
Olympiads in Informatics, 2019, Vol. 13, 209–215
© 2019 IOI, Vilnius University
DOI: 10.15388/ioi.2019.14

209

TPS (Task Preparation System):
A Tool for Developing Tasks in
Programming Contests

Kian MIRJALALI, Amir Keivan MOHTASHAMI,
Mohammad ROGHANI, Hamid ZARRABI-ZADEH
Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
e-mail: {mirjalali, mohtashami, roghani}@ce.sharif.edu, zarrabi@sharif.edu

Abstract. The task preparation system (TPS) is a tool developed mainly for preparing IOI tasks. It
was originally developed for, and successfully used in IOI 2017, and since then, it has been used
in several other nationwide and international programming contests, including IOI 2019. The tool
consists of a command-line interface for local (offline) work, and a web interface which integrates
with git and provides more features. This article presents the main features of the task preparation
system, and briefly describes how it works.

Keywords: competitive programming, task preparation, Olympiad in Informatics, programming
contest.

1. Introduction

The host technical and scientific committees of IOI 2017 had comprehensive discussions
on how the development of IOI tasks could be eased. The first thing to fix was the direc-
tory structure of a task. Based on this convention, a set of scripts began to be developed
to simplify the work. This finally resulted in a more mature software which is called
TPS (task preparation system). Here are the feedback of two senior members of the IOI
International Scientific Committee when presented with TPS, its documentation, and the
tasks developed:

“That’s a great job you made. The system looks really nice and com-
fortable. My congratulations.”

“I must admit I’m also impressed that you’ve been able to develop a
tool like this so quickly. This will surely be very helpful in organizing
IOIs.”

K. Mirjalali et al.210

Usage of TPS was not limited to IOI 2017. It has been used in many programming
contests in Iran, including the national IOI team selection contests. The widespread us-
age of this tool motivated the authors of this article to share it with other members of the
IOI community who are interested in designing and developing problems for program-
ming contests.

TPS has a command-line interface (shortly, tps-cli) that is used locally by the de-
velopers to prepare tasks on their own machines. Each task is developed in a directory
maintained through a git repository. A secured GitLab server was used in IOI 2017. The
secondary part of TPS is the web component (shortly, tps-web) which is deployed be-
sides the git repository in the server and provides additional features such as solutions
invocation for more exact timings.

This article is organized as follows. We first describe the directory structure of the
tasks in Section 2. We then explain the structure and features of tps-cli in Section 3.
Finally, we briefly cover the main features of tps-web in Section 4.

2. Task Directory Structure

The TPS command-line interface acts based on a standardized directory structure which
is usually maintained in a git repository for sharing with other task developers. The fol-
lowing files and directories are present in a task directory:

problem.json:●● This is the main json file containing the general information
about the task, such as short name, title, task type, memory limit, time limit, and
possibly the tps-web URL if tps-web is set up.
solution/:●● This directory contains the solution source codes, whether the solu-
tions are correct or not.
solutions.json:●● A json file containing an entry for each solution in the
“solution/” directory, specifying the expected verdict of the solution on the
subtasks, or whether it is a model solution (the one used for generating test out-
puts).
subtasks.json:●● A json file specifying all subtasks by their names, scores, and
validators assigned for verifying the conformance of their corresponding test inputs
with their constraints.
validator/:●● A directory containing codes for validating the format of test input
files and checking their conformance with the constraints of the problem.
gen/:●● This directory contains everything related to generating test data. The
text file “data” in this directory specifies which tests are going to be generated
by which generator and with what parameters. Manually created tests are also
placed in the “manual” subdirectory. An example of “gen/data” file is shown
in Fig. 1.
grader/:●● For each programming language allowed in the contest, such as C++
and Java, there is a subdirectory here containing the graders for that language. A
grader is a program that links with the contestant’s solution and provides it with
grading interface say for reading the input and writing to the output.

TPS (Task Preparation System): A Tool for Developing Tasks in Programming Contests 211

checker/:●● A directory containing the checker, a program that evaluates the out-
put of the contestant’s solution per test case and specifies its score.
public/:●● This directory contains the files provided to the contestants, such as
sample tests, compiling scripts, and basic graders for local testing.
statement/:●● This directory contains the files related to the task statement.
scripts/:●● The primary implementation of tps-cli commands is placed in this
directory.

The following directories are also part of the TPS directory structure, but are not
stored in the git repository:

tests/:●● A directory containing the generated tests.
sandbox/:●● Solutions will be compiled and executed in this directory.
logs/:●● This directory contains the logs of the last execution of test generation or
solution invocation.

