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Abstract. Many optimization problems such as Maximum Independent Set, Maximum Clique, 
Minimum Clique Cover and Maximum Induced Matching are NP-hard on general graphs. How-
ever, they could be solved in polynomial time when restricted to some particular graph classes 
such as comparability and co-comparability graph classes. In this paper, we summarize the lat-
est algorithms solving some classical NP-hard problems on some graph classes over the years. 
Moreover, we apply the -redundant technique to obtain linear time O(j j) algorithms which 
find a Maximum Induced Matching on interval and circular-arc graphs. Inspired of these results, 
we have proposed some competitive programming problems for some programming contests in 
Vietnam in recent years.

Keywords: graph classes, interval graph, circular-arc graph, co-comparability, maximum in-
duced matching.

1. Introduction

Despite the fact that the study field of particular graph classes has been skyrocketing over 
the years, there is still modest number of competitive programming problems inspired 
by this field for Olympic programming contests, especially for high school contests. One 
reason is that the particular graph classes are excluded in the IOI syllabus. However, 
many particular properties of these graph classes can be expressed as some other knowl-
edge included in the syllabus. We have explored some of these properties to propose 
problems for some programming contests in Vietnam in recent years. These problems 
are not mentioned about particular graph classes by being stated as practical situations. 
They can be consequently solved by knowledge included in the IOI syllabus.

Usually, NP-hard problems may become much easier when restricted on particular 
graph classes. Exploring this way, we first study graph optimization problems such as 
Maximum Independent Set, Maximum Matching, Maximum Clique, Minimum Clique 
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Cover. We summarize latest algorithms for these problems on some co-comparability 
graph classes such as interval, permutation and trapezoid graphs.

Besides, in the literature, there exist only a few trivial algorithms of finding Maxi-
mum Induced Matching (MIM) on particular graph classes. This problem was first pro-
posed in 1989 by Cameron (Cameron, 1989). While the maximum matching problem 
can be solved in polynomial time in an arbitrary graph, the MIM problem is a NP-Hard 
problem, even for bipartite graphs. The MIM problem can be trivially solved in polyno-
mial time for interval graphs and chordal graphs (Cameron, 1989), circular-arc graphs 
(Golumbic, 1993), Trapezoid graphs and co-comparability graphs (Golumbic and Le-
wenstein, 2000), Asteroidal-triple-free graphs (Cameron, 2004; Chang, 2001), Weakly 
chordal graphs (Cameron et al., 2003), Interval-filament graphs (Cameron, 2004). There 
are algorithms that can find MIM in linear time O(jj + j j) in chordal graphs (Brand-
städt and Hoàng, 2008), interval graphs (Golumbic and Lewenstein, 2000), tree graphs 
(Golumbic and Lewenstein, 2000) and permutation bipartite graphs (Chang, 2001). In 
this paper, we present two O(j j) algorithm solving the MIM problem on interval and 
circular-arc graphs. Our approach is to use the -redundant technique to reduce the search 
space while still preserving optimal solutions.

In the last section, we describe some of our competitive programming problems pro-
posed for Vietnam Team Selection Tests (TST) in recent years. These problems are in-
spired by the latest results on circular-arc, trapezoid and disc graphs for the problems of 
maximum induced matching and minimum vertex cover.

2. Preliminary

2.1. NP-Hard Graph Problems

Given a graph  = ( ), a set  µ  is called an independent set of  if no two 
members of  are adjacent. The number of vertices in a maximum independent set 
(MIS) of  is called the independence number, denoted by ().
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Fig. 1. An illustration of Independent Set and Graph Coloring.
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A subset  of  is a clique if and only if every two vertices of  are adjacent. 
A clique of graph  corresponds to an independent set of the complement graph –. 
The cardinality of a maximum cardinality clique (MC) is called (). A clique cover 
of  is a partition of the set  into cliques. The number of cliques in a minimum clique 
(MCC) cover of  is denoted by ().

A coloring of a graph is an assignment of labels, also called color, to each vertex 
such that no two adjacent vertices share the same color. The minimum number of colors 
needed to assign a graph subject the constraint is called the chromatic number of that 
graph and is denoted by (). Vertices with the same color of  are in a clique of the 
complement graph – of . Hence a coloring of  is a minimum clique cover of –.

