
Olympiads in Informatics, 2020, Vol. 14, 61–76
© 2020 IOI, Vilnius University
DOI: 10.15388/ioi.2020.05

61

Recommending Tasks in Online Judges
using Autoencoder Neural Networks

Paolo FANTOZZI1,2, Luigi LAURA1,3

1Italian Association for Informatics and Automatic Calculus (AICA), Italy
2Sapienza University of Rome, Italy
3International Telematic University Uninettuno, Italy
e-mail: fantozzi@diag.uniroma1.it, luigi.laura@uninettunouniversity.net

Abstract. Programming contests such as International Olympiads in Informatics (IOI) and ACM
International Collegiate Programming Contest (ICPC) are becoming increasingly popular in re-
cent years. To train for these contests, there are several Online Judges available, in which users can
test their skills against a usually large set of programming tasks.

In the literature, so far few papers have addressed the problem of recommending tasks in online
judges. Most notably, as opposed with traditional Recommender Systems, since the learners im-
prove their skills as they solve more problems, there is an intrinsic dynamic dimension that has to
be considered: when recommending movies or books, it is likely that the preferences of the users
are more or less stable, whilst in recommending tasks this does not hold true.

In order to help the learners, it is crucial to recommend them tasks that are challenging but
not unsolvable compared with their current set of skills. In this paper we present a Recommender
System (RS) for Online Judges based on an Autoencoder (Artificial) Neural Network (ANN).

We also discuss the results of an experimental evaluation of our approach in both the scenarios
in which we consider, or not, the intrinsic dynamic dimension of the problem. The ANNs are
trained with the dataset of all the submissions in the Italian National Online Judge, used to train
students for the Italian Olympiads in Informatics.

Keywords: autoencoder neural networks, recommender systems, programming contests.

1. Introduction

Programming Contests (PCs) are competitions in which participants are faced a set of
tasks that require writing computer programs. Recent literature have emphasized the
importance and the effectiveness of PCs in the process of learning computer program-
ming (Audrito et al., 2012; Astrachan, 2004; Blumenstein et al., 2008; Dagienė, 2010;
Garcia-Mateos and Fernandez-Aleman, 2009; Wang et al., 2011).

In order to train for PCs, learners use Online Judges (OJs), also known as Program-
ming Online Judges, i.e., web based e-learning tools where a user can submit solutions

P. Fantozzi, L. Laura62

to a programming task. The user chooses a task from the many available; after reading
its statement, that includes the required formatting of input and output or the use of a
programming interface, the user writes a code to solve the task. The code is submitted to
the OJ, that verifies both the correctness, usually by testing it against a certain number of
test cases, and the efficiency, by checking that the running time and/or the memory usage
is under some limit. In Fig. 2 is shown an example of a programming task.

However, choosing the right task is becoming a complex problem, and an example
of an information overloading scenario, as observed in Yera Toledo et al. (2018): an
unexperienced user has to choose from thousands programming tasks, many of which
are probably beyond his current abilities. For example, University of Valladolid Online
Judge has more than 200k users and 2k tasks, whilst SPOJ accounts approximately 600k
users and 6k (public) tasks; in Fig. 1 we can see the list of available problems in the
Peking University Online Judge http://poj.org.

With so many available tasks, it is important to help users selecting their next task
by using a Recommender System (RS). Traditionally, RS are broadly divided into two
categories: Content Based ones, in which the recommendations derive from features of
the items to be suggested, and Collaborative Filtering approaches, in which the sugges-
tion is based on the items chosen by users similar to the current one.

As observed in (Audrito et al., 2019), there are some peculiarities of Online Judges
that prevent the use of a general Recommender System:

Users slowly improve their abilities, one task after the other, so the general con- ●
cept of user preferences does not apply: recommending a movie or a novel differs
significantly from recommending a task; a user will probably still like a novel af-
ter one year, whilst he might find a task too easy after the same amount of time.
Users with ● similar skills, i.e. users to whom we might want to suggest the same
set of tasks, might behave very differently in OJs, thus preventing us from consid-
ering them similar. For example, one might solve all the tasks involving a given

Fig. 1. The list of available problems in the Peking University OJ.

Recommending Tasks in Online Judges using Autoencoder Neural Networks 63

Olimpiadi Italiane di Informatica 2014
Fisciano, 18 – 20 settembre 2014 taglialegna • IT

Taglialegna (taglialegna)
Limite di tempo: 1.0 secondi

Limite di memoria: 256 MiB

La Abbatti S.p.A. è una grossa azienda che lavora nel settore del disboscamento. In particolare, nel tempo

si è specializzata nel taglio degli alberi cortecciosi, una tipologia di alberi estremamente alti, robusti e

ostinati. Si tratta di una specie molto ordinata: i boschi formati da questi alberi consistono in una

lunghissima fila di tronchi disposti lungo una fila orizzontale a esattamente un decametro l’uno dall’altro.

