
Olympiads in Informatics, 2020, Vol. 14, 47–60
© 2020 IOI, Vilnius University
DOI: 10.15388/ioi.2020.04

47

Consensus Algorithms for Highly Efficient,
Decentralized, and Secure Blockchains

Diego I. ESTEVEZ
University of Waterloo
200 University Ave W, Waterloo, ON N2L 3G1, Canada
e-mail: destevez@uwaterloo.ca

Abstract. This paper about blockchain technology introduces its theory, implementation, and ap-
plications while focusing on the types of consensus algorithms. The methodology is linguistic and
consists of a comparative analysis of the most popular algorithms. This paper is part of a broader
effort to make these concepts more accessible and help develop an environment where students
can grow and be part of this technological revolution.

Students with a background in algorithmic programming are uniquely suited to tackle highly
impactful questions about the algorithms underpinning blockchains. After reading this paper,
students should be able to build their own implementation of a blockchain and start doing re-
search into this technology.

Keywords: blockchain, consensus algorithms, peer-to-peer networks, cryptocurrency.

1. Introduction

1.1. Bitcoin as Leader of the Decentralized Revolution

Bitcoin has been a very popular topic recently. It’s been the promise of a technological
revolution while simultaneously a rather controversial concept for governments and
banks around the world. It introduced several concepts such as the blockchain and con-
sensus algorithms, which enabled an effective scheme for decentralized ownership of
information and transactions through a peer-to-peer network on the internet.

Bitcoin’s core ideas can be summarized as transactions made between users without
a middle-man and units of the currency directly owned by the individuals, not regulated
by a central party like a bank or a company. The latter is a direct consequence of con-
sensus algorithms, which, through cryptography and game theory, the network uses to
verify the interactions and spread the changes across the network. Consensus algorithms

D. Estevez48

replace the need for trust between users and explicit coordination. In fact, in the words
of Satoshi Nakamoto, the pseudonym of the inventor of Bitcoin, “What is needed is an
electronic payment system based on cryptographic proof instead of trust, allowing any
two willing parties to transact directly with each other without the need for a trusted
third party.” (Nakamoto, 2008)

1.2. What the Blockchain is

The blockchain works as a public ledger that stores the interactions that users make
within the network. As explained in the Bitcoin whitepaper by Nakamoto, in this sys-
tem:

Sending money between parties represents a change in the balance of the nodes ●●
involved. This change is referred to as a “transaction,” and, as soon as it’s made,
it is broadcast to all the nodes.
Members of the network, otherwise known as nodes or peers, store these trans-●●
actions locally in a pool of unconfirmed transactions. Eventually, they will group
these transactions into a block, a container of transactions, which, in Bitcoin’s
case, has a memory limit of 1MB.
A blockchain contains a linear chain of blocks, with each of the blocks containing ●●
the cryptographic hash of the previous one. Thus, if any block prior to the current
one is changed, its hash will change, and the chain of hashes will break.
After collecting transactions to build a new block, a node has to confirm it and ●●
broadcast it to the rest of the nodes. To confirm the block, and the transactions
contained in it, the node needs to meet the criteria of the consensus algorithm
of the network. In Bitcoin’s case, this algorithm is called Proof of Work (PoW)
and asks for nodes to find a “nonce” (a number) that, when concatenated to some
information in the block, leads to a hash with a specific number of leading ze-
roes. Therefore, since the node doesn’t know which nonce will work beforehand,
it needs to spend computational power by iterating through integers to find this
number.
After finding a nonce that works, nodes broadcast the block to the network along ●●
with the nonce. The rest of the nodes will receive this information and verify it.
Verifying whether the nonce works is much easier than calculating it in the first
place. Therefore, it is easy to check that computational power was spent by some-
one else.
Bitcoin applies the principle that the longest chain will always be the “correct” ●●
one. This means that if the broadcasted block will lead to a longer chain and
is verified, nodes will adopt it and add this new block to their blockchains. It’s
possible when two blocks are broadcasted at the same time that one block gets
to some nodes before the other. Eventually, as nodes keep adding blocks, one
of the chains will become the longest and will be adopted by the rest of the
network.

Consensus Algorithms for Highly Efficient, Decentralized, and Secure Blockchains 49

The fact that the blocks are connected by their hashes allows for immutability. Ad-
ditionally, anyone can join the network and get a copy of this immutable ledger, meaning
that the information there is public and can’t be censored.

