
Olympiads in Informatics, 2020, Vol. 14, 21–35
© 2020 IOI, Vilnius University
DOI: 10.15388/ioi.2020.02

21

Latest Algorithms on Particular Graph Classes

Phan Thuan DO1,*, Ba Thai PHAM1, ⃰, Viet Cuong THAN2

1Hanoi University of Science and Technology
2University of Nebraska-Lincoln
e-mail: thuandp@soict.hust.edu.vn, thai9cdb@gmail.com, cthan2@huskers.unl.edu

Abstract. Many optimization problems such as Maximum Independent Set, Maximum Clique,
Minimum Clique Cover and Maximum Induced Matching are NP-hard on general graphs. How-
ever, they could be solved in polynomial time when restricted to some particular graph classes
such as comparability and co-comparability graph classes. In this paper, we summarize the lat-
est algorithms solving some classical NP-hard problems on some graph classes over the years.
Moreover, we apply the -redundant technique to obtain linear time  O(j j)  algorithms which
find a Maximum Induced Matching on interval and circular-arc graphs. Inspired of these results,
we have proposed some competitive programming problems for some programming contests in
Vietnam in recent years.

Keywords: graph classes, interval graph, circular-arc graph, co-comparability, maximum in-
duced matching.

1. Introduction

Despite the fact that the study field of particular graph classes has been skyrocketing over
the years, there is still modest number of competitive programming problems inspired
by this field for Olympic programming contests, especially for high school contests. One
reason is that the particular graph classes are excluded in the IOI syllabus. However,
many particular properties of these graph classes can be expressed as some other knowl-
edge included in the syllabus. We have explored some of these properties to propose
problems for some programming contests in Vietnam in recent years. These problems
are not mentioned about particular graph classes by being stated as practical situations.
They can be consequently solved by knowledge included in the IOI syllabus.

Usually, NP-hard problems may become much easier when restricted on particular
graph classes. Exploring this way, we first study graph optimization problems such as
Maximum Independent Set, Maximum Matching, Maximum Clique, Minimum Clique

*	Corresponding authors

P.T. Do, B.T. Pham, V.C. Than22

Cover. We summarize latest algorithms for these problems on some co-comparability
graph classes such as interval, permutation and trapezoid graphs.

Besides, in the literature, there exist only a few trivial algorithms of finding Maxi-
mum Induced Matching (MIM) on particular graph classes. This problem was first pro-
posed in 1989 by Cameron (Cameron, 1989). While the maximum matching problem
can be solved in polynomial time in an arbitrary graph, the MIM problem is a NP-Hard
problem, even for bipartite graphs. The MIM problem can be trivially solved in polyno-
mial time for interval graphs and chordal graphs (Cameron, 1989), circular-arc graphs
(Golumbic, 1993), Trapezoid graphs and co-comparability graphs (Golumbic and Le-
wenstein, 2000), Asteroidal-triple-free graphs (Cameron, 2004; Chang, 2001), Weakly
chordal graphs (Cameron et al., 2003), Interval-filament graphs (Cameron, 2004). There
are algorithms that can find MIM in linear time  O(jj + j j)  in chordal graphs (Brand-
städt and Hoàng, 2008), interval graphs (Golumbic and Lewenstein, 2000), tree graphs
(Golumbic and Lewenstein, 2000) and permutation bipartite graphs (Chang, 2001). In
this paper, we present two  O(j j)  algorithm solving the MIM problem on interval and
circular-arc graphs. Our approach is to use the -redundant technique to reduce the search
space while still preserving optimal solutions.

In the last section, we describe some of our competitive programming problems pro-
posed for Vietnam Team Selection Tests (TST) in recent years. These problems are in-
spired by the latest results on circular-arc, trapezoid and disc graphs for the problems of
maximum induced matching and minimum vertex cover.

2. Preliminary

2.1. NP-Hard Graph Problems

Given a graph   = ( ), a set   µ   is called an independent set of    if no two
members of    are adjacent. The number of vertices in a maximum independent set
(MIS) of    is called the independence number, denoted by  ().

!

"

#

$

%

&

'

Fig. 1. An illustration of Independent Set and Graph Coloring.