Ogni albero ha una altezza, espressa da un numero (positivo) di decametri.

1

2

3

4

3 2 2 1 4 2 3 2 3

(i valori rappresentano le altezze in decametri)

Il taglio di un albero corteccioso è un compito delicato e, nonostante l’uso delle più avanzate tecnologie

di abbattimento, richiede comunque molto tempo, data la loro cortecciosità. Gli operai sono in grado di

segare i tronchi in modo che l’albero cada a destra o a sinistra, secondo la loro scelta.

Quando un albero corteccioso viene tagliato e cade, si abbatte sugli eventuali alberi non ancora tagliati

che si trovano nella traiettoria della caduta, ovvero tutti quegli alberi non ancora tagliati che si trovano

ad una distanza strettamente minore dell’altezza dell’albero appena segato, nella direzione della caduta.

Data la mole degli alberi cortecciosi, gli alberi colpiti dalla caduta vengono a lora volta spezzati alla base,

cadendo nella direzione dell’urto, innescando un effetto domino.

Per assicurarsi il primato nel settore, la Abbatti S.p.A. ha deciso di installare un sistema in grado di

analizzare il bosco, determinando quali alberi gli operai dovranno segare, nonchè la direzione della loro

caduta, affinchè tutti gli alberi cortecciosi risultino abbattuti alla fine del processo. Naturalmente, il

numero di alberi da far tagliare agli operai deve essere il minore possibile, per contenere i costi. In

quanto consulente informatico della società, sei incaricato di implementare il sistema.

Assegnazione del punteggio
Il tuo programma verrà testato su diversi test case raggruppati in subtask. Per ottenere il punteggio

relativo ad un subtask, è necessario risolvere correttamente tutti i test relativi ad esso.

• Subtask 1 [5 punti]: Casi d’esempio.

• Subtask 2 [9 punti]: Gli alberi possono essere alti solo 1 o 2 decametri.

• Subtask 3 [20 punti]: N ≤ 50.

• Subtask 4 [19 punti]: N ≤ 400.

• Subtask 5 [22 punti]: N ≤ 5000.

• Subtask 6 [14 punti]: N ≤ 100 000.

• Subtask 7 [11 punti]: Nessuna limitazione specifica (vedi la sezione Assunzioni).

taglialegna Pagina 1 di 3

Abbatti S.p.A. (which is the Italian brand of tearDown INC) is a big enterprise that
works in the field of tree felling. In particular, it’s been a few years since it started im-
proving in tearing down barky trees, a peculiar kind of trees which is very tall and thick.
This particular species grow in a very tidy way: the woods made of these trees are actu-
ally a long horizontal line of trunks, placed at one decameter (32 8 feet) one another.
Each one of the trees has a particular height, which is expressed by a positive number
(decameters).

1

2

3

4

2 3 2 1 4 2 1

Tearing down one of these trees is a very hard thing to do and, although tearDown INC
employes the most andnced technologies on the market, it is a very time consuming activ-
ity, since barky trees’ bark is incredibly thick. The workers have the opportunity to chose
in which direction (left or right) the tree should fall after the cut.

Each time a barky tree falls down it hits the trees that haven’t been torn down which
are placed on its falling trajectory; in other words, it tears down each tree which is closer
than its height in the direction of the fall. Since the number of barky trees in this woods is
huge this dynamic of the fall creates a domino effect.

In order to be the best enterprise in barky tree felling tearDown INC developed a sys-
tem which is able to scan the whole wood, choosing which trees should be cut by workers
and in which directions they should fall with the aim of cutting all the trees. It’s important
to recall that it’s in the best interest of the enterprise to minimize the number of trees that
need to be torn down by workers directly. Your role in this situation is to implement the
system for tearDown INC.

Below we can see an example of a solution of the instance shown in the picture above:
it is enough to cut two trees:

OII 2014 – Finale nazionale
Fisciano, 19 settembre 2014 taglialegna • IT

– Al termine della chiamata a Pianifica non tutti gli alberi sono caduti.

– Viene fatta una chiamata ad Abbatti con un indice o una direzione non validi.

– Viene fatta una chiamata ad Abbatti con l’indice di un albero già caduto, direttamente ad

opera degli operai o indirettamente a seguito dell’urto con un altro albero.