Through consensus algorithms like PoW and the principle of the longest-chain, Na-
kamoto was able to solve the problem of double-expenditure, as well as circumventing
some of the shortcoming of peer-to-peer networks, such as users/nodes going offline and
the possibility of having nodes with different versions of the chain.

1.3. Why Scalability is so Important

In this paper’s context, scalability means that the blockchain can handle a high transac-
tion rate without clogging. This is key because, otherwise, it may be possible that appli-
cations of this technology will not be fully adopted. As a consequence, the capacity for
a positive change of this technology in society will be undermined.

A network that fails to scale will negatively affect any participant’s experience,
thereby decreasing their retention and potentially incentivizing the use of worse alterna-
tives that are useful in the short-run but centralized in the long-run.

2. The Problem

2.1. Consensus Algorithms

As previously explained, consensus algorithms are the mechanism that the network uses
to confirm transactions. These algorithms pick the node that will add the next block
based on a factor: with Proof of Work, a node with t percent of the total computational
power of the network, known as hash rate, has a probability of t percent of finding the
nonce and having his block confirmed. With other algorithms like Proof of Stake, a node,
also known as validator in this context, is selected to add a block based on its total share
of the blockchain’s currency

As more transactions are made in the network in a short period of time, the size of
the pool of unconfirmed transactions grows. Thus, transaction makers include a small
amount of cryptocurrency, known as a transaction fee, as an incentive for validators to
include the transaction in a block. This is due to the fact that when a validator confirms a
block, it collects all the fees of the transactions contained within it. Therefore, the larger
the transaction fee, the higher the incentive and the chance that it will be added soon in
a block and confirmed.

Additionally, in Bitcoin’s Proof of Work, a node is awarded newly generated cur-
rency by the system for every new block that it confirms. However, as time passes, these
rewards are halved until they eventually converge to 0. At that point, the network’s cur-
rency reaches the maximum supply that will ever be available. In Bitcoin’s case, this
number is about 21 million.

D. Estevez50

2.2. The Difficulty of this Issue

Because of the nature of these algorithms and peer-to-peer networks, there’s usually a
trade-off between scalability, security, and decentralization.

A consensus algorithm that scales is typically less secure since it is likely to be more
fault-tolerant and have more relaxed requirements for validators. Higher validation stan-
dards results in more challenging tasks that delay the process.

Keeping a system totally decentralized also has an impact on performance since it re-
quires more users to verify a single transaction and mitigate the chance of a node gaining
an edge in the verification process and centralizing power. More complicated tasks by
the consensus algorithms lead to a smaller set of nodes that can validate, concentrating
power in them and taking away decentralization from the network.

An extremely secure system requires an extremely challenging task to confirm a
block. Consequently, nodes need more incentives and resources to pursue this chal-
lenge of adding a block. Nodes with the most resources will have a higher chance of
becoming successful validators. However, this tends to be a very small minority in
very secure systems, which negatively affects the decentralization and scalability of
the network.

In terms of security, blockchains in general tend to be vulnerable to 3 attacks: In the
51% attack, the malicious agent creates an unofficial copy of the network’s blockchain.
The agent then makes a transaction only in the official chain. For this transaction, the
agent would have exchanged the cryptocurrency for something else. However, the prob-
lem arises when this user has so much computational power that, while the transaction
still remains unconfirmed in the main chain, it can add blocks on its nonofficial chain
faster than the rest of the network on the official chain. Thus, the nonofficial blockchain
would eventually become larger than the official one, which, if broadcast, the rest of
nodes would adopt based on the principle that the longest chain is the correct one. This
means that the agent can now double-spend the money since the unofficial chain, which
is the one that nodes would now have, does not contain the transaction that he or she had
made. The double expenditure problem is called the Byzantine Generals problem.

3

transaction fee, as an incentive for validators to include the transaction in a block. This is due
to the fact that when a validator confirms a block, it collects all the fees of the transactions
contained within it. Therefore, the larger the transaction fee, the higher the incentive and the
chance that it will be added soon in a block and confirmed.

