
Olympiads in Informatics, 2018, Vol. 12, 159–166
© 2018 IOI, Vilnius University
DOI: 10.15388/ioi.2018.13

159

Grading Systems for Algorithmic Contests

Ágnes ERDőSNé NéMETH1,2, László ZSAKÓ3

1Batthyány High School, Nagykanizsa, Hungary
2Doctoral School, Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
3Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary
e-mail: erdosne@blg.hu, zsako@caesar.elte.hu

Abstract. Whether you teach programming or you are a competitive programmer yourself, one of
the main questions is how to check the correctness of solutions. There are many different types of
automatic judge systems both online and offline; you have to choose the appropriate one for the
situation. In this paper, we discuss the types of judges and the possible feedbacks given by them.
We also give an overview of the methods used by some well-known online sites from a pedagogi-
cal point of view. The technical issues of different grading systems are omitted.

Keywords: teaching programming, grading on algorithmic contests, automatic grading systems,
ACM ICPC, IOI.

1. Overview

There are many papers about the online judges from a technical viewpoint: how these
systems can be set up, what the problems with measuring the running times are, how to
make good test files, etc. (Skupas, 2010; Maggiolo, 2012; Mares, 2009). There are pa-
pers from the point of view of a jury: is the solution correct, is it readable or not, (Skupi-
ene, 2010), how can the solution’s quality be measured, what are the differences between
an accepted submission and a provably correct solution, what are the requirements of a
correct task description. There are questions partly answered about manual grading in
informatics contests (Pohl, 2008). There are papers about specific grading systems, like
USACO and UVa. (Kolstad, 2007; Revilla et al., 2008)

We think, all participants of the teaching and competing process (teachers, jury, con-
testants, students, companies) agree in the positive role of scientific, and especially in-
formatics contests. According to Manev et al. (2009), the main reasons:

It is more attractive for talented pupils when education lines up well with and is for ●
the purposes of the participating in competitions.
It is necessary to teach students to compete as early as possible. ●

In many countries there is a large gap between the knowledge and skills developed
in the regular curriculum and the ones needed for algorithmic contests. So teaching

Á. E�dősné Németh, L. Zsakó160

programming and also preparing for algorithmic contests is mostly an out-of-school ac-
tivity. It needs more independent work from students and needs more specific attitudes
from teachers.

A didactically and methodologically interesting question is how to check the solu-
tions submitted by students to a given problem, while teaching programming to them;
how to enable them to check their own solutions while practicing; and how to grade solu-
tions in algorithmic contests. All three of these situations require different approaches.

2. Grading Systems Overview

There are many online and offline grading systems for evaluating the correctness of
programs written by competitive programmers. These systems are very similar in the
sense that they all use a set of test data files uploaded by task-setters, performing black-
box testing. The programmers’ code is tested automatically, by a code-checker – not by
a human being – and contestants have to write their code accordingly. For each problem,
there is a set of one or more input files and a set of corresponding correct output files or
a specific judge tool which checks the output of the uploaded program. Each input file
is according to strict specifications described in the problem statement. The program
is run on each of those input files. In most cases, the output generated by the student’s
program must match the correct output exactly, to be accepted. The solution, in order to
be evaluated as correct, needs to produce correct output, and run within specified time
and memory constraints.

The test data should check
The complexity of the algorithm used. ●
The behaviour of the code on border cases. ●
The memory consumption. ●
The running time efficiency (constant) of the implementation. ●

The difference between the systems is the method of ranking, the grouping of test
data files, and the feedback given.

In this paper, we discuss the different methods of automatic judging, the differences
in the feedback, the question of using individual or grouped test cases, and the methods
adopted by well-known online practice sites and online competitions. We concentrate on
algorithmic tasks only, and we do not discuss the specialities of interactive and output
only tasks. We compare different methods from a pedagogical viewpoint and concen-
trate on didactical aspects: which systems can be used for different age groups and in
different phases of learning, practicing and competing.

3. Types of Grading

There are four different types of grading models, each named after the best-known con-
test or situation it is used in.