Esempi di input/output
input.txt output.txt

7
2 3 2 1 4 2 1

4 0
5 1

6
3 1 4 1 2 1

0 1

Spiegazione
Nel primo caso d’esempio è possibile abbattere tutti gli alberi segando il quinto albero (alto 4 deca-

metri) facendolo cadere a sinistra, e il sesto albero (alto 2 decametri) facendolo cadere a destra. Il primo

albero tagliato innesca un effetto domino che abbatte tutti gli alberi alla sua sinistra, mentre il secondo

abbatte l’ultimo albero nella caduta.

1

2

3

4

2 3 2 1 4 2 1

1

2

3

4

2 3 2 1 4 2 1

←

1

2

3

4

2 3 2 1 4 2 1

1

2

3

4

2 3 2 1 4 2 1

→
1

2

3

4

2 3 2 1 4 2 1

1

2

3

4

2 3 2 1 4 2 1

Nel secondo caso d’esempio tagliando il primo albero in modo che cada verso destra vengono abbattuti

anche tutti gli alberi rimanenti.

1

2

3

4

3 1 4 1 2 1

1

2

3

4

3 1 4 1 2 1

→

1

2

3

4

3 1 4 1 2 1

1

2

3

4

3 1 4 1 2 1

taglialegna Pagina 19 di 24

Fig. 2. An example of a problem from a programming contest; this task is taken from the final
contest of the 2014 edition of the Italian Olympiads in Informatics (OII).

P. Fantozzi, L. Laura64

skill, while the other might just solve one task, related to that skill, and then move
on to tasks involving different skills.

Most notably, as opposed with traditional Recommender Systems, since the learners
improve their skills as they solve more problems, there is an intrinsic dynamic dimen-
sion that has to be considered: when recommending movies or books, it is likely that
the preferences of the users are more or less stable, whilst in recommending tasks this
does not hold true. In this paper we propose a task recommender system based on an
Autoencoder Neural Network (ANN); in particular, we address both the static case, in
which the user is represented by the task he solved, and the dynamic case, where we
try to represent the growth of a user by the sequence of the problems he solved. For
both cases we present a Recommender System (RS) for Online Judges based on an
Autoencoder (Artificial) Neural Network (ANN). We trained and tested the ANN using
data from the Online Judge used in the Italian Olympiads in Informatics (Olimpiadi
Italiane di Informatica – OII) (Di Luigi et al., 2016), targeted at secondary school
students training. We compared our approaches against state of the art more classical
recommender systems built using the Simple Python Recommendation System Engine
(SurPRISE – http://surpriselib.com). The experimental results confirm the ef-
fectiveness of our approach.

Preliminary versions of this paper appeared in the Proceedings of the 17th Interna-
tional Conference on Distributed Computing and Artificial Intelligence (DCAI 2020)
(Fantozzi and Laura, 2020a) (the static case), and in the Proceedings 13th International
Workshop on Social and Personal Computing for Web-Supported Learning Commu-
nities (SPeL 2020) (Fantozzi and Laura, 2020b) (the dynamic case); the comparison
against state of the art more classical recommender systems has not appeared before.

This paper is organized as follows: the next section provides the necessary back-
ground related to programming contests, online judges, and recommender systems,
whilst our approach is detailed in Section 3. In Section 4 we detail our experimental
findings and concluding remarks are addressed in Section 5.

2. Related Works and Background

In this section we discuss related work and the necessary background concerning pro-
gramming contests, online judges, and recommender systems.

2.1. Programming Contests and Online Judges

A programming contest is a competition in which contestants are faced with a set of
programming tasks, also called problems, to be solved in a limited amount of time and/
or with a limited amount of memory usage.

A single task can be broken into different subtasks of increasing complexity: basic
techniques might be enough to solve, within the given time and/or space limits, some of

Recommending Tasks in Online Judges using Autoencoder Neural Networks 65

the subtasks whilst the most difficult ones might require very specific algorithmic tech-
niques and data structures. Popular programming contests are:

The International Olympiads in Informatics (IOI), that are an annual programming ●
competition for secondary school students patronized by UNESCO. http://
www.ioinformatics.org/

The ACM International Collegiate Programming Contest (ICPC) is a multitier, ●
team-based, programming competition operating under the auspices of ACM.
https://icpc.baylor.edu/

