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Abstract. Among the most interesting problems in competitive programming involve maximum 
flows. However, efficient algorithms for solving these problems are often difficult for students to 
understand at an intuitive level. One reason for this difficulty may be a lack of suitable metaphors 
relating these algorithms to concepts that the students already understand. This paper introduces a 
novel maximum flow algorithm, Tidal Flow, that is designed to be intuitive to undergraduate and 
pre-university computer science students.
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1. Introduction

Maximum flows are a well-researched area in optimization theory. The problem was 
originally formulated by Harris and Ross (1955) and solved by using the well-known 
augmenting path technique by Ford and Fulkerson (1955). Since this initial discovery, 
many maximum flow algorithms have been developed (for a survey see: Ahuja et al., 
1993; Goldberg and Tarjan, 2014). Most of these algorithms are space efficient. As a 
result, time complexity becomes the primary basis of comparison between maximum 
flow algorithms (Goldberg and Tarjan, 2014). The maximum flow formulation opens 
itself to a wide variety of applications (for examples see: Ahuja et al., 1993). This di-
versity of applications has increased the popularity of problems involving maximum 
flows in the competitive programming community. Problems that require the creation 
of networks with large capacities and a large number of vertices and edges demand the 
use of faster flow algorithms to solve each problem in a reasonable amount of time. 
These more complex algorithms can be a burden for students to understand. As pro-
posed by Forišek and Stienová (2013), there are differences among deriving, proving, 
and teaching algorithms. How easy an algorithm is to teach is a factor in how widely 
adopted an algorithm will be. Moreover, the theoretically best algorithms with respect 
to time complexity are not always the fastest when implemented in practice (Ahuja 
et  al., 1997), i.e. in a programming contest setting. These considerations create a need 
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for a fast flow algorithm that is easy to teach, is easy to implement, and offers com-
petitive in-practice performance compared to other popular flow algorithms. This paper 
proposes Tidal Flow as an algorithm to satisfy these three objectives.

2. Background

This section reviews the maximum flow problem and introduces the notation that will 
be used throughout the rest of the paper. It then describes three historically important 
maximum flow algorithms that introduce necessary concepts for understanding the nov-
el Tidal Flow algorithm.

2.1. Maximum Flow Formulation and Notation. 

This paper will use formulation and notation adapted from Goldberg and Tarjan 
(2014). The input to the maximum flow problem is (     ), where  = (   )  is 
a directed graph with  vertices and  edges. The input marks two special ver-
tices   2 . The vertex   is known as a source and the vertex   is known as 
the sink. The function  :  ! 

2 TIDAL FLOW: A FAST AND TEACHABLE MAXIMUM FLOW ALGORITHM

2. Background

This section reviews the maximum flow problem and introduces the notation
that will be used throughout the rest of the paper. It then describes three histor-
ically important maximum flow algorithms that introduce necessary concepts for
understanding the novel Tidal Flow algorithm.

2.1. Maximum flow formulation and notation. This paper will use formula-
tion and notation adapted from [11]. The input to the maximum flow problem is
(G, s, t, cap), where G = (V,E) is a directed graph with n vertices andm edges. The
input marks two special vertices s, t ∈ V . The vertex s is known as a source and the
vertex t is known as the sink. The function cap : E → R+ is some strictly positive
capacity function. A maximum flow is some non-negative function f : E → R∗ that
satisfies two constraints: (1) a capacity constraint f(e) ≤ cap(e), ∀e ∈ E and (2) a
conservation constraint


(w,v)∈E f(w, v) =


(v,u)∈E f(v, u), ∀v ∈ V − {s, t}. The

capacity constraint ensures that flow sent down some edge e does not exceed its
capacity, while the conservation constraint maintains the flow entering some vertex
v equals the amount of flow leaving v. The conservation constraint is maintained
for all vertices except the source and sink. The flow value is defined as the amount
of flow leaving the source or


v∈V f(s, v). A maximum flow is one that maximizes

the flow value subject to the conservation and capacity constraints.

2.2. Residual graphs and augmenting paths. To make it easier to discover
maximum flows, it is useful to make the graph more malleable. Residual graphs are
a useful tool for this purpose. Consider each edge (w, v) ∈ E. To change the flow
along this edge, one could increase the flow by up to cap(w, v)−f(w, v) or decrease
the flow by f(w, v). Decreasing the flow is easier to manage by including a reverse
edge (v, w) with cap(w, v) where f(v, w) = −f(w, v) at all times. Now, decreasing
flow f(w, v) can be accomplished by increasing f(v, w). The amount that f(w, v)
can be decreased is given by cap(v, w) − f(v, w). Now consider a new edge set
E that contains all edges of E and all reverse edges of E. The residual graph is
Gr = (V,E) with a new function capr(w, v) = cap(w, v) − f(w, v). Conceptually
capr gives a limit on how much each e ∈ E can change along that direction.
To modify f and maintain conservation and capacity constraints, an algorithm

can discover some path P from source to sink where each edge on that path
e has capr(w, v) > 0. The algorithm can then augment each edge e ∈ P by
a = mine∈P (capr(e)). This change can be accomplished through modifying f :
f(w, v) ← f(w, v) + a and f(v, w) ← f(v, w) − a for each edge (w, v) ∈ P . P
is known as an augmenting path [7]. Each augmentation maintains the capacity
and conservation constraints and gradually increases the flow with each augmenta-
tion until a maximum flow is reached. Augmenting paths can be applied between
any two vertices w, v ∈ V . The term global augmenting path refers to augmenting
paths between s and t to distinguish this approach from techniques that make local
improvements to flow.