Grading Systems for Algorithmic Contests 161

3.1. ACM-Style Grading

On ACM ICPC contests, only the perfect and optimally efficient solution is worth any
points. When uploading a solution, two cases are possible:

Accepted: your program is perfect, it runs within the time limit, doesn’t exceed the ●
memory limit and for every input it prints a correct output.
Not accepted: something went wrong, the judging system gives back the first error ●
code.

Usually the correct solution is worth one point.
In many ACM ICPC tournaments, the number of teams reaching a given score de-

creases exponentially in terms of the score.
Possibilities for differentiation between teams with the same number of correct solu-

tions:
Defining the difficulty of each task: ● Xi points for the correct solution of task i (in-
stead of one point for all tasks).
Assigning a solution time to every task: measuring the elapsed time for every task ●
solved by a team or person. The solution times are summed to give a time penalty.
In this case, competitors must recognize which tasks they can solve quickly (easy
tasks) and which ones they can solve slowly (difficult tasks). The optimal strategy
is to solve easy tasks first, and leave more time-consuming tasks to the end. For
example, in the case of a 10-minute and a 50-minute task, starting with the easier
one, the solution time is 10+60 minutes, while starting with the more difficult one,
the solution time is 50+60 minutes.
Sometimes there is a penalty for wrong submissions too: e.g. +20 minutes or –X ● i
points for every incorrect solution submitted. In this case, the contestants are ad-
vised to test their solution offline at first.

This type of grading is acceptable only for older and well-practiced contestants (es-
pecially university students) who are:

Strong enough to endure failure. ●
Have enough routine to see what went wrong. ●
Well-trained enough to be able to repair and to rethink their solutions again and ●
again.

Apart from the ACM ICPC contest, the same grading is used in CodeChef Cook-off
contests, CodeForces rounds and CSAcademy (with full feedback).

3.2. IOI-Style Grading

The test files are grouped at IOI. Test cases awaiting a solution with the same asymptotic
complexity (e.g. O(n), O(n*log n), O(n2), O(n3), O(2n)) or logical complexity (e.g. prob-
lem restricted to an easier subproblem) are grouped together and worth a predetermined
amount of partial points. The judge gives the partial points only if all the tests in the

Á. E�dősné Németh, L. Zsakó162

group are passed, so only if the solution with the expected efficiency is perfect (or the
solution solves the subproblem covered by the group of test cases).

The problem with the idea is that it contradicts the modern pedagogical principle of
appreciating all the performance, rewarding all positive achievements. A fairness prob-
lem may arise as to whether a perfect O(2n) solution is better than an O(n) solution that
does not test a single special case and hence receives 0 points. But it is acceptable for
such an international competition where the competitors are well-prepared and have
advanced knowledge.

Apart from IOI, CodeChef Lunchtime uses this method for contests too.

3.3. National Olympiads

The modern pedagogical principle says that all performance and all success should be
rewarded. The individually evaluated separate test cases give this sense of achievement
to all contestants.

There must be targeted test cases prepared for:
Default values described in a task description. ●
Extreme values of the problem domain and range. ●
Different methods. ●
Typical errors. ●
Large quantities of data. ●

The number of points achievable by different solutions – according to the abovemen-
tioned metrics – has to be decided in advance. The distribution of test cases has to be
designed in such a way, that a good balance of different types of test cases is kept, and
hence the judge assigns the desired scores to different partial solutions.

When practicing, this is the best method if the online judge gives back a very de-
tailed, exact feedback for all test cases.

The national competitions, partly university and high school exams, the practice
sites of online judges – including USACO, COCI, UVa and HackerEarth – also use this
method.

3.4. Offline J�dging

When somebody begins to learn programming, it is important to develop the right coding
style and formatting; and all the small successes should be evaluated and appreciated.
Beginners need clear, accurate, detailed (usually verbal) feedback about their work.

Checking the code on a computer is a wide-ranging activity for all competitors. Writ-
ing code on paper is crucial in sitting exams without computers.

When somebody wants to hack another person’s solution, or wants to learn new
methods, they must be able to read and understand other people’s code.

Grading Systems for Algorithmic Contests 163

When there is a penalty for wrong uploads, the importance of offline judging is cru-
cial – everyone has to learn to read code and to create test data. Everybody has to test
their solution for one or two given sets of test data and must learn to make their own test
cases for different approaches.