The very recent International Olympiads in Informatics in Team (IOIT), that start- ●
ed in 2017, that are a team competition, like ACM ICPC, differently from IOI
(individual competition). Currently there are only four nations involved: Italy,
Romania, Russia, and Sweden. https://ioi.team/
Google Code Jam, that is based on multiple online rounds that concludes in the- ●
World Finals. https://code.google.com/codejam/
Facebook Hacker Cup, that is (citing from their site) “ ● an annual worldwide pro-
gramming competition where hackers compete against each other for fame, for-
tune, glory and a shot at the coveted Hacker Cup”. https://www.facebook.
com/hackercup/

The Online Judges are, usually, web based platforms that provide a large number of
programming tasks to be solved. There are several popular OJ platform, we cite the al-
ready mentioned University of Valladolid Online Judge https://uva.onlinejudge.
org, Sphere Online Judge (SPOJ) https://www.spoj.com/, CodeChef https://
www.codechef.com/, and Peking University Online Judge http://poj.org.

Yera and Toledo (Yera Toledo et al., 2018) present a brief survey on OJs, whilst more
information on tools and techniques for automatic evaluation of solutions submitted to
OJs can be found in (Ala-Mutka, 2005; Caiza and Del Alamo, 2013).

2.2. Recommender Systems in OJs

As already observed in the introduction, despite the large amount of literature devoted
to RS, the peculiarities of recommendation in OJs, where the relation user-item is way
more complex than the typical RS cases, prevent from using standard techniques and
forces the development of ad-hoc methods. This aspect is detailed in the paper of Audri-
to et al. (2012), where the authors propose a first approach on building a RS by tackling
the problem of ranking tasks in Online Judges.

Indeed, so far few research focused in the recommendation of tasks in OJs: we men-
tion the traditional collaborative filtering method with a new similarity measure adapted
to the case (Toledo and Mota, 2014), and an approach based on fuzzy logic (Yera Toledo
et al., 2018). Caro and Jimenez considered user-based and similarity-based approaches
In (Caro-Martinez and Jimenez-Diaz, 2017). Di Mascio et al. proposed a framework
that can allow recommendations and that can foster motivation in students by means of
a lightweight, badge-based, gamified approach (Di Mascio et al., 2018).

P. Fantozzi, L. Laura66

There is an online tool, developed by Stephen and Felix Halim, authors of the book
Competitive Programming (Halim and Halim, 2013), called uHunt, that helps its users to
choose the next problem to be solved, as shown in Fig. 3: their very practical (and effec-
tive approach) is to rank the problems according to their dacu, i.e. the distinct accepted
users. Indeed, as they state, “The bigger the dacu the easier the problem should be and
the more probable it will appear in the UVa discussion board”.

The “classical approaches” that use counting to estimate the grade of difficulty have
a well known drawback: the items suggested to the users will be always the popular ones
that will become even more popular, and so even more recommended. This means that a
new item will never be suggested.

2.3. Recommender Systems and Artificial Neural Networks

The use of deep learning techniques for recommender systems is divided in two catego-
ries that we call classical and hybrid.

The classical approach uses the standard architectures of neural networks, applying
them to this task. So, in this case, the most important part consists in the formulation of
the problem, since that, if the input data are not suitable to be the input of that specific
deep learning technique, then the result will be totally inaccurate.

The other approach is the hybrid one, that consists in using more than one type of
architecture at the same time. This kind of approach is useful when the input data are

Fig. 3. The Next Problem to Solve section in the uHunt .

Recommending Tasks in Online Judges using Autoencoder Neural Networks 67

not easily representable as a standard structure, like a user-item matrix. In (Zhang et al.,
2016) the authors use a Convolutional Neural Network to extract features from images
and then an Autoencoder to build the recommender system on the features.

In (Zhang et al., 2017a), in order to build a recommender system for hashtag in
tweets, the authors use at the same time some CNNs and some Recurrent Neural Net-
works (RNNs). In this work they use the CNNs to extract features from the image and
then the RNNs to extract information from the text, combining them using different
weights based on co-attention.

Since that a recommendation task is similar to a dimensionality reduction task, many
of the state-of-the-art techniques use some kind of Autoencoder to map the input in a
smaller space, that will be the representation of the correlations in the recommender sys-
tem. In particular, Sedhain et al. (2015) introduce the using of a vanilla Autoencoder to
build a recommender system. They use a partial masked input (the same techniques we
use in this work) and try to reconstruct it in output, the elements added in the output will
be the recommended elements. Strub and Mary (2015) extend the work of Sedain et al.
(2015): they use a denoising Autoencoder instead of the vanilla Autoencoder to build a
more robust system.