Latest Algorithms on Particular Graph Classes 23

A subset    of    is a clique if and only if every two vertices of    are adjacent.
A clique of graph    corresponds to an independent set of the complement graph  –.
The cardinality of a maximum cardinality clique (MC) is called  (). A clique cover
of    is a partition of the set    into cliques. The number of cliques in a minimum clique
(MCC) cover of    is denoted by  ().

A coloring of a graph is an assignment of labels, also called color, to each vertex
such that no two adjacent vertices share the same color. The minimum number of colors
needed to assign a graph subject the constraint is called the chromatic number of that
graph and is denoted by  (). Vertices with the same color of    are in a clique of the
complement graph  –  of  . Hence a coloring of    is a minimum clique cover of  –.

These four problems MIS, MC, MCC, and Coloring have been known to be NP –
hard in general graphs. However, many of them can be solved efficiently with polyno-
mial time complexity in following particular graph classes.

2.2. Particular Graph Classes

A graph    is comparability if there is a transitive orientation, an assignment of direc-
tions to the edges of the graph, i.e. an orientation of the graph, such that the adjacency
relation of the resulting directed graph is transitive: whenever there exist directed edges
( ) and  ( ), there must exist an edge  ( ). A co-comparability graph is a com-
plement of the comparability graph. The MC and Coloring problem in comparability
graphs can be solved in linear time  O(jj +  j j)  using the lexicographic depth-first
search algorithm (Golumbic, 2004) while a maximum independent set and minimum
clique cover could be found by using maximum flow algorithms (Golumbic, 2004).
These algorithms could be taken advantage of solving MIS, MC, MCC and Coloring
problems in co-comparability graphs.

A graph is an intersection graph if each vertex corresponds to a set and two vertices
are adjacent iff their set share same members. If each set is an interval on a line, the
graph is called an interval graph.

A simple greedy  O(j j)  algorithm can be used to solve the MIS and MCC problem
in interval graphs, with an assumption that every interval in the input is sorted by their
left ends. The Coloring and MC problem can be solved in  O(j j log j j).

Fig. 2. An illustration of Clique and Clique Cover.

P.T. Do, B.T. Pham, V.C. Than24

A permutation graph is a graph whose vertices represent the elements of a permuta-
tion, and whose edges represent pairs of elements that are reversed by the permutation.
Permutation graphs may also be defined geometrically, as the intersection graphs of line
segments whose endpoints lie on two parallel lines.

Permutation graphs are both comparability and co-comparability. There is an
O(j j log log j j)  algorithm based on the longest increasing subsequence to solve
the MIS problem in permutation graphs. This algorithm can be used to find MC, MCC
and Coloring also in  O(j j log log j j).

A trapezoid graph is an intersection graph of trapezoids in which two sides line on
two parallel lines. The MIS and MCC problem in this graph class can be solved in
O(j j log log j j)  using the sweep line technique (Felsner et al., 1997). A MC and
Coloring could be found in  O(j j log j j).

Table 1
Latest algorithms on some particular graph classes

Problem Comparability Co-comparability Interval Permutation Trapezoid

MC O(jj + j j) Polynomial O(j j log j j) O(j j log log j j) O(j j log j j)
Coloring O(jj + j j) Polynomial O(j j log j j) O(j j log log j j) O(j j log j j)
MIS Polynomial O(jj + j j) O(j j) O(j j log log j j) O(j j log log j j)
MCC Polynomial O(jj + j j) O(j j) O(j j log log j j) O(j j log log j j)

Fig. 3. An illustration of Interval Graph and Permutation Graph.

1 2 1 2 3 4 4 3 5 5 6 7 7 6 8 8

3 3 2 2 1 1 5 5 4 6 8 4 8 7 7 6

Fig. 4. An illustration of Trapezoid Graph.

Latest Algorithms on Particular Graph Classes 25

3. The  - Redundant Method

Given a graph   = ( ), the  -th  power graph of    is denoted by    = (  0)  hav-
ing the same vertex set with  . Two vertices     in     are adjacent iff there exists
a path from    to    of length less than or equal to  . Let  ()  denote the line graph
of  , i.e., each edge of    is a vertex of  (), two vertices of  () are adjacent iff
two corresponding edges share a common endpoint. An edge set   µ   is called a
matching of    iff there does not exist a pair of edges in    with a common vertex. An
induced matching of    is a matching where the distance between two arbitrary vertices
in two different edges is at least two.

