
Olympiads in Informatics, 2019 Vol. 13, 3–20
© 2019 IOI, Vilnius University
DOI: 10.15388/ioi.2019.01

3

TLCS: A Digital Library with Resources
to Teach and Learn Computer Science

Sébastien COMBÉFIS1, Guillaume DE MOFFARTS1, Mile JOVANOV2

1Computer Science and IT in Education ASBL, Louvain-la-Neuve, Belgium
2Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University
 st. Rugjer Boshkovikj 16 Skopje, North Macedonia
e-mail: sebastien@combefis.be, guillaume.demoffarts@csited.be, mile.jovanov@gmail.com

Abstract. Nowadays, teaching and learning computer science is done at various ages, for several
topics and for different reasons. Depending on the country, it can start from the primary school
and it finishes at the higher education level, or even later if we take continuing education into con-
sideration. Topics to be learned can be as simple as binary representation or basic programming
concepts that can be taught to children to introduce them to computer science. It is also possible
to teach and learn advanced data structures or algorithms optimisation, which are interesting skills
for Olympiad in Informatics contestants, for example. Recently, there is a prominent number of
websites and applications that have been created to help the teaching and learning of many in-
formatics concepts. This paper presents a platform that has been designed to browse a database
of resources that can be used to teach or to learn computer science. This digital library contains
freely accessible resources and can be searched efficiently thanks to the proposed structure for its
content. It has been designed to maximise the user’s experience and to fit modern models of digital
libraries. For each resource, a detailed information sheet has been produced, containing among
other things pedagogical information to help teachers and learners use the resources as best as
possible. This platform can also be used to train candidates to Olympiad in Informatics and other
related and similar competitions.

Keywords: computer science education, digital library, pedagogical resources database, teaching
and learning.

1. Introduction

Computer science is everywhere today and a lot of people are either teaching or learn-
ing some of its concepts. In some countries, computer science education starts with very
young pupils still in primary school (6–12 years old), and continues with secondary
school pupils (12–18 years old). Unfortunately, computer science, or just computational
thinking, as a separate subject in curricula is still not widespread in the world. Hope-
fully, some studies on how computer science could be introduced in curricula are being

S. Combéfis, G. de Moffarts, M. Jovanov4

conducted (Angeli et al., 2016; Barr et al., 2011; Webb et al., 2017). For contestants to
the International Olympiad in Informatics, or other related contests, some skills of com-
puter science are also very important, such as programming and algorithm design, for
example. It is not always easy to learn computer science concepts since it often requires
high level skills such as abstraction, algorithmic thinking capabilities, creative thinking,
etc. Hopefully, and interestingly thanks to informatics, a lot of tools have been designed
to help learning computer science concepts, and related skills.

There are a lot of tools that can be used to teach and learn computer science con-
cepts, which are often developed as websites or applications. One main issue is that
they are not always well advertised or are not so easy to find. Also, some of them be-
ing research prototypes, they often lack documentation or advices on how they can be
used to support learning. The work presented in this paper tries to tackle this issue by
proposing a database gathering websites and applications to teach and learn computer
science.

The proposed database has been developed as a digital library, a tool that can be
defined as “a set of electronic resources and associated technical capabilities for creat-
ing, searching and using information” (Borgman, 1999). The paper presents an online
platform that has been designed as a frontend for this database, to allow teachers and
learners to quickly find resources relevant to them, and to get information about how
to use these resources. Since digital libraries are typically “constructed, collected and
organised by (and for) a community of users” (Borgman, 1999), this work also proposes
future extensions of the online platform to make it easier to grow and involve the com-
munity of computer science educators.

The next section presents some related work on digital libraries, their design and
how to make them efficient. Section 3 then presents how the database has been struc-
tured and how the classification of the resources of the proposed digital library has been
done in the frame of this work. Section 4 describes the online platform that has been
developed and shows its main features. Finally, the conclusion discusses on the advan-
tages of the proposed platform and presents the future directions that are envisioned for
this digital library.