Chen and de Rijke (Chen and de Rijke, 2018) follow a similar approach, but they
use a Variational Autoencoder to perform top-N recommendation. They encode both
the user ratings and some side information in the compact space in the Autoencoder.
Zhang et al. (Zhang et al., 2017b) generalize the Contractive Autoencoder paradigm
into matrix factorization framework. Li et al. (Li et al., 2015) combine a probabilistic
matrix factorization with Marginalized Denoising Stacked Autoencoders to perform
collaborative filtering. This work can be considered as a general framework to use
these kinds of techniques; in this context, several works, including (Van den Oord et al.,
2013; Wang et al., 2015; Wang and Wang, 2014), can be viewed as special cases of this
framework.

3. Recommending Tasks Using Autoencoder Neural Network

Our goal is to provide recommendations to the users regarding the next task to deal with
among all the tasks in a system. To build this kind of system we assume that:

If a user obtains a score for a task it means that it is the max score possible for that ●
user in that task.
A user should solve the problems sorted by their grade of difficulty for the user; ●
thus, a user should never try to solve a problem that is much harder than the last
one he solved.
It is possible to deduce the score for a new problem based on the scores the user ●
obtained in other problems.

Note that there is one more assumption that is valid for the static case but not for the
dynamic: given a snapshot of the scores for the users it is not important the order fol-
lowed by the user to solve the tasks to foresee the score for another task.

P. Fantozzi, L. Laura68

Based on the above assumptions, we decided to build a model that takes as input the
current scores of a user and provides probable scores for the same user for other tasks.
Then we can choose between the forecasted scores and suggest the task with the highest
score between them.

If we consider the score as a judgment of the user for the item (i.e, the programming
task), then we can just exploit the already known techniques for recommending items.
We chose to use an Autoencoder to build the model. Since that we want to use just the
scores of the users, without any information from other sources, we take as input the
scores for all the tasks and we differentiate between static and dynamic:

Static: we mask a fraction of the scores in input as a non-solved task and we per- ●
form back- propagation from the complete scores.
Dynamic: we use the scores of a fixed moment in time as input and we perform ●
backpropagation from the next moment.

In this way, in the bottleneck layer, there should be a compact representation of the
similarities of the tasks.

4. Experimental Evaluation

In this section we describe the results of our experimental evaluation. We distinguish
the two approaches, i.e. static and dynamic, in the next sections, and then compare the
results against the ones obtained using a state of the art more classical recommender
system built using the Simple Python RecommendatIon System Engine (SurPRISE –
http://surpriselib.com).

4.1. Autoencoder Neural Networks: Static Case

To test the method we have designed, we have taken the submission to the OII Training
platform (Di Luigi et al., 2016) in a defined time range. The submissions were in the
form:

< user_id, task_id, datetime, score >

where each submission corresponds to a possible solution to a task from a user that per-
forms a certain score, based on many test cases. We filtered out all the scores equal to
zero because we can't know if they were just users testing the behaviour of the platform.
Then we considered only the best score for each task, for each user, to ignore all the at-
tempts to solve the problem before the user found the solution.

We performed a preliminary set of experiments with the original data: we built a user
x task matrix where each cell contains the best score of the user for the task. The result
is a 3148 x 409 matrix with 43051 non-empty cells. The matrix has an average of 105
submissions for each task and 13 for each user. The max number of users which have

Recommending Tasks in Online Judges using Autoencoder Neural Networks 69

submitted to the same task is 1070 and the max number of tasks with submissions from
the same user is 336. We consider the zero valued cells as a problem with no submission
from the user.

To use this matrix as a training set for this model, we duplicated the matrix and then
we have randomly masked some positive scores with zero. The masked matrix will be
the input to the model and the original matrix will be the output to reconstruct. The num-
ber of tasks masked for each user is a random number between 3 and 7, with the con-
straint that it should be anyway equal at most to the half of the submission for the user.

After the preliminary experiments, it was clear that data was too small, thus we per-
formed an operation of data augmentation. in particular, we have repeated many times
the same rows of the matrix with the result of a matrix with 8 times the rows of the
original. Then each row has been randomly masked independently, so we unlikely had
duplicated rows in the matrix. We have load all the data on a Google Colab instance
with an available GPU. Then we have splitted the data on train and test set with a ratio
of 0.8/0.2. We used Tensorow to build several models; the smallest was a Sequential
model with 5 layers: the input layer, a dense 64 neurons layer, a dense 16 neurons layer,
a dense 64 neurons layer, and an output layer with dimension equal to the input layer.
All the activations for the layers are ReLU with a constraint of a max value of 1.0 (the
max value of the score). We used an Adam optimizer with a learning rate of 0.001 and a
mean squared error loss function.