These four problems MIS, MC, MCC, and Coloring have been known to be NP – 
hard in general graphs. However, many of them can be solved efficiently with polyno-
mial time complexity in following particular graph classes.

2.2. Particular Graph Classes

A graph  is comparability if there is a transitive orientation, an assignment of direc-
tions to the edges of the graph, i.e. an orientation of the graph, such that the adjacency 
relation of the resulting directed graph is transitive: whenever there exist directed edges 
( ) and ( ), there must exist an edge ( ). A co-comparability graph is a com-
plement of the comparability graph. The MC and Coloring problem in comparability 
graphs can be solved in linear time O(jj + j j) using the lexicographic depth-first 
search algorithm (Golumbic, 2004) while a maximum independent set and minimum 
clique cover could be found by using maximum flow algorithms (Golumbic, 2004). 
These algorithms could be taken advantage of solving MIS, MC, MCC and Coloring 
problems in co-comparability graphs.

A graph is an intersection graph if each vertex corresponds to a set and two vertices 
are adjacent iff their set share same members. If each set is an interval on a line, the 
graph is called an interval graph.

A simple greedy O(j j) algorithm can be used to solve the MIS and MCC problem 
in interval graphs, with an assumption that every interval in the input is sorted by their 
left ends. The Coloring and MC problem can be solved in O(j j log j j).

     

Fig. 2. An illustration of Clique and Clique Cover.
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A permutation graph is a graph whose vertices represent the elements of a permuta-
tion, and whose edges represent pairs of elements that are reversed by the permutation. 
Permutation graphs may also be defined geometrically, as the intersection graphs of line 
segments whose endpoints lie on two parallel lines.

Permutation graphs are both comparability and co-comparability. There is an 
O(j j log log j j) algorithm based on the longest increasing subsequence to solve 
the MIS problem in permutation graphs. This algorithm can be used to find MC, MCC 
and Coloring also in O(j j log log j j).

A trapezoid graph is an intersection graph of trapezoids in which two sides line on 
two parallel lines. The MIS and MCC problem in this graph class can be solved in 
O(j j log log j j) using the sweep line technique (Felsner et al., 1997). A MC and 
Coloring could be found in O(j j log j j).

Table 1
Latest algorithms on some particular graph classes

Problem Comparability Co-comparability Interval Permutation Trapezoid

MC O(jj + j j) Polynomial O(j j log j j) O(j j log log j j) O(j j log j j)
Coloring O(jj + j j) Polynomial O(j j log j j) O(j j log log j j) O(j j log j j)
MIS Polynomial O(jj + j j) O(j j) O(j j log log j j) O(j j log log j j)
MCC Polynomial O(jj + j j) O(j j) O(j j log log j j) O(j j log log j j)

 

Fig. 3. An illustration of Interval Graph and Permutation Graph.

1 2 1 2 3 4 4 3 5 5 6 7 7 6 8 8

3 3 2 2 1 1 5 5 4 6 8 4 8 7 7 6

Fig. 4. An illustration of Trapezoid Graph.
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3. The  - Redundant Method

Given a graph  = ( ), the -th power graph of  is denoted by   = (  0) hav-
ing the same vertex set with . Two vertices   in   are adjacent iff there exists 
a path from  to  of length less than or equal to . Let () denote the line graph 
of , i.e., each edge of  is a vertex of (), two vertices of () are adjacent iff 
two corresponding edges share a common endpoint. An edge set  µ  is called a 
matching of  iff there does not exist a pair of edges in  with a common vertex. An 
induced matching of  is a matching where the distance between two arbitrary vertices 
in two different edges is at least two.

An induced matching of a graph  corresponds with an independent set of ()2. 
So there will be a polynomial complexity algorithm for MIM whenever MIS of a graph 
can be found in polynomial time. In some circumstances, avoiding fully constructing the 
graph ()2 may lead to better time complexity.

A vertex of  is  - redundant iff its removal does not affect the size of the MIS 
in . The approach is to remove  - redundant vertices from 2() before finding a 
MIS of the remaining graph ¤.