2.3. Dinitz’s algorithm and level graphs. Augmenting along shortest paths
was discovered to be more efficient than augmenting along other types of paths
[4, 6]. Dinitz’s algorithm works by efficiently computing a level graph from s to t
and finding paths from s to t through that level graph.

+  is some strictly positive capacity function. 
A  maximum flow is some non-negative function  :  ! 
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*  that satisfies two con-
straints: (1) a capacity constraint  (  ) ≤  (  ) 8 2  and (2) a conservation con-
straint 

P
()2  (   ) = 

P
()2  (   ) 8 2  – f   g. The capacity constraint 

ensures that flow sent down some edge  does not exceed its capacity, while the con-
servation constraint maintains the flow entering some vertex  equals the amount of 
flow leaving . The conservation constraint is maintained for all vertices except the 
source and sink. The flow value is defined as the amount of flow leaving the source 
or 

P
2  (   ). A maximum flow is one that maximizes the flow value subject to the 

conservation and capacity constraints.

2.2. Residual Graphs and Augmenting Paths. 

To make it easier to discover maximum flows, it is useful to make the graph more mallea-
ble. Residual graphs are a useful tool for this purpose. Consider each edge (   ) 2 . To 
change the flow along this edge, one could increase the flow by up to  (  ) – (   ) 
or decrease the flow by  (   ). Decreasing the flow is easier to manage by including a re-
verse edge (   ) with  (   ) where  (   ) = – (   ) at all times. Now, decreasing 
flow  (   ) can be accomplished by increasing (   ). The amount that  (   ) can 
be decreased is given by (   ) – (   ). Now consider a new edge set  0  that con-
tains all edges of  and all reverse edges of . The residual graph is  = (   0 ) with 
a new function  (   ) =  (   ) –  (   ). Conceptually,  gives a limit on 
how much each  2  0 can change along that direction.
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To modify  and maintain conservation and capacity constraints, an algorithm can dis-
cover some path   from source to sink where each edge on that path  has  (   )  0. 
The algorithm can then augment each edge  2  by  = 2 (  (  ) ). 

This change can be accomplished through modifying :  (   ) ⟵ ( ) +  
and ( ) ⟵ ( ) –   for each edge ( ) 2 .   is known as an augmenting path 
(Ford and Fulkerson, 1955). Each augmentation maintains the capacity and conservation 
constraints and gradually increases the flow with each augmentation until a maximum 
flow is reached. Augmenting paths can be applied between any two vertices   2 . 
The term global augmenting path refers to augmenting paths between  and   to distin-
guish this approach from techniques that make local improvements to flow.

2.3. Dinitz’s Algorithm and Level Graphs. 

Augmenting along shortest paths was discovered to be more efficient than augment-
ing along other types of paths (Dinitz, 1970; Edmonds and Karp, 1972). Dinitz’s al-
gorithm works by efficiently computing a level graph from   to  and finding paths 
from   to   through that level graph.

A level graph  = (   )  is a graph where  contains all vertices  2  on 
all shortest paths from   to   in   (see Fig. 1). Let  :  ! Z *denote the number 
of edges on a path from   to  2  with minimum number of edges.  contains all 
edges in (   ) 2  where  (   )  0 and  (  ) + 1 =  (  ).

Dinitz’s algorithm computes a level graph using a breadth first search (BFS). The 
algorithm then attempts to saturate enough edges in   to prevent any augmenting path 
from   to . An edge  2   is saturated if  (  ) = 0. Such a flow is called a blocking 
flow of level graph .

Shimon Even revised and popularized Dinitz’s algorithm, creating the well-known 
version (Dinitz, 2006). (When popularizing the algorithm, Even spelled Dinitz as Dinic 
and changed the pronunciation (Dinitz, 2006).) In Even’s version, a blocking flow is 
computed through a modified depth first search (DFS). The DFS finds a maximal set of 
shortest augmenting paths, which is sufficient to block . The modified DFS produces 
these augmenting paths in  (  ) running time. The BFS and DFS procedures repeat 
until no augmenting path exists from source to sink. Each level graph blocked increases 
the length of the shortest path in the next discovered level graph, resulting in an  ( 2 ) 
total running time. The original algorithm also computes a blocking flow of this level 
graph in  (  ), but is both more complicated conceptually and harder to implement.

Fig. 1. A level graph.
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2.4. Karzanov’s Algorithm and Preflows. 

Karzanov formalized the concept of blocking flows and additionally introduced the con-
cept of preflows (Karzanov, 1974). In Karzanov’s algorithm, preflows are used to in 
place of global augmenting paths to block the level graph. A preflow is similar to a 
flow , but the conservation constraint is removed, meaning more flow can go into a 
vertex than is leaving it. To help keep track of the amount of extra flow at some vertex a 
function  :  ! 