We trained the model for 500 epochs with a batch size of 128, and we have imposed
a validation split of 0.2. The resulting learning curve is the shown in Fig. 4, whilst the
accuracy curve measured is depicted in Fig. 5.

The standard accuracy might be not fully representative of the error of the model
(since that we have a sparse matrix), thus we computed a sum of the squared errors on
each samples in the test set. The resulting values follow the distribution shown in Fig. 6;
in Table 1 we report some stats of the SSE distribution.

Fig. 4. Model loss – static case.

P. Fantozzi, L. Laura70

Fig. 5. Model accuracy – static case.

Fig. 6. Distribution of sum of squared errors (SSE) – static case.

Table 1
Statistics of the distribution of SSE (Fig. 9) – static case

mean 2.27
std deviation 6.07
min 0.00
25% (1st quartile) 0.00
50% (2nd quartile) 0.05
75% (3rd quartile) 1.38
max 66.19

Recommending Tasks in Online Judges using Autoencoder Neural Networks 71

4.2. Autoencoder Neural Networks: Dynamic Case

In the dynamic case, our interest was in the evolution of the users, so the dataset that
we used was derived from the one, described in the previous section, for the static case.
Indeed, from the baseline dataset, we built a user x task matrix where each cell contains
the best score of the user for the task. The result is a 42155 x 409 matrix with 2035447
non-empty cells (we had to drop few submissions from the baseline dataset). As before,
the dataset has an average of 105 submissions for each task and 13 for each user. The
max number of users which have submitted to the same task is 1070 and the max number
of tasks with submissions from the same user is 336. As before, we consider the zero
cells as a problem with no submission from the user.

Since that the resulting matrix has many rows for each user (one row for each prob-
lem solved) that contains all the scores of the users until that moment, we use a row as in-
put and we impose the next row for the same user as output. This means that we consider
 – 1 samples for each user , where  is the number of problems solved by the user .

As for the static case, we load all the data on a Google Colab instance with an avail-
able GPU and the data was split into train and test set with a ratio of 0.8/0.2. We used
Tensorow to build several models; the smallest was a Sequential model with 11 layers:
the input layer, two dense 128 neurons layer, two dense 64 neurons layers, a dense 32
neurons layer, two dense 64 neurons layer, two dense 128 neurons layers, and an output
layer with dimension equal to the input layer. Also in this dynamic case, all the activa-
tions for the layers are ReLU with a constraint of a max value of 10, and we used an
Adam optimizer with a learning rate of 0001 and a mean squared error loss function.
We trained this model for 100 epochs with a batch size of 128, and we have imposed a
validation split of 02.

The resulting learning curve is the shown in Fig. 7, whilst the accuracy curve mea-
sured is depicted in Fig. 8.

Fig. 7. Model loss – dynamic case.

P. Fantozzi, L. Laura72

Since that the standard accuracy doesn't represent well the error of the model (i.e.,
we have a sparse matrix) we computed a sum of the squared errors on each samples in
the test set.

The resulting values follow the distribution shown in Fig. 9; in Table 2 we report
some stats of the SSE distribution.

Overall, from the results shown above, it seems that the static approach, described in
the previous section, seems to perform better than the dynamic one; this might be due to
the way the dataset has been built, and we plan to compare the two approaches against
other different datasets.

Fig. 8. Model accuracy – dynamic case.

Fig. 9. Distribution of sum of squared errors (SSE) – dynamic case.

Recommending Tasks in Online Judges using Autoencoder Neural Networks 73

4.3. Comparison Against Classical Recommender Systems

In this section we compare our approaches against state of the art Recommender Sys-
tems built using the python SurPRISE library: we used 11 models from this library. We
trained these models using the static dataset, i.e. the original dataset; the dynamic dataset
derives from this one and the dynamic ANNs, as seen in the previous section, performed
not as well as the ones trained on the static dataset.

Indeed, we experimented with 32 different ANNs for the static case and, after evalu-
ating the best performers, we experimented with 8 different ANNs for the dynamic
case. In Table 3 we can see the mean square error (MSE) for all 11 SurPRISE models,

Table 2
Statistics of the distribution of SSE (Fig. 9) – dynamic case

mean 4.40
std deviation 3.10
min 0.00
25% (1st quartile) 2.12
50% (2nd quartile) 3.86
75% (3rd quartile) 5.98
max 28.56

Table 3
The Mean Square Error of all the tested model, sorted from the biggest (worst) to the small-
est (best). Here we compare all the models from the SurPRISE library against the three best
performers of the several Autoencoder Neural Network we tested

