into three
groups of near sizes, so that an application of the operator on any cell of one group may
also be on representatives of the other two groups; and 2. The parity differences between
the number of black cells in the groups are preserved. The layout of the black and white
cells in the matrix was ignored. So was the number of white cells. Only the number of
black cells counted.

In our experience with students, the more challenging element during problem solv-
ing is the decision of what to focus on and what to ignore, as well as the kind of proper-
ties to look for. Novices tend to focus on the explicit data in a given problem, and try to
associate it with their familiar cognitive schemes. However, a primary theme in solving
non-routine problems is the recognition of hidden patterns and capitalization on these
patterns (Schoenfeld, 1992). Such recognition should be practiced.

One relevant practice involves problems like the tasks presented here. Although these
tasks may be posed as programming problems, their asset is in focusing on abstraction
perspectives and verification of recognized patterns. Programming may “bypass” the
latter. One may provide a suitable programming solution without sufficient insight into
the problem at hand, when only input/output outcomes are examined. An “unplugged”
experience is more thorough, and elaborates on the importance of comprehension and
verification. The focus is primarily on the conceptual practice. No considerations of
computer implementation are involved, and one focuses on exercising exploration and
recognition of hidden patterns.

Learners learn definitions, theorems, and methods, but their primary mean for prog-
ress is learning from examples and practicing examples (Sinclair ef al., 2011). Problem
solving with examples like those presented here enhances the practice of relating ab-
stract perspectives to concrete, explicit givens. Repeated practice of relating abstraction
perspectives to the concrete develops problem solving competence and enhances one’s
confidence in her abilities.

We embedded the tasks displayed here in the activities of our top 30 students during
the beginning of their advanced training. Although the primary focus of the training was
on solving [0I-like tasks, the practice of the tasks displayed here, in-between program-
ming tasks, widened the students’ viewpoint and encouraged their verification tenden-
cies. At first, they struggled with the more challenging tasks, and were unsure about the
verification of properties; but with further practice they felt more confident, realized the
relevance of such tasks, and related observations in these tasks to later programming
tasks. This was particularly apparent with the more competent students.



Operator Utilization and Abstract Conceptions 85

References

Fellows, M., Witten, L., Bell, T. (2005). Computer Science Unplugged, LuLu Pub.

Frorer, P., Hazzan, O., Manes, M. (1997). Revealing the facets of abstraction, International Journal of Com-
puters in Mathematical Learning, 2,217-228.

Ginat, D., Blau, Y. (2017). Multiple levels of abstraction in algorithmic problem solving, SIGCSE 48, ACM
Press, 237-242.

Hazzan, O. (2002). Reducing abstraction level when learning computability theory concepts, /7TiCSE 02, ACM
Press, 156-160.

Horvath, G., Verhoeff, T. (2002). Finding the median under IOl conditions, Informatics in Education, 1,
73-92.

Knuth, D. (1973). The Art of Computer Programming, Vol. 3, Addison Wesley Pub.

Schoenfeld, A. H. (1992). Learning to think mathematically: problem solving, metacognition, and sense mak-
ing in mathematics, in Grouws D. A. (Ed.), Handbook of Research on Mathematics Teaching and Learning,
334-370.

Sinclair, N., Watson, A., Zazkis, R., Mason, J. (2011). The structuring of personal spaces, Journal of Math-
ematical Behavior, 30, 291-303.

Wing, J. (2006). Computational thinking, Communications of the ACM, 49(3), 33-35.

D. Ginat — headed the Israel 101 project during the years 1997-2019.
He is the head of the Computer Science Group in the Science Educa-
tion Department at Tel-Aviv University. His PhD is in the Computer
Science domains of distributed algorithms and amortized analysis.
His current research is in Computer Science and Mathematics Educa-
tion, with particular focus on various aspects of problem solving and
learning from mistakes.