Additionally, in Bitcoin's Proof of Work, a node is awarded newly generated currency
by the system for every new block that it confirms. However, as time passes, these rewards
are halved until they eventually converge to 0. At that point, the network's currency reaches
the maximum supply that will ever be available. In Bitcoin's case, this number is 21 million.

2.2 The difficulty of this issue
Because of the nature of these algorithms and peer-to-peer networks, there's usually

a trade-off between scalability, security, and decentralization.
A consensus algorithm that scales is typically less secure since it is likely to be more

fault-tolerant and have more relaxed requirements for validators. Higher validation standards
results in more challenging tasks that delay the process.

Keeping a system totally decentralized also has an impact on performance since it
requires more users to verify a single transaction and mitigate the chance of a node gaining
an edge in the verification process and centralizing power. More complicated tasks by the
consensus algorithms lead to a smaller set of nodes that can validate, concentrating power in
them and taking away decentralization from the network.

An extremely secure system requires an extremely challenging task to confirm a block.
Consequently, nodes need more incentives and resources to pursue this challenge of adding
a block. Nodes with the most resources will have a higher chance of becoming successful
validators. However, this tends to be a very small minority in very secure systems, which
negatively affects the decentralization and scalability of the network.

Figure 1: There's a trilemma of trade-offs between security, scalability, and decentralization

in blockchains consensus algorithms.

Decentralization

Fig. 1. There’s a trilemma of trade-offs between security, scalability, and decentralization in
blockchains consensus algorithms.

Consensus Algorithms for Highly Efficient, Decentralized, and Secure Blockchains 51

Another famous attack is Sybil, where the malicious agent tries to fill the network with
its own nodes to gain a larger total share. In PoW, the probability of mining the next block
is equal to the share of the total computational power. Thus, the number of nodes that the
agent controls is irrelevant. What matters is the share of the absolute CPU/GPU power.

Peer-to-peer networks are also vulnerable to denial of service attacks (DoS), where
a node is bombarded with packets. In this case, the node gets flooded and cannot oper-
ate normally.

2.3. The Purpose of the Question & Approach

One of the most pressing questions is which consensus algorithm has the right balance
between security, scalability, and decentralization for permissionless, open blockchains.
In this qualitative paper, I try to answer that question by providing a linguistic framework
to make a comparative analysis of the most popular algorithms that fall in this category.

3. The Implementation

To show how blockchains work, I will develop a basic version from scratch using Py-
thon. The snippets shown throughout the document are either in Python 3 or JSON.

Fig. 2 shows a reduced version of a Bitcoin transaction that highlights its most im-
portant features: the input amount, the fee for miners, a hash identifying the transaction,
and the addresses of both the sender and the recipient. Nodes collect these transactions
into their pools of unconfirmed transactions and then select some of these to go into
their next block.

{
 "hash":"8639c99fafd10ef8cd0b1c0499eb8983b4bc7810642589df374a0f87bb337ff4",
 "received-time":"2020-06-18 21:26",
 "input-amount":10.02440268,
 "fee":0.00006780,
 "sender":"1Ptv5qNTg6bpoMrH8zKqpiSA62jC3i76Nr",
 "recipient":"35EAYWQmq7nwBYqkYNLZKZf5WAY4sXs7BT"
}

Fig. 2. A simplified model of a Bitcoin transaction in JSON.

{
 "hash":"0000000000000000001072a36c38d3c9e6cf1b3bc85d457606a39830574ba8c0".
 "previous-block":"53cc5f7efb064a603a1dca0ca9747c716ce4862e32e99f762a209b",
 "timestamp":"2020-06-18 22:54",
 "index":635362,
 "nonce":318525442,
 "transactions": {...}
}

Fig. 3. A simplified model of a Bitcoin block in JSON.

D. Estevez52

Fig. 3 is a simplified version of Bitcoin’s Block 635362, which stores 2,386 trans-
actions. Since each block contains the hash of the previous block, it would require
an enormous power to change a value in a block prior and rebuild the chain. Thus,
with every additional block, the chain is reinforced as it would require more power to
modify the data.

The snippet in Fig. 4 contains a further simplified version of a transaction and block,
as well as functions to instantiate the first block (genesis), add new blocks and transac-
tions, and hash a block.