2. Related Work

Digital libraries research emerged in the early 1990s, mainly to identify how they can
help and contribute to education. A digital library can be seen as a set of resources that
are organised in some way to offer services to its users. Digital libraries definitely play
multiple roles in teaching and learning. In particular, Marchionini et al. (1995) high-
lights three main roles: sharing resources, preserving and organising ideas and bringing
together people and ideas. Moreover, digital libraries target users with different needs:
formal, informal and professional learning missions. Borgman (1999) adds another di-
mension to the definition of digital libraries, pointing out that they can be seen as content
collected on behalf of user communities for researchers and as institutions or services for
librarians. More recently, Blandford (2006) focused the interaction role between users

TLCS: A Digital Library with Resources to Teach and Learn Computer Science 5

and information that digital libraries convey, allowing for their users to find and to work
with the content of the digital library.

Several digital libraries have been developed in the particular case of computer sci-
ence education. Fox (1996) developed a digital library to increase the quality of learning
about computer science. In the frame of his project, several changes have been made at
Virginia Tech, mainly concerning the infrastructure, the pedagogy, the evaluation and
the tools. The conclusion of his experiment shows that students are learning new topics
in a new way, making them happy with the digital library whose number of accesses
got a growth for both local and remote access. More recently, Tungare et al. (2007) cre-
ated a syllabus repository of computer science courses across universities in the USA,
with as goal to provide added value to the computer science education community. The
features provided by this digital library include classifying syllabi, assisting instructors
when they are creating new syllabi, and allowing the community to share their syllabi
automatically and to compare syllabi for similar courses. Both these works are focused
on computer science courses related content.

Today, there are a lot of online resources that can be used to learn programming
and other computer science topics. At first, we may think about Open Educational Re-
sources (OER) or Massive Open Online Courses (MOOC) that were made possible
thanks to the tremendous growth of ICT in recent years, opening up new opportunities
for education, and accessible ways to enjoy quality teaching and learning at all levels
(Jemni et al., 2017). In addition to these resources, most of the time associated to
courses, people can also learn a lot through programming contests, such as Olympiads
in Informatics and other related programming competitions (Combéfis et al., 2014),
or with games (Combéfis et al., 2016). The approaches presented in the two latter pa-
pers follow the current trend of new models of open and distributed learning (Downes,
2017). As summarised by the author, the important changes are the fact that the learner
must go from passive to active and from formal to informal, which is possible thanks
to open and distributed learning.

Distance-based education fostered the development of educational tools that can be
used online to support teaching and learning. Some of these tools have been developed
for MOOCs, such as code executors and graders (Combéfis et al., 2015; Bey et al.,
2018) and graph sketchers (French et al., 2017), for example. Other tools are stand-
alone applications that can be used independently, online or just locally after installa-
tion. All these tools have been developed thanks to computer science, and improve the
learners’ experience.

For the particular case of computer science education, there are also a lot of tools
and prototypes that have been thought about and developed by researchers. For example,
Combéfis et al. (2013) presented a tool with interactive problems that can guide learn-
ers from the understanding of the problem to the coding of a solution for it. Another
example comes from Guo (2013) who developed a tool to visualise the execution of any
program for learners to map static textual representation (source code) to what is dy-
namically happening in the computer (execution). A last example, designed by Folland
(2016), is a tool to visualise the execution of SQL INSERT statements to highlight how
their results are built from source tables.

S. Combéfis, G. de Moffarts, M. Jovanov6

As mentioned above, another useful resource to learn programming, and other
computer science topics, is games (Combéfis et al., 2016). They are playing a large
role in teaching computing in higher education, as testified by some reviews. For ex-
ample, Batistella et al. (2016) pointed out that several computing knowledge areas are
covered by games, software engineering and programming fundamentals being the
most common covered fields. Nevertheless, games are not a panacea as highlighted
by Rondon et al. (2013), whose study showed that compared to traditional learning,
games are only interesting for short-term knowledge retention, at least for medical
education. At least, games help to get learners involved with the learning activities, as
reported by Schmitz et al. (2011), following their experiment.

The examples of tools just presented show that more and more resources are being
designed to help the learning of several topics in computer science, namely program-
ming, database, algorithm thinking, etc. Nevertheless, it is not always easy to find such
resources. Grissom et al. (1998) highlighted the need for a digital library of computer
science teaching resources, years ago. More recently, Dichev et al. (2012) explained
that looking for an appropriate resource is a frequent activity in the job of teaching.
Whereas digital libraries of OERs do exist, in particular in the context of courses, no
such digital library seems to exist for more general tool resources that cover various
computer science topics.