All judges perform black-box testing only, but we think that in teaching program-
ming and preparing for contests, white-box testing must also be used.

4. Test Data

The quality of the task description and the test cases is crucial for the quality of a contest
or an online practice site. The evaluation summary presented in online judge systems
should be easy to read and to understand.

Some problems can be easily solved using heuristic algorithms, some can be solved
on a subset of test cases by generally incorrect algorithms, still receiving very good
evaluation scores (Forišek, 2006), so it is very important, that test cases used by the
judge have been carefully designed and checked as widely as they can be. Wide testing
is limited by available resources and confidentiality (for live contests).

The speciality of CodeForces Educational Rounds is that the results that are obtained
by the end of a round are preliminary, and after contest, there is a twenty-four-hour-
period of open hacks, when every visitor may try to hack any complete solution to a
problem from the round, and all successful hacks are added to the official test set and
every solution is re-tested on the now extended test set. This method makes the test cases
better after the contest, and it widens the group of possible test makers. This is good
practice and it may be worthwhile to adapt it for other contests.

5. Feedbacks

In all automatic judging system after writing a program on the contestant’s machine, the
source code is uploaded to the judging server. The source code is compiled and run on
the server. The automatic judge tests it with some inputs and outputs (string comparison)
or with a specific judge tool (for more complicated problems). After the process, the
server gives back simple or detailed feedback.

The simple feedback is: “accepted” or “not accepted” (in that case it gave back the
first error message).

The detailed feedback given back is one the following. We show the notation used by
almost all sites (HackerEarth, SPOJ, TopCoder, CSAcademy…), the one used by USA-
CO, and the one used by CodeChef, respectively, in brackets for each possible feedback.
Sometimes feedback is given for all the test cases, sometimes just till the first error.

Accepted (AC, *, ●): the program is correct. It produced the right answer within
the time and memory bounds.

Á. E�dősné Németh, L. Zsakó164

Wrong Answer (WA, x, ●): correct solution not reached for the inputs. This may
include empty or missing output as well.
Compile Error (CE, c, ●): the compiler could not compile the uploaded program.
Warning messages are ignored. Usually the compiler output messages are reported
on the screen.
Runtime Error (RE, !, ●): the uploaded program failed during execution (seg-
mentation fault, floating point exception…). Sometimes the exact cause is not re-
ported to the user, sometimes it is specified: SIGSEGV: segmentation fault, SI-
GABRT: fatal error, SIGXFSZ: output is too large, NZEC: non-zero exit code,
SIGFPE: floating point error.
Time Limit Exceeded (TL–TLE, t, ●): the program did not terminate within the
time limit. This error does not give information about whether the program would
have reached the correct solution or not.
Memory Limit Exceeded (ML–MLE, !, -): the uploaded program tried to use more ●
memory than the judge allows. This is hard to separate from Runtime Errors for
technical reasons, hence some judges do not report this.

Some systems also give other verdicts (UVa):
Output Limit Exceeded (OL–OLE): The program tried to write too much informa- ●
tion. This usually occurs if it goes into an infinite loop.
Submission Error (SE): The submission is not successful. This is due to some error ●
during the submission process, or data corruption.
Presentation Error (PE): The program outputs are correct, but outputs are not pre- ●
sented in the correct way. However, usually the judging systems ignore extra white
spaces, like ‘\n’,’\t’.
Restricted Function (RF): The uploaded program is trying to use a function which ●
may be harmful to the system.
In Queue (QU): The judge is busy and cannot attend the submission. It will be ●
judged as soon as possible.
Cannot Be Judged (CJ): The judge doesn’t have test input and outputs for the se- ●
lected problem.

6. Conclusions

Our opinion is that partial scoring and detailed feedback is a must at the beginning of
the learning process of programming. White-box testing with verbal feedback about the
coding style is an optimal case for future work.

While practicing, detailed feedback is also a must. But instead of a simple “Wrong
Answer” feedback, the detailed error signals are very useful. For example, if the task
is about finding the shortest way in a graph, the type of error would be textually in the
feedback, like:

Wrong path length. ●
The given path does not have minimal length. ●

Grading Systems for Algorithmic Contests 165

An invalid vertex is on the given path. ●
One vertex turns up several times on the given path. ●
The end of the given path is not the end of the expected path. ●
The given sequence of vertices is not a path in the graph. ●

If the error is noticeable, then the judge should give the solution back with the cause
of the error.