Since this blockchain is not part of any peer-to-peer network, it doesn’t have any
consensus algorithm or mechanism to prevent double-expenditure. However, several
nodes need to have this chain and be able to synchronize it in real-time. Thus, next, we
will see the most popular algorithms and implement Proof of Work, the most simple and
common one.

from time import time
import hashlib
import json

class Blockchain:
 def __init__(self):
 self.unconfirmed_transactions = []
 self.chain = []
 self.new_block(previous_hash='1', nonce=1) # Create the genesis block

 def new_block(self, nonce, previous_hash):
 block = {
 'index': len(self.chain) + 1,
 'timestamp': time(),
 'transactions': self.current_transactions,
 'nonce': nonce,
 'previous_hash': previous_hash or self.hash(self.chain[-1]),
 }

 # Reset the current list of transactions
 self.current_transactions = []
 self.chain.append(block)
 return block

 def new_transaction(self, sender, recipient, amount):
 self.current_transactions.append({ 'sender': sender,
 'recipient': recipient,
 'amount': amount})
 return self.last_block['index'] + 1

 @staticmethod
 def hash(block):
 block_string = json.dumps(block, sort_keys=True).encode()
 return hashlib.sha256(block_string).hexdigest()

Fig. 4. A Python 3 implementation of a basic blockchain1.

1	 This implementation is based on that described in the article: Van Flymen, D. (2017, September 25).
Learn Blockchains by Building One. From
https://medium.com/@vanflymen/learn-blockchains-by-building-one-117428612f46

Consensus Algorithms for Highly Efficient, Decentralized, and Secure Blockchains 53

4. Popular Algorithms

4.1. Proof of Work

Proof of Work (PoW) consists of combining the header of the block (that is, the part
that includes the hash of the previous block and a Merkle tree) with the nonce to get
a hash that meets a condition stipulated by the network. In Bitcoin’s case, the task’s
complexity gets automatically adjusted every 2,016 blocks (or about 14 days) so that one
block is confirmed, on average, every 10 minutes. To increase the difficulty, the network
demands more zeroes in the hash, thereby exponentially increasing the computational
power needed to confirm a block.

Since the first validator, known as miner in PoW, who discovers the nonce receives
a reward (typically newly generated currency and all the transaction fees in the block),
there’s an incentive for nodes to compete to confirm the blocks as fast as possible.
The node that can spend the most computational power has the highest chance of find-
ing it first.

Some reasons why the difficulty of the task increases are to make up for advance-
ments in technology that could make the task trivial and to decrease the chance that a
nonce is found by chance. Additionally, the fact that finding the nonce requires so much
‘work’ means that it’s hard for a single agent to gather 51% of the computational power
of the network and be in the position to implement an attack.

Fig. 5. Diagram illustrating the behaviour of the PoW algorithm, which consists of finding the
cryptographic hash of a nonce, the hash of the previous block, and the transaction Merkle root
and evaluating the resulting hash against a condition. (Kumar, 2018).

D. Estevez54

4.1.1. The Implementation
To implement PoW, we need the logic to compute nonces and verify them. We will
continue using the example above (Fig. 6) that takes a further simplified approach to
PoW.

In this fragment, three new functions are present:
Hash ●● computes the hash of a JSON block using SHA-256.
Valid_nonce ●● takes a suspected nonce, the last confirmed nonce, and the hash of the
last block. Then, it joins them together, computes the hash, and checks whether the
first 4 digits of the hash are all zeroes. This is a slightly different version of PoW
than the one described previously, but the same principles still apply.
Proof_of_work ●● receives the hash and the nonce of the last block and looks for the
nonce by iterating through a loop.

4.1.2. Analysis
Given that PoW requires so much computational power, it is a very safe consensus algo-
rithm. For critical networks like Bitcoin, the probability of implementing a 51% attack
is very low because it would require immense computational power. On the other hand,
the chances of finding the nonce by sheer luck are also slim.

Scalability-wise, given the limit on block size and frequency, significant traffic in-
creases (i.e., Bitcoin bubble in late 2017) lead to “bottlenecks” in the pool of uncon-
firmed transactions. This means that it might take many blocks (or days) until a specific
transaction gets confirmed. Thus, the average transaction fee also must increase to in-
centivize miners to include the transaction in a block.

In PoW, decentralization is negatively impacted as the network grows. As the
task’s difficulty increases, it becomes more unaffordable for the average user to take
part in the verification process because she or he might lack a powerful enough com-

class Blockchain:

 ...