To be efficient, usable and useful, a digital library must be well designed, in particu-
lar in the frame of education. Sumner et al. (2003) highlighted several key factors that
influence the perception of educators about the quality of digital libraries, when used
for education. The main results show that a good digital library should favour resources
(1) that encourage active learning, (2) that do not result in any bias regarding political of
commercial orientations, (3) that limit the access to resources with advertising, (4) that
are usable and well-designed to ease the navigation and usability, (5) and that avoid any
distractions affecting the attention of learners. These observations have been pointed out
by learners as well as by teachers.

Other studies have been made about the interface of digital libraries. In particular,
Druin et al. (2001) put a focus on this need, especially for children that do not want
to just search for information, but also need to use it and need a reason to browse for
an item. Compared to a traditional library, a digital library may lack social interaction.
Ackerman (1994) insists that social exchanges and interaction are important. The de-
sign and use of a digital library should not be limited to the technical mechanisms and
the access of information. Mechanisms to make these social interactions possible and
to foster them should therefore be thought about. Gazan (2018) goes one step further
to include content creators, in addition to content consumers, as an important set of us-
ers of digital libraries. The author highlighted the possibility to include user-generated
content into digital collection items, therefore increasing the social interactions. Fi-
nally, Sumner et al. (2004) analysed three models that can be used as approaches to
educational digital library design. Their conclusion is that digital libraries can be used
(1) as cognitive tools to support learning and help users to catch the sense of the activi-
ties, (2) as component repositories to focus on how resources from the digital library

TLCS: A Digital Library with Resources to Teach and Learn Computer Science 7

are produced and distributed, (3) and as knowledge networks to foster social interac-
tions and knowledge building and sharing.

The different elements highlighted by these related works have all been somewhat
taken into account for the design of the platform presented in this paper.

3. Classification of Websites and Applications

The websites and applications that can be used to teach or to learn computer science
are classified according to several criteria. The proposed characterisation is meant to
help teachers and learners to choose the most suited and relevant website or application
that fits their needs. It should also help teachers to use the resources in the most effec-
tive way. For the platform to be powerful, yet flexible, and to ease the development of
a community of users around the platform resources, a detailed characterisation of the
resources is proposed in this paper and explained in this section.

3.1. Category

The first classification criterion is related to the kind of service that the website or the ap-
plication is providing. According to the resources that have been considered and analy-
sed in the frame of this work, six main categories have been identified:

Directory. ●
Visualiser. ●
Animated tutorial. ●
Playground. ●
Interactive tutorial. ●
Game. ●

3.1.1. Directory
The directory category gathers resources that allow their users to navigate through a col-
lection of resources, technologies, tools, etc. Websites or applications from this category
help learners to discover resources related to the same topic or field of study. For example,
the “NoSQL Databases” website, shown on Fig. 1, maintains a large list of NoSQL da-
tabases engines organised according to their main paradigm. It is an interesting resource
for anyone who discovered the NoSQL world and wants to explore the existing engines
or to choose one for a project.

Resources from this category are similar to the “awesome list” movement whose
main goal is to gather a curation of awesome stuff in lists (Sorhus, 2019). The main
difference between a simple collection or aggregation and a curation is that the latter
involves a selection of content based on quality (Dale, 2014). For example, Caeiro-
Rodríguez et al. (2013) proposed a social curation platform for OERs.

S. Combéfis, G. de Moffarts, M. Jovanov8

3.1.2. Visualisation
To teach and to learn new concepts, it can help a lot to be able to visualise, in some way,
the new concepts. In particular, people who are more sensitive to visual modalities will
benefit from such visualisations. The second and third categories contain resources that
propose tools to visualise concepts.

The visualiser category contains tools that can produce visualisations, either static or
dynamic ones. The goal of these visual elements is to help you to represent yourself the
concepts you are supposed to learn. Such tools can also be used for teaching purpose,
to provide visual examples to your students (Fouh et al., 2012). As highlighted by Naps
et al. (2002), visualisation is only effective if it engages learners in an active learning
activity. It is therefore important to provide explanations on how the use the visualisa-
tion tool to support learning.