4. Maximum Induced Matching in Interval Graphs

In this section, we propose a linear time O(j j) algorithm solving the MIM problem in 
interval graphs based on the -redundant technique with an assumption that every inter-
val in the input is sorted by their left ends. The algorithm will be improved to find a MIM 
in circular-arc graphs with the same computational complexity O(j j). For any interval 
, we denote the coordinate of its left and right end by () and (), respectively. We 
first give an important property.

Lemma 1. If  is an interval graph, the graph 2() is also an interval graph.

Proof. For each edge ( ), with () ∙ (), we draw a line from () to maxf() 

()g, the right end of the union line of  and . 2() is an interval graph in which 

Fig. 5. An illustration of induced matching.



P.T. Do, B.T. Pham, V.C. Than26

each vertex of 2() corresponding with its union line. If ( ) and ( ) are adja-
cent, there is at least one edge between 2 two pairs of vertices ( ) and ( ). Assume 
that the interval  and  cut each other. So the union interval ( ) and ( ) also 
intersect each other. It is trivial that if two union interval ( ) and ( ) are not ad-
jacent, there does not exist any edge connect  or  to one of f g.

4.1. The Construction of ¤

From the aforementioned lemma, the graph 2() is an interval graph so the new graph 
¤ is an interval graph as well. Following the same idea in finding a MIM in permuta-
tion graphs, we will remove  - redundant vertices from 2(). For each interval , 
the algorithm will find the optimal interval  of . The definition of the optimal interval 
can be express as follows:

Definition 1. Given an interval , the optimal interval  of  is interval that 
() ¸ () ¸ () and union interval ( ) is shortest.

If there exists an optimal interval  of interval , every union interval of  and an 
interval  ‘smaller’ than  except ( ) is  - redundant. This property can be proved 
by the argument exchange method because every interval in the maximum independent 
set of 2() can be replaced by a union interval of a vertex and its optimal interval. So 
the number of vertices in ¤ is at most  and finding the maximum independent set of 
an interval graph costs O(j j) if the intervals are sorted by their left ends.

4.2. Algorithm

The algorithms finding a MIM of an interval graph can be divided into two steps, the first 
one is constructing the graph ¤ and the second is finding a MIS of ¤. The intervals in 
the input are already sorted by their left ends.

Algorithm 1 ( )

  1:   Input: Set of intervals  .
  2:   Output: Optimal interval of each members in 

  3:   _() Ã  for every  2 

  4:   Stack  ; 
  5:   for  2  do
  6:          while  = ; do
  7:                  Ã 

  8:                 if ()  () then
  9:                        Break
10:                 end if
11:                 _() Ã 

12:                 
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13:          end while
14:          if  6= ; and () ∙ () then
15:                 _() Ã 

16:          end if
17:          ()

18:   end for
19:   Return _

Algorithm 2  ( )

  1:   Input: Set of intervals 

  2:   Output: An MIM of the interval graph ( )

  3:   _ Ã ( )

  4:    
¤
 Ã ; 

  5:   for  2  do
  6:          if _() 6=  then
  7:                  Ã _()

  8:                 Add the interval  [ 

  9:          end if
10:   end for
11:   Stack  Ã ; 
12:   for  2  

¤ do
13:          if  = ; then
14:                  Ã 

15:                 if  does not cut  then
16:                        .push()
17:                 end if
18:          end if
19:   end for
20:   Return 

4.3. Complexity

Each interval in  will be pushed and popped at most once. So, the time complexity of 
the algorithm is O(j j)

5. MIM in Circular-arc Graphs

The algorithm finding a MIM in interval graphs can be extended to solve the MIM prob-
lem in circular-arc graphs. Like in interval graphs, we give first the important property 
of 2() of a circular-arc graph .
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Lemma 2. The graph 2() of a circular-arc graph  is also a circular-arc graph.
This lemma can be proven using the same technique as in interval graphs. Assume that 
there is an origin in the circle, every end of the arc are coordinated.  is the left end of an 
arc ( ) if and only if the arc from  to  is clockwise. We propose an O(j j) algo-
rithm to find a MIM of a circular-arc graph with the assumption that the arcs are already 
sorted by their left end and their length. The idea of the algorithm is always to find an op-
timal neighbor corresponding with each vertex. We first re-coordinate the arcs to identify 
the stating arc on the circular, and then applying the same algorithm for interval graphs 
from the starting arc.