Model MSE

NormalPredictor 0.1004863793
CoClustering 0.0903564508
SlopeOne 0.0599415086
NMF 0.0545891728
KNNBasic 0.0544956720
KNNWithZScore 0.0528847039
KNNWithMeans 0.0526918100
SVD 0.0512103173
BaselineOnly 0.0484940726
SVDpp 0.0479013953
KNNBaseline 0.0478215959
(dynamic) autoencoder-plus-time-512-128-Dropout(0.1)-512-lr0.001 0.0031555248
(dynamic) autoencoder-plus-time-2048-512-Dropout(0.1)-2048-lr0.001 0.0025685430
(dynamic) autoencoder-plus-time-1024-256-Dropout(0.1)-1024-lr0.001 0.0025619145
(static) autoencoder-2048-512-Dropout(0.1)-2048-lr0.0005 0.0000349358
(static) autoencoder-1024-256-Dropout(0.1)-1024-lr0.0001 0.0000281454
(static) autoencoder-2048-512-Dropout(0.1)-2048-lr0.0001 0.0000191324

P. Fantozzi, L. Laura74

and for the three best ANNs for both the static and the dynamic case. The results shown
in the table are sorted from the biggest (worst) to the smallest (best). It seems that, at
least for this dataset, the ANNs outperform each model from the SurPRISE library. In
the table, the three best results belong to ANNs trained for the static case, but in all our
experiments, i.e. 40 different ANNs (32 for the static case and 8 for the dynamic case),
we did not observe such a clear separation between the ANNs trained with the two dif-
ferent datasets.

5. Conclusions

In this paper we proposed the design of a recommender system for tasks suggestions in
Online Judges, based on a Autoencoder Neural Network. We trained the ANN with the
data from the OJ used by the secondary school students training for the Italian Olym-
piads in Informatics (Olimpiadi Italiane di Informatica – OII) (Di Luigi et al., 2016; Di
Luigi et al., 2018).

We tested two different approaches: a static one, that is more typical of a recom-
mender system, and a dynamic one, in which the dataset has been modified in order to
explicitly represent the evolution of a user. We also compared our approaches against
more traditional Recommender Systems model built using the python SurPRISE li-
brary.

We definitely think that Online Judges deserve their specific recommender systems,
and we hope that our one is a first step to the development of such systems. We plan to
implement our approach inside the italian OJ, and we are available to collaborate with
the developers of other Online Judge systems, by either implementing RS into those
systems or by testing our models against other datasets.

References

Ala-Mutka, K. M. (2005). A survey of automated assessment approaches for programming assignments. Com-
puter Science Education, 15(2), 83–102.

Astrachan, O. (2004). Non-competitive programming contest problems as the basis for just-in-time teaching.
In: Frontiers in Education, 2004. FIE 2004. 34th Annual, pages T3H/20–T3H/24 Vol. 1.

Audrito, G., Demo, G. B., and Giovannetti, E. (2012). The role of contests in changing informatics education:
A local view. Olympiads in Informatics, 6.

Audrito, G., Mascio, T. D., Fantozzi, P., Laura, L., Martini, G., Nanni, U., and Temperini, M. (2019). Rec-
ommending tasks in online judges. In: Methodologies and Intelligent Systems for Technology Enhanced
Learning, 9th International Conference, MIS4TEL 2019, Avila, Spain, 26–28 June, 2019, volume 1007 of
Advances in Intelligent Systems and Computing, pages 129–136. Springer.

Blumenstein, M., Green, S., Fogelman, S., Nguyen, A., and Muthukkumarasamy, V. (2008). Performance
analysis of game: a generic automated marking environment. Computers and Education, 50, 1203–1216.

Caiza, J. and Del Alamo, J. (2013). Programming assignments automatic grading: Review of tools and imple-
mentations. In: INTED2013 Proceedings, 7th International Technology, Education and Development Con-
ference, pages 5691–5700. IATED.

Recommending Tasks in Online Judges using Autoencoder Neural Networks 75

Caro-Martinez, M. and Jimenez-Diaz, G. (2017). Similar Users or Similar Items? Comparing Similarity-Based
Approaches for Recommender Systems in Online Judges. In: Aha, D. W. and Lieber, J., editors, Case-
Based Reasoning Research and Development, volume 10339, pages 92–107. Springer International Pub-
lishing, Cham.

Chen, Y. and de Rijke, M. (2018). A collective variational autoencoder for top-n recommendation with side in-
formation. In: Proceedings of the 3rd Workshop on Deep Learning for Recommender Systems, pages 3–9.