For example, the “viSQLizer” platform (Folland, 2016), shown on Fig. 2, is a proto-
type visual learning tool for SQL. The tool builds and shows animations to illustrate how
the result of a SELECT query is built by extracting rows from the involved tables. This
can be used in an introductory course on databases and queries, to illustrate how data

Fig. 1. The NoSQL Databases website maintains a collection of NoSQL database engines
that are organised according to their main paradgim.

TLCS: A Digital Library with Resources to Teach and Learn Computer Science 9

organised in tables can be scanned through to get the result of a given request. It is also
interesting to see the different steps behind a SELECT query, starting with row filtering
followed by column projection.

Resources from this category, if correctly used, will engage their users in their own
learning. This exactly matches good visualisation tools as defined by Naps et al. (2002).
Unfortunately, most of them being the result of PhD or master thesis, they lack peda-
gogical documentation on how to use them effectively. Also, they are not accompanying
the learner within a learning path.

The animated tutorials category is dedicated to websites and applications that pro-
vide a tutorial meant to teach new concepts, by presenting you direct examples with
the produced results (Rodger, 2002). It goes one step further compared to the visualiser
category, in the sense that the visualisation are embedded within a tutorial that guides
you for your learning. For example, the “Unfolding the Box Model” website, shown on
Fig. 3, shows you how do CSS 3D transforms work. Each page of the tutorial just shows
you directly the result of the transforms that are presented.

Visualisation tools allow the user to ask for a visual representation of a given in-
put, such as an SQL query, an operation on a given data structure, an execution of an
algorithm for a problem instance, etc. Once the input has been provided, the tool shows
a visualisation that the user is just watching. In the case of animated tutorials, the user
is presented a sequence of visual animations to gradually explain the user concepts, like
a tutorial would have done.

Fig. 2. The viSQLizer prototype visual learning tool helps learners to understand how the
result of a SELECT query written in the SQL language builds its result from tables.

S. Combéfis, G. de Moffarts, M. Jovanov10

3.1.3. Interaction
The next two categories add the ability for the user to interact actively with the website
or the application. The user is offered the possibility to plays with his/her own examples
and gets a direct feedback. In this way, the user can be challenged and put in the centre
of his/her own learning, which will contribute to improve what he/she will learn and
assimilate (Bork, 2001).

The playground category is for websites and applications where the user can enter
codes, problem instances, situation descriptions, etc. and execute them to visualise and
get the result directly. Such resources are useful for the user to be able to play without the
need to install anything on his/her computer. For example, the “RxViz” website, shown
on Fig. 4, allows you to play with RxJs observables in an animated playground. It makes
it possible for you to write your own code, or even to take one of the proposed examples,
to execute it and to get the result in a visual way.

Playgrounds are very similar to simple visualisation tool, except that they provide
more freedom and can visualise much more complex objects, especially code. These
tools are showing a visual execution of the code along with the execution of the latter.
Changing the code and executing it again will directly update the visualisation. Some-
times, it is also possible to directly interact with the visualisation, and the code could be
updated accordingly.

The interactive tutorial category is one step further the animated tutorial, in the sense
that the user will be challenged and asked to interact with the animations. As a tutorial, it
is accompanying the learner during the learning process. And as an interactive tutorial, it
asks the learner to take part to the learning process through different kinds of interactions.
For example, the “Computer Science Field Guide” is an online interactive book that can
be used to teach various computer science concepts to high school students. It provides
interactive exercises throughout the book that allow the learners to experiment what they
learned. Fig. 5 shows one of the interactive exercises that are proposed on the website.

Fig. 3. The Unfolding the Box Model website shows you how CSS 3D transforms work with
concrete examples that have been put as a single animated tutorial.

TLCS: A Digital Library with Resources to Teach and Learn Computer Science 11

Fig. 4. The RxViz website is a playground where you can write and execute programs using
RxJS observables and get a visual interpretation of the result.

Fig. 5. The Computer Science Field Guide is a website that proposes interactive exercises,
as part of an online book, to help its learners to understand the new concepts.

S. Combéfis, G. de Moffarts, M. Jovanov12

3.1.4. Game
Finally, websites and applications from the last category, namely game, provide the most
interactive experience to the learners and require them the largest involvement. It also
tries to motivate them with the addition of goals, scoreboards, competition, etc., com-
pared to the interactive tutorials (Combéfis et al., 2016).