2 TIDAL FLOW: A FAST AND TEACHABLE MAXIMUM FLOW ALGORITHM
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
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edge (v, w) with cap(w, v) where f(v, w) = −f(w, v) at all times. Now, decreasing
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tion until a maximum flow is reached. Augmenting paths can be applied between
any two vertices w, v ∈ V . The term global augmenting path refers to augmenting
paths between s and t to distinguish this approach from techniques that make local
improvements to flow.
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*  is used, where  (  ) = 
P

()2  (   ) – 
P

()2  (   ).
Similar to Dinitz’s algorithm, Karzanov’s algorithm repeatedly computes level 

graphs and blocks them. For each level graph, the algorithm sends preflows through the 
level graph and gradually restores the conservation constraint, converting the blocking 
preflow into a blocking flow. The blocking flows are discovered in  ( 2 ) running time, 
resulting in a  ( 3 ) running time for the algorithm.

3. Tidal Flow

This section introduces the Tidal Flow algorithm by first explaining its relationship to 
Dinitz’s and Karzanov’s algorithms, then introducing an ocean tide metaphor that makes 
the algorithm easier to understand at a high level, and then finally explaining the techni-
cal details and formalization of the algorithm.

3.1. Blocking Flows. 

Like Dinitz’s algorithm and Karzanov’s algorithm, Tidal Flow computes blocking flows 
on a level graph. Like Dinitz’s algorithm, Tidal Flow’s goal is to produce blocking flows 
by discovering global augmenting paths. However, instead of computing the blocking 
flow in  (  ), the Tidal Flow attempts to compute a blocking flow in  (  ). Unlike 
Dinitz’s algorithm, Tidal Flow makes no guarantee to discover a blocking flow in the 
level graph in one pass. To simplify the blocking procedure, the edges of the level graph 
are stored as a list in BFS order (Fig. 2).

Fig. 2. A level graph stored as a list of edges.
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3.2. Tide Metaphor. 

Metaphors can be a powerful tool in teaching new algorithms. Forišek and Stienová give 
the following definition:

A (conceptual) metaphor is a cognitive process that occurs when a sub-
ject seeks understanding of one idea (the target domain) in terms of a 
different, already known idea (the source domain). The subject creates 
a conceptual mapping between the properties of the source and the 
target, thereby gaining new understanding about the target. (Forišek 
and Stienová, 2013, adapted from Lakoff and Johnson, 2003) 

Tidal Flow uses a conceptual metaphor based on oceanic tide cycles to help explain 
its level graph blocking procedure.

3.3. Discovering Blocking Flows as Tides. 

The goal of Tidal Flow is to produce a blocking flow on a level graph. Tidal Flow does 
that through a procedure called tide cycle.

Tide cycle has three phases: high tide, low tide, and erosion.
 (1)	 High tide: Produce an upper bound on the amount of flow that can reach each 
vertex in the level graph by passing from source to sink.
 (2)	 Low tide: Reduce the amount of flow that can reach each vertex to a feasible 
amount by passing from sink to source.
 (3)	 Erosion: Change the flow on each edge used and update residual flow. 

In terms of the metaphor, vertices are tide pools that temporarily collect flow during 
each phase of tide cycle. Tide pools store an upper bound on the amount of flow that 
can reach each vertex during high tide when flow passes from source to sink. During 
low tide, flow is pushed back from sink to source. Not all flow will make it back to the 
source and some tide pools retain excess flow (similar to how tide pools in nature exist 
as separate bodies of water during low tide). Because the level graph is stored as a list 
of edges, each phase can be implemented as a loop through the list of edges.

Consider the example level graph in Fig. 3. During the high tide phase, a func-
tion  :  ! 
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any two vertices w, v ∈ V . The term global augmenting path refers to augmenting
paths between s and t to distinguish this approach from techniques that make local
improvements to flow.

2.3. Dinitz’s algorithm and level graphs. Augmenting along shortest paths
was discovered to be more efficient than augmenting along other types of paths
[4, 6]. Dinitz’s algorithm works by efficiently computing a level graph from s to t
and finding paths from s to t through that level graph.

*  is computed storing an upper bound on the amount of flow that can 
reach each vertex. In terms of the metaphor,  (  )  is the amount of flow stored in 

Fig. 3. Example level graph with edge capacities.
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each tide pool at high tide.  (  ) can be any upper bound on flow that can reach ver-
tex   through a set of augmenting paths that collectively maintain the capacity con-
straint. One could consider   to be a heuristic guessing function for Tidal Flow, simi-
lar to the heuristic function in the A* shortest path algorithm (Lerner et al., 2009). 
For simplicity,  (  )  is computed as the sum of  (  )  for each edge (   )  that en-
ters  bounded by that edge’s capacity (Equation 1, Fig. 4). Flow is promised to each 
edge (   ) 2  of the level graph  (   ) = min (  (   ) –  (   )  (  ) ).

 (  ) = 
X

2()
 min (  (   ) –  (   )  (  ) )                                                (1)

During the low tide phase, flow is pushed from sink to source backwards through 
the level graph using  and  as guides for how much flow to push to each vertex. A 
new function  :  ! 