Dagienė, V. (2010). Sustaining informatics education by contests. In: International Conference on Informatics
in Secondary Schools-Evolution and Perspectives, pages 1–12. Springer.

Di Luigi, W., Fantozzi, P., Laura, L., Martini, G., Morassutto, E., Ostuni, D., Piccardo, G., and Versari, L.
(2018). Learning analytics in competitive programming training systems. In: 2018 22nd International Con-
ference Information Visualisation (IV), pages 321–325.

Di Luigi, W., Farina, G., Laura, L., Nanni, U., Temperini, M., and Versari, L. (2016). oii-web: an interactive
online programming contest training system. Olympiads in Informatics, 10, 195–205.

Di Mascio, T., Laura, L., and Temperini, M. (2018). A framework for personalized competitive programming
training. In: 2018 17th International Conference on Information Technology Based Higher Education and
Training (ITHET), pages 1–8.

Fantozzi, P. and Laura, L. (2020a). Collaborative recommendations in online judges using autoencoder neural
networks. In: Proceedings of the 17th International Conference on Distributed Computing and Artificial
Intelligence (DCAI 2020).

Fantozzi, P. and Laura, L. (2020b). A dynamic recommender system for online judges based on autoencoder
neural networks. In: 13th International Workshop on Social and Personal Computing for Web-Supported
Learning Communities (SPeL 2020).

Garcia-Mateos, G. and Fernandez-Aleman, J. L. (2009). Make learning fun with programming contests. In:
Transactions on Edutainment II, pages 246–257. Springer.

Halim, S. and Halim, F. (2013). Competitive Programming, Third Edition. Lulu. com.
Li, S., Kawale, J., and Fu, Y. (2015). Deep collaborative filtering via marginalized denoising auto-encoder. In:

Proceedings of the 24th ACM International on Conference on Information and Knowledge Management,
pages 811–820.

Sedhain, S., Menon, A. K., Sanner, S., and Xie, L. (2015). Autorec: Autoencoders meet collaborative filtering.
In: Proceedings of the 24th International Conference on World Wide Web, pages 111–112.

Strub, F. and Mary, J. (2015). Collaborative filtering with stacked denoising autoencoders and sparse inputs.
Toledo, R. Y. and Mota, Y. C. (2014). An e-learning collaborative filtering approach to suggest problems to

solve in programming online judges. Int. J. Distance Educ. Technol., 12(2), 51–65.
Van den Oord, A., Dieleman, S., and Schrauwen, B. (2013). Deep content-based music recommendation. In:

Advances in Neural Information Processing Systems, pages 2643–2651.
Wang, H., Wang, N., and Yeung, D.-Y. (2015). Collaborative deep learning for recommender systems. In:

Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pages 1235–1244.

Wang, T., Su, X.and Ma, P., Wang, Y., and Wang, K. (2011). Ability-training-oriented automated assessment in
introductory programming course. Computers and Education, 56, 220–226.

Wang, X. and Wang, Y. (2014). Improving content-based and hybrid music recommendation using deep learn-
ing. In: Proceedings of the 22nd ACM International Conference on Multimedia, pages 627–636.

Yera Toledo, R., Caballero Mota, Y., and Martínez, L. (2018). A Recommender System for Programming On-
line Judges Using Fuzzy Information Modeling. Informatics, 5(2), 17.

Zhang, F., Yuan, N. J., Lian, D., Xie, X., and Ma, W.-Y. (2016). Collaborative knowledge base embedding for
recommender systems. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 353–362.

Zhang, Q., Wang, J., Huang, H., Huang, X., and Gong, Y. (2017a). Hashtag recommendation for multimodal
microblog using co-attention network. In: IJCAI, pages 3420–3426.

Zhang, S., Yao, L., and Xu, X. (2017b). Autosvd++: An efficient hybrid collaborative filtering model via
contractive auto-encoders. In: Proceedings of the 40th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ‘17, page 957–960, New York, NY, USA. Association
for Computing Machinery.

P. Fantozzi, L. Laura76

P. Fantozzi is involved in the training of the Italian team for the IOI
since 2018. He is a Ph.D. student in Engineering in Computer Science
at “Sapienza” University of Rome. He is lecturer at LUISS University
for the courses: Lab of computer skills, Customer intelligence and big
data analysis logics, Introduction to network science.

L. Laura is Associate Professor at Uninettuno university; he is in-
volved in the training of the Italian team for the IOI since 2007, and
since 2012 is in the organizing committee of the Italian Olympiads in
Informatics. He got a Ph.D. in Computer Science in the “Sapienza”
University of Rome.