For example, the “Blockly Games” website challenges its users by asking them to
solve several tasks whose solutions are programs written with a block-based visual
programming language, similar to Scratch. Each task can be seen as a small game,
each of these being one level in a bigger game. One of the tasks being solved is shown
on Fig. 6.

3.1.5. Overlapping Categories
The six categories presented in this section are overlapping, meaning that some websites
or applications can belong to more than one category. For example, the “RxViz” website
is at the same time a playground and a visualisation tool since it allows you to write and
execute any code but presents visually the result of the execution. Another example is the
“SQL Island” website, presented in section 4, which is at the same time a game and an
interactive tutorial. The platform described in this paper allows you to easily navigate the
resources database according to the categories.

Fig. 6. The Blockly Games website proposes a game with several tasks that have to be
solved using a blocs-based visual programming language in order to win the game.

TLCS: A Digital Library with Resources to Teach and Learn Computer Science 13

3.2. Language and Field

The two others classification criteria are the programming languages and the com-
puter science fields that are covered by the website or application. The first criterion is
optional and the second one is mandatory. A computer science resource is indeed al-
ways related to at least one field but does not always concern a programming language.
The presented platform makes it possible to search for teaching and learning resources
based on these two criteria.

The possible values for the programming language criterion are quite clear but it is
less obvious for the computer science field. In this work, general fields such as database,
programming, data structure, artificial intelligence, etc. have been used. Another pos-
sibility would be to use the ACM Computing Classification System (CCS), but it may be
too complex for the targeted users for the proposed platform.

Classification by categories, programming language and computer science fields can
help to better identify and attract people from existing communities of interest. For ex-
ample, people interested in resources related to the Python programming language, for
machine learning, could easily find them with the proposed platform.

3.3. Level

Teaching and learning computer science is done at various ages and level of education.
For each website and application available in the platform described in this paper, the
most suited age levels are indicated. Five levels have been identified:

Children goes until 12 years old, that is the end of primary school. ●
Junior goes from 12 to 15, that is, lower secondary school. ●
Senior goes from 15 to 18, that is, higher secondary school. ●
BSc is for bachelor students. ●
MSc is for master students. ●

The identified levels are indicative and correspond to the most suited age groups
with which the resource can be used to teach or to learn the concepts conveyed by the
resource. This way to organise the resource is directly related with the community of
teachers. For example, a primary school teacher will indeed first search for resources
relevant for the age of his/her pupils.

3.4. Pedagogical Information

Finally, to help teachers and learners to use the resources available on the proposed
platform, various pedagogical information can be added to each website or application.
Their purpose is to propose a guide to use the resource as best as possible. Three kinds of
information can be provided: prerequisite, learning outcomes and methodology.

S. Combéfis, G. de Moffarts, M. Jovanov14

The prerequisites summarise what knowledge should be mastered to be able to use
the resource to learn the conveyed concepts. The content of this section should be writ-
ten according to the proposed age levels. The learning outcomes list what the student
will be able to do after he/she used the resource in the frame of a learning activity. This
section can also contain information about the content proposed by the resource. Finally,
the methodology explains how the resource can be used or how it is supposed to be used
by its original creators and designers.

The three kinds of information are of course not relevant for all the resource catego-
ries. For example, pure playgrounds will typically lack learning outcomes and method-
ologies. Also, learning outcomes could depend on how the resource is used by a teacher
in an activity. On the platform presented in this paper, the proposed pedagogical infor-
mation is written to be consistent, meaning that the learning outcomes are to be read with
the proposed methodology on how to use the resource.

4. Interactive Platform

This paper proposes an online platform, called TLCS for “Teaching and Learning Com-
puter Science”, available online at the following address: https://tlcs.csited.be.
It is only available in English for now but is ready for internationalisation. Fig. 7 shows
the page describing the “SQL Island” website, a game to learn the fundamentals of the
SQL database querying language (Schildgen, 2014).

4.1. Structure of the Platform

The layout of the page is structured in three columns. A navigation tool is available on
the left part to allow the user to browse the resources by categories, programming lan-
guages, computer science fields or levels of education. It is also possible to make some
cross-searches by clicking on the magnifying glass and selecting the tags you are inter-
ested in. For example, you could search for resources that are interactive tutorials in the
form of games, such as illustrated on Fig. 8.