2 TIDAL FLOW: A FAST AND TEACHABLE MAXIMUM FLOW ALGORITHM

2. Background

This section reviews the maximum flow problem and introduces the notation
that will be used throughout the rest of the paper. It then describes three histor-
ically important maximum flow algorithms that introduce necessary concepts for
understanding the novel Tidal Flow algorithm.

2.1. Maximum flow formulation and notation. This paper will use formula-
tion and notation adapted from [11]. The input to the maximum flow problem is
(G, s, t, cap), where G = (V,E) is a directed graph with n vertices andm edges. The
input marks two special vertices s, t ∈ V . The vertex s is known as a source and the
vertex t is known as the sink. The function cap : E → R+ is some strictly positive
capacity function. A maximum flow is some non-negative function f : E → R∗ that
satisfies two constraints: (1) a capacity constraint f(e) ≤ cap(e), ∀e ∈ E and (2) a
conservation constraint


(w,v)∈E f(w, v) =


(v,u)∈E f(v, u), ∀v ∈ V − {s, t}. The

capacity constraint ensures that flow sent down some edge e does not exceed its
capacity, while the conservation constraint maintains the flow entering some vertex
v equals the amount of flow leaving v. The conservation constraint is maintained
for all vertices except the source and sink. The flow value is defined as the amount
of flow leaving the source or


v∈V f(s, v). A maximum flow is one that maximizes

the flow value subject to the conservation and capacity constraints.

2.2. Residual graphs and augmenting paths. To make it easier to discover
maximum flows, it is useful to make the graph more malleable. Residual graphs are
a useful tool for this purpose. Consider each edge (w, v) ∈ E. To change the flow
along this edge, one could increase the flow by up to cap(w, v)−f(w, v) or decrease
the flow by f(w, v). Decreasing the flow is easier to manage by including a reverse
edge (v, w) with cap(w, v) where f(v, w) = −f(w, v) at all times. Now, decreasing
flow f(w, v) can be accomplished by increasing f(v, w). The amount that f(w, v)
can be decreased is given by cap(v, w) − f(v, w). Now consider a new edge set
E that contains all edges of E and all reverse edges of E. The residual graph is
Gr = (V,E) with a new function capr(w, v) = cap(w, v) − f(w, v). Conceptually
capr gives a limit on how much each e ∈ E can change along that direction.
To modify f and maintain conservation and capacity constraints, an algorithm

can discover some path P from source to sink where each edge on that path
e has capr(w, v) > 0. The algorithm can then augment each edge e ∈ P by
a = mine∈P (capr(e)). This change can be accomplished through modifying f :
f(w, v) ← f(w, v) + a and f(v, w) ← f(v, w) − a for each edge (w, v) ∈ P . P
is known as an augmenting path [7]. Each augmentation maintains the capacity
and conservation constraints and gradually increases the flow with each augmenta-
tion until a maximum flow is reached. Augmenting paths can be applied between
any two vertices w, v ∈ V . The term global augmenting path refers to augmenting
paths between s and t to distinguish this approach from techniques that make local
improvements to flow.

2.3. Dinitz’s algorithm and level graphs. Augmenting along shortest paths
was discovered to be more efficient than augmenting along other types of paths
[4, 6]. Dinitz’s algorithm works by efficiently computing a level graph from s to t
and finding paths from s to t through that level graph.

* maintains the amount of flow in tide pool .  (  )  is initialized 
with  (  ). When an edge (   )  is evaluated on the way back to the source, flow is 
drained from  (  ) and transferred to  (  ) and the promised flow  (   )  is updated by 
this transferred flow (Fig. 5).

In the erosion phase, the promised flow is committed to the network. In the ex-
ample, 11 units of flow were promised from source to sink, but only 9 units of flow are 
committed. In the example, Tidal Flow manages to find a blocking flow in one pass 
of tide cycle.

Fig. 4. High tide calculates () for each vertex . Edges store promised flow ()().

Fig. 5. Low tide pushes flow from  to . Here each vertex contains () at its highest point 
during low tide.
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3.4. Relationship to Preflows. 

The low tide phase of tide cycle is a type of preflow. Excesses are placed at the sink and 
as much flow as possible is pushed between nodes. The preflow values never augment 
the network, so Tidal Flow always maintains the conservation constraint. Instead, pre-
flows are used to discover a set of potentially overlapping augmenting paths that collec-
tively maintain the capacity constraint and augment across those paths in parallel. In this 
sense Tidal Flow is both a preflow algorithm and an augmenting path algorithm.