An induced matching of a graph    corresponds with an independent set of  ()2.
So there will be a polynomial complexity algorithm for MIM whenever MIS of a graph
can be found in polynomial time. In some circumstances, avoiding fully constructing the
graph  ()2  may lead to better time complexity.

A vertex of    is   - redundant iff its removal does not affect the size of the MIS
in  . The approach is to remove   - redundant vertices from  2()  before finding a
MIS of the remaining graph  ¤.

4. Maximum Induced Matching in Interval Graphs

In this section, we propose a linear time  O(j j)  algorithm solving the MIM problem in
interval graphs based on the -redundant technique with an assumption that every inter-
val in the input is sorted by their left ends. The algorithm will be improved to find a MIM
in circular-arc graphs with the same computational complexity  O(j j). For any interval
, we denote the coordinate of its left and right end by  ()  and  (), respectively. We
first give an important property.

Lemma 1. If    is an interval graph, the graph  2()  is also an interval graph.

Proof. For each edge  ( ), with  () ∙ (), we draw a line from  ()  to  maxf()

()g, the right end of the union line of    and  .  2()  is an interval graph in which

Fig. 5. An illustration of induced matching.

P.T. Do, B.T. Pham, V.C. Than26

each vertex of  2()  corresponding with its union line. If  ( )  and  ( )  are adja-
cent, there is at least one edge between 2 two pairs of vertices  ( )  and  ( ). Assume
that the interval    and    cut each other. So the union interval  ( )  and  ( )  also
intersect each other. It is trivial that if two union interval  ( )  and  ( )  are not ad-
jacent, there does not exist any edge connect    or    to one of  f g.

4.1. The Construction of  ¤

From the aforementioned lemma, the graph  2()  is an interval graph so the new graph
¤  is an interval graph as well. Following the same idea in finding a MIM in permuta-
tion graphs, we will remove   - redundant vertices from  2(). For each interval  ,
the algorithm will find the optimal interval    of  . The definition of the optimal interval
can be express as follows:

Definition 1. Given an interval  , the optimal interval    of    is interval that
() ¸ () ¸ ()  and union interval  ( )  is shortest.

If there exists an optimal interval    of interval  , every union interval of    and an
interval    ‘smaller’ than    except  ( )  is   - redundant. This property can be proved
by the argument exchange method because every interval in the maximum independent
set of  2()  can be replaced by a union interval of a vertex and its optimal interval. So
the number of vertices in  ¤  is at most    and finding the maximum independent set of
an interval graph costs  O(j j)  if the intervals are sorted by their left ends.

4.2. Algorithm

The algorithms finding a MIM of an interval graph can be divided into two steps, the first
one is constructing the graph  ¤  and the second is finding a MIS of  ¤. The intervals in
the input are already sorted by their left ends.

Algorithm 1 ( )

 1: Input: Set of intervals   .
 2: Output: Optimal interval of each members in  

 3: _() Ã  for every   2 

 4: Stack   ; 
 5: for   2  do
 6: while   = ; do
 7:  Ã 

 8: if  ()  ()  then
 9: Break
10: end if
11: _() Ã 

12: 

Latest Algorithms on Particular Graph Classes 27

13: end while
14: if    6= ;  and  () ∙ ()  then
15: _() Ã 

16: end if
17: ()

18: end for
19: Return _

Algorithm 2  ()

 1: Input: Set of intervals  

 2: Output: An MIM of the interval graph  ()

 3: _ Ã ()

 4:  
¤
 Ã ; 

 5: for   2   do
 6: if  _()  6=   then
 7:  Ã _()

 8: Add the interval   [ 

 9: end if
10: end for
11: Stack   Ã ; 
12: for   2  

¤  do
13: if   = ;  then
14:  Ã 

15: if    does not cut    then
16: .push()
17: end if
18: end if
19: end for
20: Return  

4.3. Complexity

Each interval in    will be pushed and popped at most once. So, the time complexity of
the algorithm is  O(j j)

5. MIM in Circular-arc Graphs

The algorithm finding a MIM in interval graphs can be extended to solve the MIM prob-
lem in circular-arc graphs. Like in interval graphs, we give first the important property
of  2()  of a circular-arc graph  .