An information panel is visible on the right part to show all the categories, program-
ming languages and computer science fields of the resource. You can also directly see
the levels of education and access the website of the resource through this information
panel. Depending on the resource, some of the information may or may not be available.
Fig. 9 shows the information available for “SQL Island”.

Finally, the central column shows a short description with screenshots directly
followed by the pedagogical information. Two last optional sections can be available,
depending on the resource. The service section describes the kinds of service pro-
vided by the resource, such as cooperative game, API, possibility to save or share, etc.
The references section provides scientific references to papers presenting the website
or application, when available.

TLCS: A Digital Library with Resources to Teach and Learn Computer Science 15

Fig. 7. Each website or application is described with a complete information sheet that
contains categorisation and pedagogical information.

S. Combéfis, G. de Moffarts, M. Jovanov16

The online platform has been designed to be simple to use and so that the information
is clearly presented. It is also very light and runs in any modern browser since it relies on
the recent versions of JavaScript. It has been developed with Angular.js for the frontend
part and with Bootstrap 3 for the style. The database is just a simple JSON file, in fact
one for each language (only English and French being available for now).

Fig. 8. The left part of the TLCS platform allows you to browse all the resources by catego-
ries, programming languages, computer science fields or levels of education. You can also

search for resources by tags.

Fig. 9. The right part of the TLCS platform shows you all the available information on the
resource you are looking at, allowing you to quickly characterise the resource.

TLCS: A Digital Library with Resources to Teach and Learn Computer Science 17

4.2. Database Population

The proposed digital library is meant to be populated by the community. It is indeed a
way to ensure coherence between the needs of the community and the content offered
on the platform. For a digital library to be good, and to ensure that its content is of high
quality, some review and/or control mechanism must be put in place. Entries of the da-
tabase for each resource must be correct, with exact, complete, relevant and up-to-date
information.

To achieve the latter requirements, the proposed platform has a public page that
anyone can use to propose a new resource for addition. Each proposition has to be
reviewed, and is possibly corrected, before being accepted. The Computer Science
and IT in Education non-profit organisation is currently in charge of this control and
acceptation process. It may be opened to new partners in the future, especially when
content in other languages than English will be made available. This way to proceed
ensures good quality content while keeping the platform somewhat open to the com-
munity and its users.

4.3. Social and Community Aspects

As presented in the related work section, social aspects are very important for a digital
library to be useful, used and for it to support learning and also knowledge sharing.
Some elements to foster social interactions and to highlight community aspects have
been thought about for the proposed platform, even if not implemented in the current
version yet.

Users will be able to have an account on the platform and decide of their own tags
for the resources. This feature allows them to organise the resources with their own
categorisation. The second feature is the ability for the users of the platform to grade
each resource with stars, so that the best resources will get more stars than the less
good resources.

5. Conclusion

To conclude, this paper presents a digital library with websites and applications that
can be used to learn computer science concepts. This database is structured so that to be
easily queried to find useful and relevant resources to teach or to learn new concepts.
Its design and the way its information is structured has been thought about regarding
advices about how to make an efficient digital library.

The paper proposes a multi-criteria categorisation of all the resources contained in
the database. To help people to search through the database, an online platform has been
developed and made available to the community. It proposes a simple yet powerful and

S. Combéfis, G. de Moffarts, M. Jovanov18

ergonomic interface to look at the resources from the database. This interface brings
several intuitive and useful ways to extract relevant information from the developed da-
tabase. It has still to be improved, in particular to take into account the content creators
and to include user-generated content.

Compared to other kinds of digital library that exists, which are mostly focused on
OERs for teachers, and in particular for higher education, this work proposes a database
that can also be used by learners, from the youngest ones to adults who already gradu-
ated. The proposed digital library, which already contains about twenty resources, sup-
ports the creation, the search and the use of resources. The information that is provided
with each resources supports learning, in the most efficient way as possible.

Future work includes the translation of the platform in several languages as well
as the translation of the database content, to widen the community that could therefore
enjoy the available data. New resources will also be added, especially applications that
can be used on smartphones. Finally, the platform and its interface will also be im-
proved, with the possibility to add comments and notes for each resource, for example.
Last but not least, surveys must be conducted with teachers, to evaluate whether the
proposed platform fits their needs.