Algorithm 3 ( )

  1:   Input:  is a sorted set of arcs.
  2:   Output: Optimal neighbor with each vertex of  .
  3:   0 is the shortest arc of 

  4:   Re-coordinate arc in  with the origin is the left end of 0.
  5:   Stack  Ã ; 
  6:    () Ã  for every  2 

  7:   for  2  do
  8:          while  6= ; do
  9:                  Ã 

10:                 if ()  () then
11:                        Break
12:                 end if
13:                  () Ã 

14:                 .pop
15:          end while
16:          if  6= ; and () ∙ () then
17:                  () Ã 

18:          end if
19:          .push()
20:   end for
21:   Update   of arcs intersecting 0
22:   Return  

The correctness of the algorithm is proven by the following lemma. 

Lemma 3. The procedure ( ) return the optimal arc of each arc in  .

Proof. With an arc , if () ¸ (), the work finding its optimal neighbor is simi-
lar to interval graph. Consider the arc  with ()  (), which means this arc con-
tains the origin, we will prove that the optimal neighbor of  can only be an arc  
that ()  (), or be 0. If the optimal neighbor of  is an arc  that ()  () 
and ()  (), which mean this arc does not contain the origin, the length of the union 
arc ( ) is smaller than that of ( 0). So, ()  (0) and ()  (0). This im-
plies length of  is smaller than length of 0, which is contrary to our choice that 0 is 
the shortest arc.
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6. Some Induced Competitive Programming Problems

6.1. Circular-arc (Vietnam TST 2018)

Given a circle defined by the center coordinates ( ), radius  and  lines, in which 
the   line is determined by the equation   +   +  = 0. There is no secant 
passing through the center of the circle. A secant if cut the circle at 2 points  and , 
the arc  small of the circle is called the characteristic arc of that line. Note that if the 
secant touches the circle, the characteristic arc degrades to 1 point. Next, to examine the 
relationship between arcs, Hai constructs a simple undirected graph  = ( ), where 
each vertex of  corresponds to a typical arc of the circle, and the set edge  consists 
of all the edges connecting the two vertices in  where the two characteristic arcs cor-
respond to them. We call the path length  between two edges  and  as a sequence 
of edges ( 1 2   ) so that two consecutive edges in this sequence have a 
common vertex. The distance between the two sides  and  is the length of the short-
est path between them. If there is no path between  and , the distance between them 
is set to + inf. Hai wants to find the set of edges  

0 µ  with the largest cardinality 
such that the distance between any two edges in  

0 is at least 2. See Fig. 6 for an 
example.

The problem can be directly solved by the O() MIM algorithm on Section 5 plus 
the time O( log ) to sort arcs by their left end and their length. Hence the size  of 
input can go to 106.

Fig. 6. An example of Problem 6.1.
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6.2. ESEA (Vietnam TST Camp 2018)

The eastern territorial sea has  critical area ( ∙ 106). The entire territorial sea is 
depicted on a map of coordinates, where each critical area is represented by a rectangle 
with vertices at points with integer coordinates. In preparation for the unprecedented 
training session “ESEA” at sea, the Naval Military Command is planning a battle on the 
original map of simulated territorial waters.  pair of detectors, each pair of detectors 
(1 2) at two critical points:

 ● 1 detector set at coordinates (1 1) is capable of detecting objects within its 
left lower quadrant, i.e. all points with coordinates ( ) satisfies:  ∙ 1 and 
 ∙ 1.
 ● 2 detector set at coordinates (2 2) is capable of detecting objects within its 
right higher quadrant, i.e. all points with coordinates ( ) satisfies:  ¸ 2 and 
 ¸ 2. Know that 1 ∙ 2 1 ∙ 2.

Two pairs of detectors  and  are called interconnected if both detectors of  pair 
are fully within the detection range of either detector of .

The military command requires the collection of sets of detectors into at least groups 
so that each pair must belong to exactly one group and in each group, there are no two 
pairs that are interconnected. See Fig. 7 for an example.

Hint. Consider two parallel lines  and  . Each point (0 0) corresponds with a 
line connecting the point 0 on  with 0 on  . Each detector (1 2) forms a trap-
ezoid. See Fig. 8 or an Illustration. Two detectors are interconnected iff two trapezoids 
are separate. The problem becomes to find the MCC of the trapezoid graph constructed 
from the trapezoid model corresponding to the detectors.