P.T. Do, B.T. Pham, V.C. Than28

Lemma 2. The graph  2()  of a circular-arc graph    is also a circular-arc graph.
This lemma can be proven using the same technique as in interval graphs. Assume that
there is an origin in the circle, every end of the arc are coordinated.    is the left end of an
arc  ( )  if and only if the arc from    to    is clockwise. We propose an  O(j j)  algo-
rithm to find a MIM of a circular-arc graph with the assumption that the arcs are already
sorted by their left end and their length. The idea of the algorithm is always to find an op-
timal neighbor corresponding with each vertex. We first re-coordinate the arcs to identify
the stating arc on the circular, and then applying the same algorithm for interval graphs
from the starting arc.

Algorithm 3  ( )

 1: Input:   is a sorted set of arcs.
 2: Output: Optimal neighbor with each vertex of   .
 3: 0  is the shortest arc of  

 4: Re-coordinate arc in    with the origin is the left end of  0.
 5: Stack   Ã ;
 6:  () Ã   for every   2 

 7: for   2   do
 8: while    6= ;  do
 9:  Ã 

10: if  ()  ()  then
11: Break
12: end if
13:  () Ã 

14: .pop
15: end while
16: if    6= ;  and  () ∙ ()  then
17:  () Ã 

18: end if
19: .push()
20: end for
21: Update     of arcs intersecting  0
22: Return   

The correctness of the algorithm is proven by the following lemma.

Lemma 3. The procedure ( ) return the optimal arc of each arc in   .

Proof. With an arc  , if  () ¸ (), the work finding its optimal neighbor is simi-
lar to interval graph. Consider the arc    with  ()  (), which means this arc con-
tains the origin, we will prove that the optimal neighbor of    can only be an arc  
that  ()  (), or be  0. If the optimal neighbor of    is an arc    that  ()  ()
and  ()  (), which mean this arc does not contain the origin, the length of the union
arc  ( )  is smaller than that of  ( 0). So,  ()  (0)  and  ()  (0). This im-
plies length of    is smaller than length of  0, which is contrary to our choice that  0  is
the shortest arc.

Latest Algorithms on Particular Graph Classes 29

6. Some Induced Competitive Programming Problems

6.1. Circular-arc (Vietnam TST 2018)

Given a circle defined by the center coordinates  ( ), radius    and    lines, in which
the     line is determined by the equation    +   +  = 0. There is no secant
passing through the center of the circle. A secant if cut the circle at  2  points    and  ,
the arc  small of the circle is called the characteristic arc of that line. Note that if the
secant touches the circle, the characteristic arc degrades to  1  point. Next, to examine the
relationship between arcs, Hai constructs a simple undirected graph   = ( ), where
each vertex of    corresponds to a typical arc of the circle, and the set edge    consists
of all the edges connecting the two vertices in    where the two characteristic arcs cor-
respond to them. We call the path length    between two edges    and    as a sequence
of edges  ( 1 2   )  so that two consecutive edges in this sequence have a
common vertex. The distance between the two sides    and    is the length of the short-
est path between them. If there is no path between  and  , the distance between them
is set to + inf. Hai wants to find the set of edges   

0 µ   with the largest cardinality
such that the distance between any two edges in   

0  is at least  2. See Fig. 6 for an
example.

The problem can be directly solved by the  O()  MIM algorithm on Section 5 plus
the time  O( log )  to sort arcs by their left end and their length. Hence the size    of
input can go to  106.

Fig. 6. An example of Problem 6.1.