References

Ackerman, M.S. (1994). Providing Social Interaction in the Digital Library. In: Proceedings of the 1st Annual
Conference on the Theory and Practice of Digital Libraries. 198–200.

Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., Zagami, J. (2016). A K-6 Computational
thinking curriculum framework: Implications for teacher knowledge. Educational Technology & Society,
19(3), 47–57.

Barr, V., Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and What is the role
of the computer science education community? ACM Inroads, 2(1), 48–54.

Batistella, P., von Wangenheim, C.G. (2016). Games for Teaching Computing in Higher Education – A System-
atic Review.

Bey, A., Jermann, P., Dillenbourg, P. (2018). A comparison between two automatic assessment approaches for
programming: An empirical study on MOOCs. Educational Technology & Society, 21(2), 259–272.

Blandford, A. (2006). Interacting with information resources: digital libraries for education. International Jour-
nal of Learning Technologies, 2(2/3), 185–202.

Borgman, C. (1999). What are digital libraries? Competing visions. Information Processing and Management,
35(3), 227–243.

Bork, A. (2001). Tutorial learning for the new century. Journal of Science Education and Technology, 10(1),
55–71.

Caeiro-Rodríguez, M., Pérez-Rodríguez, R., García-Alonso, J., Manso-Vázquez, M., Llamas-Nistal, M. (2013).
AREA: A social curation platform for open educational resources and lesson plans. In: Proceedings of the
2013 IEEE Frontiers in Education Conference (FIE). 795–801.

Combéfis, S., Van den Schrieck, V., Nootens, A. (2013). Growing algorithmic thinking through interactive
problems to encourage learning programming. Olympiads in Informatics, 7, 3–13.

Combéfis, S., Wautelet, J. (2014). Programming trainings and informatics teaching through online contest.
Olympiads in Informatics, 8, 21–34.

Combéfis, S., Paques, A. (2015). Pythia reloaded: An intelligent unit testing-based code grader for education. In:
Proceedings of the 1st International Workshop on Code Hunt Workshop on Educational Software Engineer-
ing (CHESE 2015). 5–8.

Combéfis, S., Beresnevičius, G., Dagienė, V. (2016). learning programming through games and contests: Over-
view, characterisation and discussion. Olympiads in Informatics, 10, 39–60.

Dale, S. (2014). Content curation: The future of relevance. Business Information Review, 31(4), 199–205.

TLCS: A Digital Library with Resources to Teach and Learn Computer Science 19

Dichev C., Dicheva, D. (2012). Open Educational Resources in Computer Science Teaching. In: Proceedings of
the 43rd ACM Technical Symposium on Computer Science Education (SIGCSE 2012). 619–624.

Downes, S. (2017). New Models of Open and Distributed Learning. In: Open Education: from OERs to MOOCs.
Berlin/Heidelberg: Springer-Verlag, 1–22.

Druin, A., Bederson, B.B., Hourcade, J.P., Sherman, L., Revelle, G., Platner, M., Weng, S. (2001). In: Proceed-
ings of the 1st ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL 2001). 398–405.

Folland, K.A.T. (2016). viSQLizer: Using visualization for learning SQL. In: Proceedings of the 29th Norsk
Informatikkonferanse (NIK 2016).

Fouh, E., Akbar, M., Shaffer, C.A. (2012). The role of visualization in computer science education. Interdisci-
plinary Journal of Practice, Theory, and Applied Research, 29, 95–117.

Fox, E.A. (1996). Interactive learning with a digital library in computer science. In: Proceedings of 26th Fron-
tiers in Education Annual Conference (FIE 1996). 415–419.

French, J., Segado, M.A., Ai, P.Z. (2017). Sketching graphs in a calculus MOOC: Preliminary results. In: Fron-
tiers in Pen and Touch. Cham: Springer, 93–102.

Gazan, R. (2008). Social annotations in digital libraries collections. D-Lib, 14, 11/12.
Grissom, S., Knox, D. Copperman, E., Dann, W., Goldweber, M., Hartman, J., Kuittinen, M., Mutchler, D.,

Parlante, N. (1998). Developing a digital library of computer science teaching resources. In: Working Group
Reports of the 3rd Annual SIGCSE/SIGCUE ITiCSE Conference on Integrating Technology into Computer
Science Education (ITiCSE-WGR 1998). 1–13.