Fig. 7. An example Problem 6.2.
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We first sort the trapezoids by their left most point. Denoted the cardinal-
ity of the maximum independent set of the trapezoid graph 1 2      contain-
ing  by . Let  = max=1 , then the partition  = f 2 f1 2     g : 

 = g  = 1 2      is the MCC. Consider two trapezoid   such that   , 
if  and  are not adjacent then  ¸  + 1, so  and  are in 2 different subset 
of . Therefore  is a clique cover.

Let  be an arbitrary clique cover and  be an arbitrary independent set. Since 
any two members of  must be in 2 different clique then jj ¸ jj. Otherwise there 
exists an independent set with size  for all  = 1 2     , then jj ¸ max=1 , 
in other words jj ¸ jj.

We have a recurrence equation:  = max


\

=;  + 1. Using the same technique 

as in finding a longest increasing subsequence, we obtain the computational complex-
ity O( log ) with Binary Indexed Tree.

Reg(u)

Reg(v)

u

v

1 2 1 2 3 4 4 3 5 5 6 7 7 6 8 8

3 3 2 2 1 1 5 5 4 6 8 4 8 7 7 6

Fig. 8. A Trapezoid Diagram.
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6.3. The Battle on the River (Vietnam TST 2019)

Hung is simulating a battle on the river as follows. The map of the river is shown on 
the coordinate plane. The two banks of the river are given by two parallel lines  =  

and  = . There are  piles (numbered from 1 to ) is nailed on the river section, pile 
 is nailed at the point of integer coordinates ( ). Let  and  be the largest and 
the smallest ordinate respectively. To simplify the problem, each boat battle is considered 
a circle of diameter . Thus, a boat when entering between two piles  = ( ), 
 = ( ) will be stuck if its diameter is larger than the distance between points  

and . A boat can cross the river section if it finds a way to move from one point of the 
river with the ordinate  +  passing through the piles without stuck to reach any point 
with ordinate  – . Finding the largest value of  so that Hung can cross the river. 
Constraint  ∙ 105.

Hint. Consider each pile is a circle with radius . We can construct an intersection graph 
() with each vertex corresponding to a circle or a bank. Our problem can be reduced 
to finding the largest value of  such that two banks are not in the same connected 
component.

6.4. Building (VOI 2020)

There are  buildings in Alice’s city. In the Cartesian coordinate, a building is repre-
sented by a rectangle with sides parallel to the coordinate axes. Two buildings are ad-
jacent if the intersection of their sides is not empty. There is a short path between each 

Fig. 9. An example of Problem 6.3.
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pair of adjacent buildings. Alice really likes the architectures of the buildings in the city 
and she usually walks along those short paths. After a few days, she relies some paths 
are unique-paths. A path  between two building  and  is unique-path if after going 
from  to , there is no way to come back to  without walking through  again. For 
each pair of buildings ( ) which is a unique-path, Alice calculates the maximum 
number of buildings she can visit for  and for  with the assumption that the path 
( ) is closed, we call those numbers  and  respectively.

Given the coordinate of each rectangle, help Alice find the pair ( ) which has 
an unidirectional path between them and the absolute difference of  and  is mini-
mum. See Fig.10 for an example.

Hint. The problem is related to interval graphs.
Construct the graph1.   representing the adjacent relation between buildings:

Sort all rectangles in a list by the ascent order of(a)   - coordinate;
Sort all rectangles in another list by the ascent order of(b)   - coordinate;
For each rectangle, find its adjacent list by the two sorted lists above. The num-(c) 
ber of edges in  is only a linear function of the number of rectangles.

Use Tarjan’s algorithm to find all bridges.4. 
Find the bridge5.  ( ) with minimum absolute difference between  and . 
The time complexity is O( log ).

Fig. 10. An example of Problem 6.4.
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7. Conclusion

Although these induced problems are related to particular graph classes that are ex-
cluded in the IOI syllabus, our proposed algorithms to solve these problems are in the 
scope of the syllabus.

Throughout the paper, our approach of removing the -redundant vertices is proved 
to be effective to reduce the complexity of the algorithms for some problems on par-
ticular graph classes. In the future, we intend to apply this method for other suitable 
problems on some particular cases of graph theory.
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