 @staticmethod

 def valid_nonce(last_nonce, nonce, last_hash):

 guess = f'{last_nonce}{nonce}{last_hash}'.encode()
 guess_hash = hashlib.sha256(guess).hexdigest()

 return guess_hash[:4] == "0000"

 def proof_of_work(self, last_block):

 last_nonce = last_block['nonce']
 last_hash = self.hash(last_block)

 nonce = 0

 while self.valid_nonce(last_nonce, nonce, last_hash) is False:

 nonce += 1

 return nonce

Fig. 6. The implementation of PoW into our basic blockchain model (van Flymen, 2017).

Consensus Algorithms for Highly Efficient, Decentralized, and Secure Blockchains 55

puter to compete. The algorithm centralizes mining power in users who have high-end
computers (ASICs mainly) and are located in countries where electricity is compara-
tively cheap.

The consumption of so much energy for PoW has a negative environmental impact,
which cannot be ignored in the long run. In fact, Bitcoin alone (which implements PoW)
uses the same amount of energy in a year as Denmark (Vashchuk & Shuwar, 2018).
Besides, all this computational work is wasted: finding a nonce doesn’t contribute or
add to society in any meaningful way. Alternatives have been proposed that make use
of this computational power to solve heavy computations in scientific research, thereby
contributing to humanity (Wahab & Mehmood, 2018).

PoW is still a relevant algorithm that enabled many of the first applications of block-
chain technologies (Bitcoin and Ethereum, to name a few) and provided a very secure
method of verifying transactions. However, a system like PoW may be utterly inappli-
cable to applications that require transactions to be confirmed quickly and can scale to
billions of users. A social network on the blockchain using PoW, for instance, would be
unfeasible.

In the long-run, mainstream applications won’t be able to use PoW because of the
system’s tendency for centralization, the lack of scalability, and the exponentially in-
creasing costs of computation. PoW can still be very practical for small projects and as a
means to generate the currency, but the community must realize that it will have to adopt
another system if the application grows significantly. Furthermore, given that electricity
won’t be paid using the cryptocurrency, the currency’s price will be negatively affected
as mining costs increase.

4.1.3. Task
The best way to fully understand how a consensus algorithm works is by implementing
one. At the beginning of the section, a basic model of a blockchain was shown using
Python. Now, you can implement PoW using the information on this paper.

4.2. Proof of Stake

With PoW, a node has a probability of being selected to mine a block directly pro-
portional to its share of the total computational power of the network. With Proof of
Stake (PoS), computational power is replaced by the amount of the cryptocurrency, or
tokens, that the node has. In most implementations of PoS, the user has to freeze some
funds to be considered by the consensus algorithm as a possible validator, or minter in
this context, where the higher these funds are and the longer they have been frozen, the
higher the chance that the user is selected to add the next block. Other users have to at-
test that the block is correct and, if that’s the case, the transaction fees of the block are
distributed to the minter and the verifiers, and the frozen funds are returned. If the vali-
dator adds an invalid block, it is economically penalized by losing a part or all of his

D. Estevez56

or her frozen funds. Consequently, it is in the best interest of the wealthy nodes, which
have the highest chance of being selected, to be honest, as being dishonest would have
them lose a significant amount of money. For nodes to be considered as minters, they
need to be online 24/7. Any computer with access to the internet can participate.

In PoS, the network takes a virtual approach to consensus. Instead of requiring a
physical investment such as CPU/GPU power, the algorithm pseudo-randomly deter-
mines it based on a virtual investment, the amount of the native cryptocurrency that
the node is willing to freeze. Thus, Proof of Stake is an energetically low-consump-
tion alternative to Proof of Work and seeks to reward the nodes’ commitment to the
network.

In terms of decentralization, there’s undoubtedly a propensity for wealthy nodes to
get wealthier, as they would have a higher chance of being selected to validate a block
and earning the transaction fees. The system can still be gamed by trying to hold as
much currency for as long as possible, but the algorithm by slightly randomizing its
choice for minter guarantees a minimum decentralization level and that the same agent
will not always be chosen. Some networks, however, require a minimum amount to be
staked, limiting an average person’s capacity to become a minter. But, most of the time,
this barrier tends to be smaller than buying high-end computers and paying signifi-
cant electricity bills. Thus, there’s a lower chance of disparaging economic inequality
among the nodes.