3. TPS Command-Line Interface

The TPS command-line interface provides an easy way to execute predefined scripts
commonly used during the process of task development. The scripts reside in the
“scripts/” directory, and can be customized per need of a task. The “tps” command
itself is placed in the PATH, and can be called anywhere in the terminal. For example,
when the command “tps compile <arguments>” is issued, tps-cli runs the script
“scripts/compile.sh <arguments>”. The following commands are currently sup-
ported in tps-cli:

compile:●● Compiles a given solution with the appropriate grader, and leaves the
result it in the sandbox directory. It wraps the complexities of compiling solu-
tions with different languages. The public version of the grader (the one given to
the contestants) is used if -p or --public is passed to the command.
run:●● Runs the compiled solution in the sandbox with no restrictions (like time
limits). Input/output files can be specified through redirection.

@subtask samples
manual 01.in

@subtask n_3
general_graph 100 280 17 6
tree 98 5

@subtask n_2
@include n_3
general_graph 91555 40000 134 6
tree 10000 90

@subtask full
general_graph 100000 800000 543 44
tree 100000 800

 Fig. 1. A sample “gen/data” file.

K. Mirjalali et al.212

gen:●● Generates the test cases based on file “gen/data” and runs the correspond-
ing validators on the inputs. The generated test cases are stored in the “tests/”
directory. Multiple options are available such as specifying a subset of tests to
generate (using wildcards), stopping on the first failure, and using an alternative
model solution for generating outputs. An example of executing the command
“tps gen” is shown in Fig. 2.
invoke:●● Compiles and executes a given solution on the generated test cases con-
sidering the task restrictions (e.g. time limits). The score of the solution on each
test case is also determined using the checker. Multiple options are available such
as specifying a subset of tests to invoke, stopping on the first failure, and setting a
different time limit. A sample execution of “tps invoke” is shown in Fig. 3.
make-public:●● Updates the contents of the public directory (especially if the
public graders are going to be generated through erasing the secret parts of the
judge graders) and creates the archive provided to the contestants, based on file
“public/files”.
verify:●● Verifies the validity and integrity of the task directory structure includ-
ing the json files.
analyze:●● Opens the analysis page of the task in tps-web.

> tps invoke solution/roads-test.java
solution compile[OK]
checker compile[OK]
0-01 sol[OK] 0.063 check[OK] 1 [Correct]
1-01 sol[OK] 0.069 check[OK] 1 [Correct]
1-02 sol[FAIL] 0.065 check[SKIP] 0 [Runtime Error]
2-01 sol[OK] 0.172 check[OK] 1 [Correct]
2-02 sol[OK] 0.076 check[OK] 0 [Wrong Answer]
3-01 sol[OK] 0.079 check[OK] 0.666 [Partially Correct]
3-02 sol[FAIL] 3.012 check[SKIP] 0 [Time Limit Exceeded]

Finished.
>

> tps gen
generator compile[OK]
solution compile[OK]
validator compile[OK]
0-01 gen[OK] val[OK] sol[OK]
1-01 gen[OK] val[FAIL] sol[OK]
1-02 gen[OK] val[OK] sol[OK]
2-01 gen[OK] val[OK] sol[OK]
2-02 gen[OK] val[OK] sol[OK]
3-01 gen[OK] val[OK] sol[OK]
3-02 gen[OK] val[OK] sol[OK]

Finished.
>

Fig. 2. An example of executing “tps gen”.

> tps invoke solution/roads-test.java
solution compile[OK]
checker compile[OK]
0-01 sol[OK] 0.063 check[OK] 1 [Correct]
1-01 sol[OK] 0.069 check[OK] 1 [Correct]
1-02 sol[FAIL] 0.065 check[SKIP] 0 [Runtime Error]
2-01 sol[OK] 0.172 check[OK] 1 [Correct]
2-02 sol[OK] 0.076 check[OK] 0 [Wrong Answer]
3-01 sol[OK] 0.079 check[OK] 0.666 [Partially Correct]
3-02 sol[FAIL] 3.012 check[SKIP] 0 [Time Limit Exceeded]

Finished.
>

> tps gen
generator compile[OK]
solution compile[OK]
validator compile[OK]
0-01 gen[OK] val[OK] sol[OK]
1-01 gen[OK] val[FAIL] sol[OK]
1-02 gen[OK] val[OK] sol[OK]
2-01 gen[OK] val[OK] sol[OK]
2-02 gen[OK] val[OK] sol[OK]
3-01 gen[OK] val[OK] sol[OK]
3-02 gen[OK] val[OK] sol[OK]

Finished.
>

Fig. 3. A sample execution of “tps invoke”.