Algorithm 1: Attempt to compute a blocking flow

TideCycle ()

	 input : A list  of level graph edges in BFS order.
	 output: The amount of flow sent through the level graph.
	 result :  is modified by found augmenting paths.
	  (  ) = 0 8 2  ;
	  (  ) ⟵ 1;
	 foreach edge  (   ) 2  do
		   (  ) ⟵ min(  (  ) –  (  )  (  ) );
		   (  ) ⟵  (  ) +  (  );
	 end

	 if  (  ) = 0 then
		  return 0;
	 end

	  (  ) = 0 8 2  ;
	  () ⟵  ();
	 foreach edge  (   ) 2  in reverse order do
		   (  ) ⟵ min (  (  )  (  ) –  (  )  (  ) );
		   (  ) ⟵  (  ) –  (  );
		   (  ) ⟵  (  ) +  (  );
	 end

	  (  ) = 0 8 2  ;
	  () ⟵  ();
	 foreach edge  (   ) 2  do
		   (  ) ⟵ min (  (  )  (  ) );
		   (  ) ⟵  (  ) –  (  );
		   (  ) ⟵  (  ) +  (  );
		   (  ) ⟵  (  ) + (  );
		   (  (  ) ) ⟵  (  (  ) ) –  (  );
	 end

	 return  ();
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4. Evaluating the Performance of Tidal Flow

4.1. Correctness. 

Flow is only modified through augmenting paths, which maintain the capacity and con-
servation constraints. During each tide cycle, the amount of flow increases until no aug-
menting paths exist. Using the usual arguments involving augmenting paths, Tidal Flow 
will terminate with a maximum flow.

4.2. Theoretical Performance of Tidal Flow. 

Edmonds and Karp (1972) introduced an argument for bounding the running time 
of the shortest augmenting path method of finding maximum flows. The tide cycle 
procedure in Tidal Flow will always fully saturate at least one edge on a shortest aug-
menting path. This gives an upper bound on the time complexity of Tidal Flow to be 
at most  ( 2 ). This bound may not be tight. Tide cycle will regularly find several 
augmenting paths.

4.3. Difficulty of Bounding Tide Cycles.

Determining the upper bound on the number of tide cycles required to produce a block-
ing flow is difficult. During high tide, a network can trick the heuristic function   into 
promising much more flow than is feasible to realize during low tide by creating a lens 
(Fig. 6) somewhere in the network. A lens is a dense level subgraph with two node levels 
where edges double in capacity each level.

Lenses require ≈  (  ) nodes to magnify the flow through the network by . Us-
ing lenses, it is possible to construct level graphs requiring  (  (  ) )  tide cycles to 
block. Fig. 7 provides one such construction. Creating level graphs requiring more tide 
cycle operations is not obvious.

Fig. 6. A lens. Only 4 units of flow can pass from  to , yet 64 units are promised.
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4.4. Evaluating Practical Performance. 

Many of the theoretically fastest maximum flow algorithms are much slower in practice 
(Goldberg and Tarjan, 2014). The fastest theoretical algorithm for maximum flows is due 
to Orlin (2013) and achieves a  (  ) running time. The overhead of the algorithm and 
rarity of the worst cases causes the best theoretical approach to be defeated in practice 
by slower algorithms (Boykov and Kolmogorov, 2004; Goldberg et al., 2011). Though 
many flow algorithms have large upper bounds on running time, they rarely achieve this 
behavior in the average case.

To evaluate Tidal Flow, the algorithm was benchmarked against several maximum 
flow algorithms (Table 1) that are known to do well in practice (Ahuja et al., 1997) 

Fig. 7. A level graph that takes 4 tide cycles to block. The graph can be generalized to a 
graph with  vertices requiring (()) tide cycles.

Table 1
Flow algorithms 

Algorithm Running Time Notes

Edmonds-Karp 
(Edmonds and Karp, 1972)

 ( 2 ) Shortest augmenting path

Dinitz
(Dinitz, 1970)

 ( 2 ) Even’s version with optimizations suggested in Dinitz (2006)

Preflow-Push 
(Goldberg and Tarjan, 1988)

 ( 3 )  Goldberg and Tarjan’s preflow-push algorithm with the 
highest-label selection rule. A simple, but inefficient, selection 
implementation process yields the slower runtime

Preflow-Push (Gap)
(Goldberg and Tarjan, 1988)

 ( 2 
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Algorithm Running Time Notes

Edmonds-
Karp[6]

O(nm2) Shortest augmenting path

Dinitz[4] O(n2m) Even’s version with optimizations sug-
gested in [5]

Preflow-
Push[10]

O(n3) Goldberg and Tarjan’s preflow-push al-
gorithm with the highest-label selection
rule. A simple, but inefficient, selec-
tion implementation process yields the
slower runtime.

Preflow-
Push
(Gap)[10]

O(n2
√
m) Goldberg and Tarjan’s push relabel

method with the highest-label selection
rule. Implemented with O(1) selection
and the gap relabeling heuristic sug-
gested in [3].

Improved-
SAP[18]

O(n2m) Orlin’s improved shortest augmenting
path method

Table 1. Flow algorithms

theoretical approach to be defeated in practice by slower algorithms [2, 9]. Though
many flow algorithms have large upper bounds on running time, they rarely achieve
this behavior in the average case.
To evaluate Tidal Flow, the algorithm was benchmarked against several max-

imum flow algorithms (Table 1) that are known to do well in practice [13] and
are popular in competitive programming. Each flow algorithm was run against a
test suite of randomly generated networks that resemble classes of graphs common
in competitive programming network flow problems. The algorithms were imple-
mented in Java and each experiment measured CPU time using the StopwatchCPU
class from [19].
Three forms of graphs were tested: bipartite matching networks, grid networks,

and level graphs (Figure 8). Bipartite matching networks were split into four dif-
ferent graph classes, resulting in six total graph classes. Each graph class was
evaluated at 10 different sizes (described below). For each size of graph in each
graph class, 20 random graphs were generated. Each algorithm was run against
each test for a maximum of 20 seconds.