Scalability-wise, PoS outperforms PoW. Furthermore, a system called sharding has
been proposed that improves the scalability very significantly. In sharding, the network
is split into different chains, on which validators work independently, and blocks are
processed simultaneously.

However, a significant drawback of this algorithm is that, given that PoW doesn’t
award minters with newly generated currency like in PoW, there’s no way for supply to
be created of the cryptocurrency or token. Therefore, to produce the tokens of the block-
chain, a variation of PoS should be implemented that also distributes these tokens fairly
across the network. An option could be to use PoW to generate currency at the beginning
and then switch to PoS once a number of tokens is met.

Unfortunately, pure PoS is less secure than PoW, as the incentive to not work on
multiple chains is not present. In PoW, working on parallel chains would require a lot
of computational power. In PoS, however, the nodes could simultaneously stake on
multiple chains and increase the chance of being selected as minter. To solve this is-
sue, called “nothing at stake,” nodes that stake on various chains could be penalized
by losing their frozen funds. Another vulnerability was exposed by Bitcoin researcher
Andrew Poelstra, who showed that pure Proof of Stake (without any extra logic or
procedures) is reversible, leading to the possibility of previous blocks being altered and
enabling double-expenditure (Poelstra, 2015). Fortunately, the chance of a 51% attack
is less realistic in PoS because the attack would require the agent to acquire a huge
percentage of the tokens of the network. Based on economic supply and demand, each
extra token purchased would become slightly more expensive. Thus, for blockchains
worth billions of dollars, this would cost immensely.

Consensus Algorithms for Highly Efficient, Decentralized, and Secure Blockchains 57

4.3. Delegated Proof of Stake

Delegated Proof of Stake (DPoS) is a popular algorithm that consists on the community
deciding on the nodes that will add the next blocks. The individuals who possess cur-
rency can vote for witnesses and delegates. Witnesses are the nodes that add blocks, and
the network keeps a list of the nodes that receive the highest number of votes and picks
the top X that will be adding the blocks. This number X changes by blockchain, and the
network iterates through the top X witnesses giving each a few seconds to add its block.
If the witness doesn’t add the block in time, she or he gets penalized. Delegates, who
are also voted on, check the validity of these nodes, ensure the network’s well-being,
and can propose modifications to the blockchain. In DPoS, there’s continuous voting of
delegates and witnesses.

DPoS positions itself as a system of decentralized governance. Holders of the cryp-
tocurrency or token are the voters whose votes are weighted by how much currency they
hold. To incentivize stakeholders to vote for them, witnesses have to share a percentage
of the transaction fees they earn with their voters. As a consequence, witnesses have to
appear trustworthy and that they will add many blocks and on time. On the other hand, if
any party acts dishonestly, it can be immediately expelled by the voters.

This scheme removes the random factor of PoS and concentrates the validators among
nodes with the highest credibility. The centralization parameter is trustworthiness, not
wealth, which may be beneficial for the network because there’s a competition to gain
credibility among users. There are no significant barriers to entry, like investing in a
high-end computer, and a node doesn’t need capital to increase its chance of becoming
a witness or delegate. This means that there’s likely to be a higher degree of opportunity
and economic equality among the nodes. Proponents of DPoS campaign that the fact
that it is easy to enter the network means that the system is more decentralized than PoW
or PoS. However, this forgets that voters need wealth to have some meaningful voting
power. It is the wealthy users that have the most significant influence through their votes
and those that essentially control the direction of the network.

As in PoS, the fact that the algorithm is not bound by a physical means or network’s
rules on block rate improves the capacity for scaling. But, opposite to PoS, the nodes
don’t have to be online all the time to participate and don’t need to have the full chain.
Additionally, the fact that minting power is concentrated in a few users significantly im-
proves the rate at which blocks are added. Indeed, networks that select fewer witnesses
will be the fastest, but this improvement in scalability will come at the direct cost of
decentralization, and, by extension, security.

The fact that the age of coins is not taken into account is beneficial, as it removes the
incentive for not moving wealth or trying to hack old, unused accounts that are poorly
secured. Furthermore, the fact that voting power is proportional to wealth means that it
would be extremely costly to get so much of it. Interestingly, while the “nothing at stake”
problem is still present with this algorithm, if a user participates in multiple chains si-
multaneously, it will harm his or her reputation, essentially socially penalizing this user
for the behavior.