TPS (Task Preparation System): A Tool for Developing Tasks in Programming Contests 213

More information on the available options for the tps commands can be obtained
by passing argument -h or --help. The source code and full documentation of tps-cli
is available at: https://github.com/ioi-2017/tps.

4. TPS Web Interface

The TPS command-line interface is equipped with a web interface called tps-web. The
web interface retrieves data directly from a task directory, parses the json files, and vi-
sualizes the task state to the users. As a result, users have a vision on all parts of the task
and can efficiently apply different actions on it. Some of the main features of tps-web is
briefly described below.

Task visualization. The web interface visualizes various components of a task. For
example, one can see all the solutions for a task, and the verdict each of which should
receive on the subtasks. (See Fig. 4.) As another example, there is a markdown view-
er through which one can easily see the current version of the problem statement.
(See Fig. 5.)

Solution invocations. The tps-web allows users to select a set of solutions, and invoke
them on a subset of test cases. The invocation results are then presented in a table to-

Fig. 4. A sample solutions page in tps-web.

Fig. 5. A sample task statement page in tps-web.

K. Mirjalali et al.214

gether with their running time and memory used. An important feature here is the high-
lighting of the results which do not meet the expected verdict. An example of tps-web
invocation is illustrated in Fig. 6.

Integrating with judging systems. Besides having an internal judging system for invo-
cations, tps-web is also capable of integrating with other judging systems, such as CMS,
in order to obtain an exact timing. It is in particular useful in programming contests such
as IOI where the execution time of solutions are important up to milliseconds, and any
small difference in hardware and software environment (such as sandboxing) can con-
siderably affect the timing.

Discussion forum. In the time of task development, there are various topics that need
to be discussed such as designing subtasks, reporting a bug, or an issue in the problem
statement. In tps-web, every user can open a discussion about an issue and other users
can reply to the thread.

Secure file sharing. During task development, there are numerous situations where
developers need an easy way to share a file that is used temporarily during development.
To address this need, tps-web provides a facility to store temporary files during
development.

Export final packages. Since each judging system has its own directory format for pre-
senting a task, tps-web provides the facility to automatically generate a package from the
TPS directory structure. In particular, it has a built-in exporter for the CMS.

Fig. 6. An example of invocation in tps-web.

TPS (Task Preparation System): A Tool for Developing Tasks in Programming Contests 215

The source code and full documentation of tps-web is available at:
https://github.com/ioi-2017/tps-web.

Acknowledgments

We would like to acknowledge the complete list of people who were involved in de-
veloping TPS (in alphabetical order): Amirmohsen Ahanchi, Soroush Ebadian, Kiarash
Golezardi, Ali Haghani, Keyvan Khademi, Hamed Saleh, Hamed Valizadeh, Moham-
mad Reza Maleki, Kian Mirjalali, Amir Keivan Mohtashami, Mohammad Roghani, and
Hamid Zarrabi-Zadeh.

K. Mirjalali is a PhD candidate in the Computer Engineering Depart-
ment at Sharif University of Technology. He was a member of the In-
ternational Technical Committee (ITC) in IOI 2015 and also a member
of the Host Technical and Scientific Committees (HTC, HSC) in IOI
2017. He won a silver medal in CEOI 2003 and was a world-finalist
in ICPC 2007. He has been a scientific committee member of Iranian
National Olympiad in Informatics (INOI) since 2003.

A.K. Mohtashami is a B.Sc student in the Computer Engineering De-
partment at Sharif University of Technology. He was a silver medalist
in IOI 2015. He was also a member of the IOI 2017 Host Techni-
cal Committee. He also has been awarded Asia West Championship
in ICPC 2018 and was co-coach of Sharif’s bronze medalist team in
ICPC 2019.

M. Roghani is a B.Sc student in the Computer Engineering Depart-
ment at Sharif University of Technology. He was a member of the
Host Scientific Committee (HSC) in IOI 2017. He has received a Gold
Medal in Iranian National Olympiad in Informatics (INOI) 2014 and a
Silver Medal in Asia-Pacific Informatics Olympiad (APIO) 2015.

H. Zarrabi-Zadeh is a faculty member of the Computer Engineering
Department at Sharif University of Technology. He was a member of
the International Scientific Committee (ISC) from 2014 to 2015, and
a member of the International Technical Committee (ITC) from 2015
to 2018. He was also the chair of IOI 2017 Host Technical Committee,
the director of ICPC in the west Asia region Tehran site since 2012,
and a bronze medalist as coach in ICPC 2019 world finals.