(1) dense-highcap-bpm: A fully connected bipartite matching graph. Ca-
pacities for internal edges were selected uniformly at random from [1, 1000].
Capacities for edges (s, v) and (v, t) were selected from [1, c(v)] where
c(v) =


(v,w)∈E cap(v, w). Graph size n represents the number of internal

vertices. A range of sizes n = [200, 2000] were selected in increments of 200.
(2) sparse-highcap-bpm: A bipartite matching graph. Each vertex v on the

source side of the bipartite graph was connected with
√
n random neighbors

on the sink side. Capacities for internal edges were selected uniformly at
random from [1, 10000]. Capacities for edges (s, v) and (v, t) were selected
from [1, c(v)] where c(v) = 1+


(v,w)∈E cap(v, w). Graph size n represents

 ) Goldberg and Tarjan’s push relabel method with the highest-
label selection rule. Implemented with (1) selection and the 
gap relabeling heuristic suggested in Cherkassy and Goldberg 
(1995)

Improved-SAP 
(Orlin and Ahuja, 1987)

 ( 2 ) Orlin’s improved shortest augmenting path method
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and are popular in competitive programming. Each flow algorithm was run against a 
test suite of randomly generated networks that resemble classes of graphs common in 
competitive programming network flow problems. The algorithms were implemented 
in Java and each experiment measured CPU time using the StopwatchCPU class from 
Sedgewick and Wayne (2011).

Three forms of graphs were tested: bipartite matching networks, grid networks, and 
level graphs (Fig. 8). Bipartite matching networks were split into four different graph 
classes, resulting in six total graph classes. Each graph class was evaluated at 10 different 
sizes (described below). For each size of graph in each graph class, 20 random graphs 
were generated. Each algorithm was run against each test for a maximum of 20 seconds.

 (1)	 Dense-highcap-bpm: A fully connected bipartite matching graph. Capaci-
ties for internal edges were selected uniformly at random from [1 1000]. Ca-
pacities for edges (   ) and (   ) were selected from [1  (  )] where  (  ) =  P

()2  (   ). Graph size  represents the number of internal vertices. A 
range of sizes  = [200 2000] were selected in increments of 200.
 (2)	 Sparse-highcap-bpm: A bipartite matching graph. Each vertex  on the source 
side of the bipartite graph was connected with 
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Algorithm Running Time Notes

Edmonds-
Karp[6]

O(nm2) Shortest augmenting path

Dinitz[4] O(n2m) Even’s version with optimizations sug-
gested in [5]

Preflow-
Push[10]

O(n3) Goldberg and Tarjan’s preflow-push al-
gorithm with the highest-label selection
rule. A simple, but inefficient, selec-
tion implementation process yields the
slower runtime.

Preflow-
Push
(Gap)[10]

O(n2
√
m) Goldberg and Tarjan’s push relabel

method with the highest-label selection
rule. Implemented with O(1) selection
and the gap relabeling heuristic sug-
gested in [3].

Improved-
SAP[18]

O(n2m) Orlin’s improved shortest augmenting
path method

Table 1. Flow algorithms

theoretical approach to be defeated in practice by slower algorithms [2, 9]. Though
many flow algorithms have large upper bounds on running time, they rarely achieve
this behavior in the average case.
To evaluate Tidal Flow, the algorithm was benchmarked against several max-

imum flow algorithms (Table 1) that are known to do well in practice [13] and
are popular in competitive programming. Each flow algorithm was run against a
test suite of randomly generated networks that resemble classes of graphs common
in competitive programming network flow problems. The algorithms were imple-
mented in Java and each experiment measured CPU time using the StopwatchCPU
class from [19].
Three forms of graphs were tested: bipartite matching networks, grid networks,

and level graphs (Figure 8). Bipartite matching networks were split into four dif-
ferent graph classes, resulting in six total graph classes. Each graph class was
evaluated at 10 different sizes (described below). For each size of graph in each
graph class, 20 random graphs were generated. Each algorithm was run against
each test for a maximum of 20 seconds.

(1) dense-highcap-bpm: A fully connected bipartite matching graph. Ca-
pacities for internal edges were selected uniformly at random from [1, 1000].
Capacities for edges (s, v) and (v, t) were selected from [1, c(v)] where
c(v) =


(v,w)∈E cap(v, w). Graph size n represents the number of internal

vertices. A range of sizes n = [200, 2000] were selected in increments of 200.
(2) sparse-highcap-bpm: A bipartite matching graph. Each vertex v on the

source side of the bipartite graph was connected with
√
n random neighbors

on the sink side. Capacities for internal edges were selected uniformly at
random from [1, 10000]. Capacities for edges (s, v) and (v, t) were selected
from [1, c(v)] where c(v) = 1+


(v,w)∈E cap(v, w). Graph size n represents

  random neighbors on the 
sink side. Capacities for internal edges were selected uniformly at random from 
[1 10000]. Capacities for edges (   ) and (   ) were selected from [1  (  )] 
where  (  ) = 1 + 