D. Estevez58

For the entire system to work correctly, there needs to be an active, unorganized
base of stakeholders that votes for the witnesses and delegates in the network’s best
interest. However, there is no guarantee of this. In fact, the tendency of the network to-
wards centralization risks security, as it incentivizes the creation of cartels or groups to
conspire together. For witnesses and delegates, this would be much more viable as there
are few of them, and, by conspiring together, they could get away with malicious acts
like double-spending. Networks that have a lower requirement of delegates to validate
a block are especially vulnerable to one of these attacks, as it would be easier to meet
that number. This phenomenon can also be extended to voters, who could conspire or be
bribed to elect specific delegates and witnesses. There’s certainly nothing that assures
that the witnesses and delegates will never act maliciously.

4.3.1. Solution as a Layer 2
DPoS scales much better than PoS or PoW and can allow many applications that require
several transactions per minute, such as blockchain video games (i.e., Crypto Kitties)
or social networks (i.e., Steemit). However, DPoS should only be used for applications
that can sacrifice security and decentralization for scalability. DPoS should not be the
foundational consensus algorithm for systems that need very significant security and
that must be trustless between nodes, such as those that manage financial transactions or
health certificates.

An advantageous approach is to use DPoS as a Layer 2. In this scheme, a founda-
tional blockchain runs a consensus algorithm like PoS or PoW and another blockchain
linked to it, such as DPoS, serves to give scalability. Since PoW and PoS are relatively
safe algorithms, there’s reasonable level of integrity and security offered by the base
chain. If the blockchain is attacked, the base chain can be used to revert to the last
healthy block.

In my opinion, the community will inevitably have to resort to a Layer 2 solution in
the long-run for many applications. Through hybrid protocols like this one, a stable net-
work is achieved, where we can enjoy the benefits of the ultra scalability of DPoS while
maintaining a sensible security level.

5. Conclusion

In my opinion, these algorithms serve different purposes, which, in large part, make it
difficult to replace one by another.

Proof of Work is an algorithm that maximizes security to the point that is impos-
sible with another consensus algorithm, and it is the easiest to maintain and implement.
However, it becomes inefficient in the long run and cannot support a network like Bit-
coin if the rate at which the number of users grows is maintained. Thus, I see PoW as
an alternative that can serve to back financial systems and cryptocurrencies in the short/
medium run, but it is a system limited by its own nature. Additionally, while it generates
decentralization in the short term, it ultimately leads to centralization. By rewarding

Consensus Algorithms for Highly Efficient, Decentralized, and Secure Blockchains 59

clusters of high-performing computers, the system creates an incentive for the formation
of cartels and groups that centralize block mining and validation.

Proof of Stake allows for long-term scalability by sacrificing some decentralization
and security. There’s likely to be less mobility of the tokens between the nodes as they
are incentivized to freeze funds for as long as possible. The fact that wealthy nodes are
likely to become wealthier is a risk for many cryptocurrencies, especially those that
have a small market capitalization. For these blockchains, it would be cheap to buy a
high percentage of the supply.

The Ethereum network, a blockchain for hosting decentralized applications (Dapps),
is moving from PoW to Casper, their own implementation of PoS. Their objective is to
increase the scalability of the network, which currently consists of 11,000 nodes and a
$21 billion market capitalization; with PoW, the system is unable to sustain the Dapp
ecosystem in the long run. Thus, the developers are willing to sacrifice some of the net-
work’s security and decentralization to achieve the project’s purpose.

Delegated Proof of Stake is too risky for networks like Ethereum and Bitcoin that
store so much value and still seek to maintain a general degree of decentralization. Nev-
ertheless, DPoS can improve the scalability of blockchains by orders of magnitude,
thereby enabling crucial applications for the growth of the blockchain ecosystem. Using
a hybrid protocol that combines DPoS and PoW could be a very promising option for
applications that still need security and scalability.