P.T. Do, B.T. Pham, V.C. Than30

6.2. ESEA (Vietnam TST Camp 2018)

The eastern territorial sea has  critical area ( ∙ 106). The entire territorial sea is
depicted on a map of coordinates, where each critical area is represented by a rectangle
with vertices at points with integer coordinates. In preparation for the unprecedented
training session “ESEA” at sea, the Naval Military Command is planning a battle on the
original map of simulated territorial waters.    pair of detectors, each pair of detectors
(1 2) at two critical points:

●● 1  detector set at coordinates  (1 1)  is capable of detecting objects within its
left lower quadrant, i.e. all points with coordinates  ( )  satisfies:   ∙ 1  and
 ∙ 1.
●● 2  detector set at coordinates  (2 2)  is capable of detecting objects within its
right higher quadrant, i.e. all points with coordinates ( ) satisfies:   ¸ 2  and
 ¸ 2. Know that  1 ∙ 2  1 ∙ 2.

Two pairs of detectors    and    are called interconnected if both detectors of    pair
are fully within the detection range of either detector of  .

The military command requires the collection of sets of detectors into at least groups
so that each pair must belong to exactly one group and in each group, there are no two
pairs that are interconnected. See Fig. 7 for an example.

Hint. Consider two parallel lines    and   . Each point  (0 0)  corresponds with a
line connecting the point  0  on    with  0  on   . Each detector  (1 2)  forms a trap-
ezoid. See Fig. 8 or an Illustration. Two detectors are interconnected iff two trapezoids
are separate. The problem becomes to find the MCC of the trapezoid graph constructed
from the trapezoid model corresponding to the detectors.

Fig. 7. An example Problem 6.2.

Latest Algorithms on Particular Graph Classes 31

We first sort the trapezoids by their left most point. Denoted the cardinal-
ity of the maximum independent set of the trapezoid graph  1 2       contain-
ing    by  . Let   = max=1 , then the partition   = f 2 f1 2     g :

 = g   = 1 2       is the MCC. Consider two trapezoid      such that    ,
if    and    are not adjacent then   ¸  + 1, so    and    are in 2 different subset
of  . Therefore    is a clique cover.

Let    be an arbitrary clique cover and    be an arbitrary independent set. Since
any two members of    must be in 2 different clique then  jj ¸ jj. Otherwise there
exists an independent set with size    for all   = 1 2     , then  jj ¸ max=1 ,
in other words  jj ¸ jj.

We have a recurrence equation:   = max


\

=;  + 1. Using the same technique

as in finding a longest increasing subsequence, we obtain the computational complex-
ity  O( log )  with Binary Indexed Tree.

Reg(u)

Reg(v)

u

v

1 2 1 2 3 4 4 3 5 5 6 7 7 6 8 8

3 3 2 2 1 1 5 5 4 6 8 4 8 7 7 6

Fig. 8. A Trapezoid Diagram.

P.T. Do, B.T. Pham, V.C. Than32

6.3. The Battle on the River (Vietnam TST 2019)

Hung is simulating a battle on the river as follows. The map of the river is shown on
the coordinate plane. The two banks of the river are given by two parallel lines   = 

and   = . There are  piles (numbered from  1  to  ) is nailed on the river section, pile
  is nailed at the point of integer coordinates  ( ). Let    and    be the largest and
the smallest ordinate respectively. To simplify the problem, each boat battle is considered
a circle of diameter  . Thus, a boat when entering between two piles   = ( ),
 = ( ) will be stuck if its diameter is larger than the distance between points 

and . A boat can cross the river section if it finds a way to move from one point of the
river with the ordinate   +   passing through the piles without stuck to reach any point
with ordinate   – . Finding the largest value of    so that Hung can cross the river.
Constraint  ∙ 105.

Hint. Consider each pile is a circle with radius  . We can construct an intersection graph
()  with each vertex corresponding to a circle or a bank. Our problem can be reduced
to finding the largest value of    such that two banks are not in the same connected
component.

6.4. Building (VOI 2020)

There are  buildings in Alice’s city. In the Cartesian coordinate, a building is repre-
sented by a rectangle with sides parallel to the coordinate axes. Two buildings are ad-
jacent if the intersection of their sides is not empty. There is a short path between each

Fig. 9. An example of Problem 6.3.