P
()2  (   ). Graph size   represents the number of in-

ternal vertices. A range of sizes  = [1000 10000] were selected in increments of 
1000.
 (3)	 Dense-unit-bpm: A bipartite matching graph where all edge capacities are unit 
capacities. Each vertex  on the source side of the bipartite graph was connected 
with 10 random neighbors on the sink side. Graph size   represents the number 

Fig. 8. Three forms of graph classes. 
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of internal vertices. A range of sizes  = [28000 105] were selected in increments 
of 8000.
 (4)	 Sparse-unit-bpm: A bipartite matching graph where all edge capacities are unit 
capacities. Each vertex  on the source side of the bipartite graph was connected 
with 10 random neighbors on the sink side. Graph size  represents the number 
of internal nodes. A range of sizes  = [28000 105] were selected in increments 
of 8000.
 (5)	 Grid: An  ×  grid network where each neighbor in the four cardinal directions 
is connected. The source and sink were selected uniformly at random among grid 
vertices. Edge capacities were selected uniformly at random from [1 108]. Graph 
size  represents an  ×  grid of vertices. A range of sizes  = [275 500] were 
selected in increments of 25.
 (6)	 Level-10: A level graph with 10 levels where level   is fully connected to 
level  + 1. Capacities for internal edges were chosen uniformly at random 
from [1 1000]. Capacities for edges (  ) and (   ) were selected from [1  (  )] 
where  (  ) = 

P
()2  (   ). Graph size   represents a 10 ×   level graph. 

A range of sizes  = [140 500] were selected in increments of 40.

5. Results

Fig. 9–Fig. 14 compare Tidal Flow against the flow algorithms from Table 1. Flow al-
gorithms that didn’t complete a majority of the tests were removed from the figures to 
make it easier to directly compare Tidal Flow against more competitive algorithms.

Algorithm performance on dense-highcap-bpm (Fig. 9). On this graph class Ed-
monds-Karp only completes size 200 graphs before timing out on all remaining test 
sizes. Preflow-Push (Gap) manages to complete up to 1200 size graphs but times out at 
1400. The variance of Preflow-Push (Gap) is much higher than other algorithms. Pre-
flow-Push completes graphs up to size 1400, but also has a high variance. ISAP com-
pletes graphs up to size 1400. Dinitz manages to complete all tests but performs worse 

Fig. 9. Algorithm performance on dense-highcap-bpm. 
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Fig. 10. Algorithm performance on sparse-highcap-bpm. 

Fig. 11. Algorithm performance on dense-unit-bpm. 

Fig. 12. Algorithm performance on sparse-unit-bpm. 
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than Tidal Flow. Tidal Flow completes all tests and has much lower variance than any of 
the other included algorithms.

Algorithm performance on sparse-highcap-bpm (Fig. 10). On this graph only 
Tidal Flow and Dinitz were able to complete all tests in 20 seconds. Preflow-Push(Gap) 
was the only other algorithm able to complete a test and only completed the smallest test 
size in under 12 seconds before timing out. Only Dinitz and Tidal Flow are included in 
this graph to allow a closer comparison of the two algorithms. Dinitz performs slightly 
better than on this graph class, but Tidal Flow is comparable in performance. All tests 
run under 0.7 seconds.

Algorithm performance on dense-unit-bpm (Fig. 11). Dinitz completes all tests 
in under 0.2 seconds. Edmonds-Karp completes half of the test suite before timing out. 
ISAP runs all tests in under 0.04 seconds. PreflowPush (Gap) runs all tests in under 0.03 
seconds. Preflow-Push runs all tests in under 0.3 seconds. Tidal Flow is comparable to 
Dinitz, solving all tests in under 0.2 seconds.

Algorithm performance on sparse-unit-bpm (Fig. 12). Dinitz and Tidal flow were 
the only algorithms that could complete any of the tests. Dinitz performs slightly better 
than Tidal Flow on this entire test suite.

Fig. 13. Algorithm performance on grid.

Fig. 14. Algorithm performance on level-10. 
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Algorithm performance on grid (Fig. 13). Dinitz manages to complete all tests in 
under 1 second. Edmonds-Karp completes up to size 350 before timing out. TidalFlow’s 
average case is comparable to Dinitz but has several cases much slower.

Algorithm performance on level-10 (Fig. 14). Edmonds-Karp fails to complete any 
graphs. Dinitz completes graphs up to size 340 before timing out. ISAP can complete 
graphs up to size 220. PreflowPush(Gap) completes only graphs size 140. Preflow-Push 
also completes only graphs of size 140. Tidal Flow completes all graphs in less than 2 
seconds.

 
           (a) dense-highcap-bpm 	                            (b) sparse-highcap-bpm

 
              (c) dense-unit-bpm		        (d) sparse-unit-bpm

 
                         (e) grid 		                         (f) level-10

Fig. 15. Running Tidal Flow without the heuristic function .
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In Fig. 15 Tidal Flow using the heuristic function   is compared against a different 
implementation of Tidal Flow that removes the heuristic function. For every class of 
graphs, removing the heuristic function resulted in a significantly slower algorithm. The 
algorithm also started to have a wider variance in running time.