Guo, P.J. (2013). Online Python tutor: Embeddable Web-based program visualization for CS education. In:
Proceedings of the 44th ACM Technical Symposium on Computer Science Education (SIGCSE 2013). 579–
584.

Jemni, M., Kinshuk, Khribi, M.K. (2017). Open Education: From OERs to MOOCs. Berlin/Heidelberg: Spring-
er-Verlag.

Marchionini, G., Maurer, H. (1995). The roles of digital libraries in teaching and learning. Communication of
the ACM, 38(4), 67–75.

Naps, T.L., Rößling, G., Almstrum, V., Dann, W., Fleischer, R., Hundhausen, C., Korhonen, A., Malmi, L., Mc-
Nally, M., Rodger, S., Velázquez-Iturbide, J.A. (2002). Exploring the role of visualization and engagement
in computer science education. In: Proceedings of Working Group Reports from ITiCSE on Innovation and
Technology in Computer Science Education (ITiCSE-WGR 2002). 131–152.

Rodger, S.H. (2002). Introducing computer science through animation and virtual worlds. In: Proceedings of the
33rd SIGCSE Technical Symposium on Computer Science Education (SIGCSE 2002). 186–190.

Rondon S., Sassi, F.C., Furquim de Andrade C.R. (2013). Computer game-based and traditional learning meth-
od: A comparison regarding students’ knowledge retention. BMC Medical Education, 13, 30.

Schildgen J. (2014). SQL island: An adventure game to learn the database language SQL. In: Proceedings of the
8th European Conference on Games Based Learning (ECGBL 2014). 137–138.

Schmitz B., Czauderna, A., Klemke, R., Specht, M. (2011). Game based learning for computer science educa-
tion. In: Proceedings of the Computer Science Education Research Conference (CSERC 2011). 81–86.

Sorhus, S. (2019). Awesome. https://github.com/sindresorhus/awesome
Sumner, K., Khoo, M., Recker, M., Marlino, M. (2003). Understanding educator perceptions of “Quality” in

digital libraries. In: Proceedings of the 3rd ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL
2003). 269–279.

Sumner, T., Marlino, M. (2004). Digital libraries and educational practice: A case for new models. In: Proceed-
ings of the 4th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL 2004). 170–178.

Tungare, M., Yu, X., Cameron, W., Teng, G., Pérez-Quiñones, M.A., Cassel, L., Fan, W., Fox, E. (2007). To-
wards a syllabus repository for computer science courses. In: Proceedings of the 38th SIGCSE Technical
Symposium on Computer Science Education. 55–59.

Webb, M., Davis, N., Bell, T., Katz, Y.J., Reynolds, N., Chambers, D.P., Syslo, M.M. (2017). Education and
Information Technologies, 22(2), 445–468.

S. Combéfis, G. de Moffarts, M. Jovanov20

S. Combéfis obtained his PhD in engineering in November 2013 from
the Université catholique de Louvain (UCLouvain). He is currently
working as a lecturer at the ECAM Brussels Engineering School,
where his courses focus on computer science. He also obtained an
advanced master in pedagogy in higher education in June 2014. Co-
founder of the Belgian Olympiad in Informatics (be-OI) in 2010, he
later introduced the Bebras contest in Belgium in 2012 and at the same
time founded CSITEd. This non-profit organisation aims at promoting
computer science in secondary schools.

G. de Moffarts is a master student in computer science at Univer-
sité catholique de Louvain (UCLouvain). He is interested in computer
science and electronics, and very curious about engineering and new
technologies, such as 3D printing, artificial intelligence and the inter-
net of things. He is also involved in the CSITEd non-profit organisa-
tion, taking part on several projects it organises. He was also recently
the deputy leader of a Belgian delegation to the IBU Olympiad in In-
formatics 2019 that was held in Skopje, North Macedonia.

M. Jovanov is an associate professor at the Faculty of Computer Sci-
ence and Engineering, Ss. Cyril and Methodius University, in Skopje.
As the President of the Computer Society of Macedonia, he has ac-
tively participated in the organization and realization of the Macedo-
nian national competitions and Olympiads in informatics since 2001.
He has been a team leader for the Macedonian team at International
Olympiads in Informatics since 2006. His research interests include
development of new algorithms, future web, and e-education.