Indeed, each algorithm has its trade-offs and advantages and lies somewhere in a
spectrum where there’s no absolute “best.” While more variations and new protocols
will emerge, PoW will likely continue being the most popular option for its simplicity
and security. On the other hand, PoS has more use-cases and seems to provide the most
reasonable balance between decentralization, scalability, and security. It would not gen-
erate bottlenecks in the medium/short run, and security is usually not at high risk in
most medium or small scale projects. Still, since it can’t be used to generate the initial
supply of the currency, another system like PoW will have to be used at the beginning.

With the information in this paper, students with a background in programming
should have a clear picture of the state of the art of blockchain technologies and an un-
derstanding of the theory, implementation, and applications of these technologies.

In the future, problems related to blockchain architecture and algorithms could serve
as an inspiration and a training resource for Olympiads because of their potential to be
intellectually stimulating and to contribute to our knowledge and society.

References

De Quénetain, S. (2017). Delegated Proof of Stake: The crypto-democracy. Retrieved June 25, 2020, from
http://www.blockchains-expert.com/en/delegated-proof-of-stake-the-crypto-democracy-2

Ferdous, M. S., Chowdhury, M. J. M., Hoque, M. A., & Colman, A. (2020). Blockchain consensus algorithms:
A survey. ArXiv:2001.07091 [Cs]. Retrieved from http://arxiv.org/abs/2001.07091

Konstantopoulos, G. (2020). Understanding Blockchain Fundamentals, Part 2: Proof of Work & Proof of Stake.
Retrieved June 25, 2020, from https://medium.com/loom-network/understanding-blockchain-
fundamentals-part-2-proof-of-work-proof-of-stake-b6ae907c7edb

D. Estevez60

Kore, A. (2018). Building a blockchain. Retrieved June 25, 2020, from
https://medium.com/@akshaykore/building-a-blockchain-7579c53962dd

Kumar, A. (2018). Fig. 2. Proof of Work in Bitcoin Blockchain [Digital image]. Retrieved June 26, 2020, from
www.vitalflux.com/bitcoin-blockchain-proof-work

Larimer, D. (2017). DPOS Consensus Algorithm - The Missing White Paper. Retrieved June 25, 2020, from
http://www.steemit.com/dpos/@dantheman/dpos-consensus-algorithm-this-missing-

white-paper

Li, C., & Palanisamy, B. (2020). Comparison of decentralization in dpos and pow blockchains. ArXiv:2002.02082
[Cs]. Retrieved from http://arxiv.org/abs/2002.02082

Panda, S. S., Mohanta, B. K., Satapathy, U., Jena, D., Gountia, D., & Patra, T. K. (2019). Study of Blockchain
Based Decentralized Consensus Algorithms. TENCON 2019 - 2019 IEEE Region 10 Conference (TEN-
CON). DOI:10.1109/tencon.2019.8929439

Poelstra, A. (2015). On Stake and Consensus.
Thin, W. Y., Dong, N., Bai, G., & Dong, J. S. (2018). Formal Analysis of a Proof-of-Stake Blockchain. 2018

23rd International Conference on Engineering of Complex Computer Systems (ICECCS). DOI:10.1109/
iceccs2018.2018.00031

Van Flymen, D. (2017). Learn Blockchains by Building One. Retrieved June 26, 2020, from
https://medium.com/@vanflymen/learn-blockchains-by-building-one-117428612f46

Vashchuk, O., & Shuwar, R. (2018). Pros and cons of consensus algorithm proof of stake. Difference in the net-
work safety in proof of work and proof of stake. Electronics and Information Technologies, 9. DOI:10.30970/
eli.9.106

Wagner, K., Keller, T., & Seiler, R. (2019). A Comparative Analysis Of Cryptocurrency Consensus Algo-
rithms. Proceedings of the 16th International Conference on Applied Computing 2019. DOI:10.33965/
ac2019_201912l026

Wahab, A., & Mehmood, W. (2018). Survey of consensus protocols. ArXiv:1810.03357 [Cs]. Retrieved from
http://arxiv.org/abs/1810.03357

Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. Retrieved from
https://bitcoin.org/bitcoin.pdf

D. Estevez is a 19-year-old Mathematical Physics student at the Uni-
versity of Waterloo. In the past, he founded a social network for citizen
journalism, an NGO that was funded by Microsoft, Uber, and Dell, and
sent capsules to the stratosphere that broke several records. He’s also
doing research at Democracy Mars into blockchain governance.