6. Discussion

6.1. Comparison to other Fast Flow Algorithms. 

Tidal Flow performed well compared to other flow algorithms. Perhaps the most surpris-
ing performance was the behavior of Preflow-Push algorithms on the generated graphs. 
In Ahuja’s study (Ahuja et al., 1997) Preflow-Push algorithms perform far better than 
other algorithms. This is most likely due to Preflow-Push being implemented without 
the global relabeling heuristic. That heuristic seems to make a huge difference in the 
behavior of Push-Relabel. In this experiment Dinitz’s algorithm significantly outper-
formed ISAP. In contrast, Ahuja’s study found the two algorithms to be comparable. The 
improvements in Dinitz’s algorithm’s performance are likely due to the implementation 
improvements suggested in Dinitz (2006).

Dinitz’s algorithm performed better than Tidal Flow on unit capacity bipartite match-
ing cases. Dinitz’s algorithm has a running time of  (   
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Algorithm Running Time Notes

Edmonds-
Karp[6]

O(nm2) Shortest augmenting path

Dinitz[4] O(n2m) Even’s version with optimizations sug-
gested in [5]

Preflow-
Push[10]

O(n3) Goldberg and Tarjan’s preflow-push al-
gorithm with the highest-label selection
rule. A simple, but inefficient, selec-
tion implementation process yields the
slower runtime.

Preflow-
Push
(Gap)[10]

O(n2
√
m) Goldberg and Tarjan’s push relabel

method with the highest-label selection
rule. Implemented with O(1) selection
and the gap relabeling heuristic sug-
gested in [3].

Improved-
SAP[18]

O(n2m) Orlin’s improved shortest augmenting
path method

Table 1. Flow algorithms

theoretical approach to be defeated in practice by slower algorithms [2, 9]. Though
many flow algorithms have large upper bounds on running time, they rarely achieve
this behavior in the average case.
To evaluate Tidal Flow, the algorithm was benchmarked against several max-

imum flow algorithms (Table 1) that are known to do well in practice [13] and
are popular in competitive programming. Each flow algorithm was run against a
test suite of randomly generated networks that resemble classes of graphs common
in competitive programming network flow problems. The algorithms were imple-
mented in Java and each experiment measured CPU time using the StopwatchCPU
class from [19].
Three forms of graphs were tested: bipartite matching networks, grid networks,

and level graphs (Figure 8). Bipartite matching networks were split into four dif-
ferent graph classes, resulting in six total graph classes. Each graph class was
evaluated at 10 different sizes (described below). For each size of graph in each
graph class, 20 random graphs were generated. Each algorithm was run against
each test for a maximum of 20 seconds.

(1) dense-highcap-bpm: A fully connected bipartite matching graph. Ca-
pacities for internal edges were selected uniformly at random from [1, 1000].
Capacities for edges (s, v) and (v, t) were selected from [1, c(v)] where
c(v) =


(v,w)∈E cap(v, w). Graph size n represents the number of internal

vertices. A range of sizes n = [200, 2000] were selected in increments of 200.
(2) sparse-highcap-bpm: A bipartite matching graph. Each vertex v on the

source side of the bipartite graph was connected with
√
n random neighbors

on the sink side. Capacities for internal edges were selected uniformly at
random from [1, 10000]. Capacities for edges (s, v) and (v, t) were selected
from [1, c(v)] where c(v) = 1+


(v,w)∈E cap(v, w). Graph size n represents

 ) on this class of networks 
and generates blocking flows in  (  )  time. Surprisingly, Tidal Flow is not that much 
slower than Dinitz’s algorithm on these cases. Tidal Flow outperformed Dinitz’s algo-
rithm on dense level graphs and dense bipartite graphs with large edge capacities.

6.2. Importance of the Heuristic Function. 

Two versions of Tidal Flow were implemented for the purpose of measuring the impor-
tance of the heuristic function . In one implementation, the heuristic function  was 
removed. In every graph class, Tidal Flow performed significantly worse without the 
heuristic function. The effect of the heuristic function is to help identify bottlenecks 
in the network. When the heuristic function is tight, more flow can be sent down other 
paths in the network during low tide. The importance of the heuristic function was most 
pronounced in the grid network. This behavior is most likely due to the fact that level 
graphs formed from the grid network have a large amount of separating and rejoining 
paths. The heuristic function provides reasonable guidance so that less flow gets stuck in 
the middle of the network during low tide on such networks.
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7. Concluding Remarks

This paper introduced the Tidal Flow algorithm and gave a preliminary survey measur-
ing the performance against other flow algorithms. Tidal flow is both simpler to un-
derstand and implement than other fast flow algorithms. The relationship to preflows 
makes Tidal Flow a good intermediate algorithm for understanding more complicated 
algorithms like Preflow-Push. Though this paper described an initial exploration of the 
algorithm, there are still a number of unknowns with respect to the performance of Tidal 
Flow. Though Tidal Flow performs well on random networks against other flow algo-
rithms, more extensive testing is required to determine its worst case behavior. Addition-
ally, the theoretical worst case running time of  ( 2 ) may not be tight. Whether it is 
possible to create a level graph requiring more than  ( ( ) )  tide cycles to block 
the network is also unknown. Finally, it is unclear if a better  function exists for guiding 
the low tide decisions.
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