Latest Algorithms on Particular Graph Classes 33

pair of adjacent buildings. Alice really likes the architectures of the buildings in the city
and she usually walks along those short paths. After a few days, she relies some paths
are unique-paths. A path  between two building    and    is unique-path if after going
from    to  , there is no way to come back to    without walking through    again. For
each pair of buildings  ( )  which is a unique-path, Alice calculates the maximum
number of buildings she can visit for    and for    with the assumption that the path
( )  is closed, we call those numbers    and    respectively.

Given the coordinate of each rectangle, help Alice find the pair  ( )  which has
an unidirectional path between them and the absolute difference of    and    is mini-
mum. See Fig.10 for an example.

Hint. The problem is related to interval graphs.
Construct the graph1.	     representing the adjacent relation between buildings:

Sort all rectangles in a list by the ascent order of(a)	    - coordinate;
Sort all rectangles in another list by the ascent order of(b)	    - coordinate;
For each rectangle, find its adjacent list by the two sorted lists above. The num-(c)	
ber of edges in    is only a linear function of the number of rectangles.

Use Tarjan’s algorithm to find all bridges.4.	
Find the bridge5.	   ( )  with minimum absolute difference between    and  .
The time complexity is  O( log ).

Fig. 10. An example of Problem 6.4.

P.T. Do, B.T. Pham, V.C. Than34

7. Conclusion

Although these induced problems are related to particular graph classes that are ex-
cluded in the IOI syllabus, our proposed algorithms to solve these problems are in the
scope of the syllabus.

Throughout the paper, our approach of removing the -redundant vertices is proved
to be effective to reduce the complexity of the algorithms for some problems on par-
ticular graph classes. In the future, we intend to apply this method for other suitable
problems on some particular cases of graph theory.

Acknowledgment

This research is funded by the Hanoi University of Science and Technology (HUST)
under the project name “Exploiting discrete structures and artificial intelligence to solve
optimization problems on mobile IoT networks” with grant number T2020-PC-007.
This manuscript was almost accomplished when the first author was working at the
Vietnam Institute for Advanced Study in Mathematics (VIASM).

References

Brandstädt, A. and Hoàng, C. T. (2008). Maximum induced matchings for chordal graphs in linear time. Algo-
rithmica, 52(4), 440–447.

Cameron, K. (1989). Induced matchings. Discrete Applied Mathematics, 24, 97–102.
Cameron, K. (2004). Induced matchings in intersection graphs. Discrete Mathematics, 278, 1–9.
Cameron, K., Sritharanb, R., and Tangb, Y. (2003). Finding a maximum induced matching in weakly chordal

graphs. Discrete Mathematics, 266, 133–142.
Chang, J. M. (2001). Induced matchings in asteroidal triple free graphs. Discrete Applied Mathematics, 132,

67–78.
Felsner, S., Muller, R., and Wernisch, L. (1997). Trapezoid graphs and generalizations, geometry and algo-

rithms. Cornell Family Papers.
Golumbic, M. C. (1993). Irredundancy in circular arc graphs. Discrete Applied Mathematics 4, pages 79–89.
Golumbic, M. C. (2004). Algorithmic Graph Theory and Perfect Graphs, Volume 57. Elsevier.
Golumbic, M. C. and Lewenstein, M. (2000). New results on induced matchings. Discrete Applied Math-

ematics, 101, 157–165.

Latest Algorithms on Particular Graph Classes 35

P.T. Do is currently Associate Professor and Deputy-Head of Depart-
ment of Computer Science at Hanoi University of Science and Tech-
nology. He is also a member of the national committee for selecting,
training and leading Vietnamese IOI/APIO/ICPC Teams. His current
research interests include combinatorics, theory of graphs and applied
algorithms in various practical problems such as logistics, network,
artificial intelligence and bioinformatics.

B.T. Pham is currently a last year student of the talented engineer pro-
gram at Hanoi University of Science and Technology. He participated
in many ICPC Asia Pacific Regional Contests during his 5 academic
years. He had some publications about graph theory.

V.C. Than is currently a Master student at University of Nebraska-
Lincoln. He participated in ICPC Asia Pacific Regional Contests and
in ICPC North Central North American Regional Contest. He had
some publications about graph theory and game theory.