Our opinion – supported by our practice with high school and university students
too – is, that feedback of tests case by case is a must on exams and on national Olympi-
ads level as well.

When students are well-practiced on international level – like IOI and ACM – is the
first level at which test cases in groups are acceptable. These students’ knowledge can
be measured well through the carefully selected tasks with adequate points worth, well
grouped test cases.

From pedagogical viewpoint the ACM-style evaluation, differentiating based on
elapsed time is good for easy, have-to-solve tasks only, not for making contests for high
school students.

References

CodeChef, not-for-profit educational initiative by Directi. https://www.codechef.com
CodeForces online task archive and contest site. http://codeforces.com
COCI Croatian Open Competition in Informatics. http://hsin.hr/coci/
Cormack, G. (2006). Random factors in IOI 2005 test case scoring. Informatics in Education, 5(1), 5–14.
CSAcademy educational platform. https://csacademy.com/
Forišek, M. (2006). On the suitability of programming tasks for automated evaluation. Informatics in Educa-

tion, 5(1), 63–75.
HackerEarth: Be a better programmer! https://www.hackerearth.com/
Horváth, Gy. (2014). A programozási versenyek szerepe az oktatásban. INFOÉRA Konferencia 2014.
Kolstad, R., Piele, D. (2007). USA Computing Olympiad (USACO). Olympiads in Informatics, 1, 105–111.
Manev, K., Sredkov, M., Bogdanov, T. (2009). Grading systems for competitions in programming. Proceed-

ings of the XXXVIII. Spring Conference of the Union of Bulgarian Mathematicians, 2009.
Mares, M. (2009). Moe–Design of a Modular Grading System. Olympiads in Informatics, 3, 60–66.
MESTER online task archive and judge system. https://mester.inf.elte.hu
Maggiolo, S., Mascellani, G. (2012). Introducing CMS: A Contest Management System. Olympiads in Infor-

matics, 6, 86–99.
Pohl, W. (2008). Manual Grading in an Informatics Contest. Olympiads in Informatics, 2, 122–130.
Revilla M.A., Manzoor, S., Liu R. (2008). Competitive learning in informatics: the UVa on-line judge experi-

ence. Olympiads in Informatics, 2, 131–148.
Skupas, B. (2010). Feedback Improvement in Automatic Program Evaluation Systems. Informatics in Educa-

tion, 9(2), 229–237.
Skupiene, J. (2010). Improving the Evaluation Model for the Lithuanian Informatics Olympiads. Informatics

in Education, 9(1), 141–158.
SPOJ Sphere Online Judge. http://www.spoj.com/
TopCoder Algorithms&Analytics. https://www.topcoder.com
USACO USA Computing Olympiad open contest and training pages. http://usaco.org/
UVa Online Judge. https://uva.onlinejudge.org
Verhoeff T.(2008). Programming task Packages: Peak exchange Format, Olympiads in Informatics, 2, 192–

207.

Á. E�dősné Németh, L. Zsakó166

Á. Erdősné Németh teaches mathematics and informatics at Bat-
thyány Lajos High School in Nagykanizsa, Hungary. A lot of her stu-
dents are in the final rounds of the national programming competitions,
some on CEOI and IOI. She is a PhD student in the Doctoral School of
Faculty of Informatics, Eötvös Loránd University in Hungary. Her cur-
rent research interest is teaching computer science for talented pupils
in primary and secondary school.

L. Zsakó is a professor at Department of Media & Educational In-
formatics, Faculty of Informatics, Eötvös Loránd University in Hun-
gary. Since 1990 he has been involved in organizing of programming
competitions in Hungary, including the CEOI. He has been a deputy
leader for the Hungarian team at IOI since 1989. His research interest
includes teaching algorithms and data structures; didactics of infor-data structures; didactics of infor- structures; didactics of infor-
matics; methodology of programming in education; teaching program-
ming languages; talent management. He has authored more than 68
vocational and textbooks, some 200 technical papers and conference
presentations.

