
Olympiads in Informatics, 2016, Vol. 10, 19–37
© 2016 IOI, Vilnius University
DOI: 10.15388/ioi.2016.02

19

Wavelet Trees for Competitive Programming

Robinson CASTRO1, Nico LEHMANN1, Jorge PÉREZ1,2,  
Bernardo SUBERCASEAUX1

1Department of Computer Science, Universidad de Chile
Beauchef 851, Santiago, Chile
2Chilean Center for Semantic Web Research
email: {rocastro, nlehmann, jperez, bsuberca}@dcc.uchile.cl

Abstract. The wavelet tree is a data structure to succinctly represent sequences of elements over 
a fixed but potentially large alphabet. It is a very versatile data structure which exhibits interest-
ing properties even when its compression capabilities are not considered, efficiently supporting 
several queries. Although the wavelet tree was proposed more than a decade ago, it has not yet 
been widely used by the competitive programming community. This paper tries to fill the gap 
by showing how this data structure can be used in classical competitive programming problems, 
discussing some implementation details, and presenting a performance analysis focused in a 
competitive programming setting.
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1. Introduction

Let  = (1     ) be a sequence of integers and consider the following query over .

Query 1. Given a pair of indices ( ) and a positive integer , compute the value of the 
-th smallest element in the sequence ( +1     ).

Notice that Query 1 essentially asks for the value of the element that would occupy 
the -th position when we sort the sequence ( +1     ). For example, for the se-
quence  = (3 7 5 2 3 2 9 3 5) and the query having ( ) = (3 7) and  = 4, 
the answer would be 5, as if we order sequence (3 4 5 6 7) = (5 2 3 2 9) we 
would obtain (2 2 3 5 9) and the fourth element in this sequence is 5. Consider now 
the following update query.

Query 2. Given an index , swap the elements at positions  and  + 1.
That is, if  = (3 7 5 2 3 2 9 3 5) and we apply Query 2 with index 5, we 

would obtain the sequence  0 = (3 7 5 2 2 3 9 3 5).
Consider now a competitive programming setting in which an initial sequence of 

106 elements with integer values in the range [ − 109 109] is given as input. Assume that 
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a sequence of 105 queries, each query of either type 1 or type 2, is also given as input. 
The task is to report the answer of all the queries of type 1 considering the applications 
of all the update queries, every query in the same order in which they appear in the 
input. The wavelet tree (Grossi, 2015) is a data structure that can be used to trivially 
solve this task within typical time and memory limits encountered in programming 
competitions.

The wavelet tree was initially proposed to succinctly represent sequences while still 
being able to answer several different queries over this succinct representation (Grossi 
et al., 2003; Navarro, 2014; Grossi, 2015). Even when its compression capabilities are 
not considered, the wavelet tree is a very versatile data structure. One of the main fea-
tures is that it can handle sequences of elements over a fixed but potentially large alpha-
bet; after an initial preprocessing, the most typical queries (as Query 1 above) can be 
answered in time (log σ), where σ is the size of the underlying alphabet. The prepro-
cessing phase usually constructs a structure of size ( ×   log σ) for an input sequence 
of  elements, where  is a factor that will depend on what additional data structures 
we use over the classical wavelet tree construction when solving a specific task.

Although it was proposed more than a decade ago (Grossi et al., 2003), the wave-
let tree has not yet been widely used by the competitive programming community. 
We conducted a social experiment publishing a slightly modified version of Query 1 
in a well known Online-Judge system. We received several submissions from experi-
enced competitive programmers but none of them used a wavelet tree implementation 
to solve the task. This paper tries to fill the gap by showing how this structure can be 
used in classical (and no so classical) competitive programming tasks. As we will show, 
its good performance to handle big alphabets, the simplicity of its implementation, plus 
the fact that it can be smoothly composed with other typical data structures used in 
competitive programming, give the wavelet tree a considerable advantage over other 
structures.

Navarro (2014) presents an excellent survey of this data structure showing the most 
important practical and theoretical results in the literature plus applications in a myriad 
of cases, well beyond the one discussed in this paper. In contrast to Navarro’s survey, 
our focus is less on the properties of the structure in general, and more on its practical 
applications, some adaptations, and also implementation targeting specifically the issues 
encountered in programming competitions. Nevertheless, we urge the reader wanting to 
master wavelet trees to carefully read the work by Navarro (2014).

2. The Wavelet Tree

The wavelet tree (Grossi, 2015) is a data structure that recursively partitions a sequence 
 into a tree-shaped structure according to the values that  contains. In this tree, every 
node is associated to a subsequence of . To construct the tree we begin from the root, 
which is associated to the complete sequence . Then, in every node, if there are two 
or more distinct values in its corresponding sequence, the set of values is split into two 
non-empty sets,  and ; all the elements of the sequence whose values belong to  
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form the left-child subsequence; all the elements whose values belong to  form the 
right-child subsequence. The process continues recursively until a leaf is reached; a leaf 
corresponds to a subsequence in which all elements have the same value, and thus no 
partition can be performed.

Fig. 1 shows a wavelet tree constructed from the sequence

 = (3 3 9 1 2 1 7 6 4 8 9 4 3 7 5 9 2 7 3 5 1 3)

We split values in the first level into sets  = f1     4g and  = f5     9g. 
Thus the left-child of  is associated to  0 = (3 3 1 2 1 4 4 3 2 3 1 3) If we 
continue with the process from this node, we can split the values into  0 = f1 2g and 
 0 = f3 4g. In this case we obtain as right child a node associated with the sequence 
 00 = (3 3 4 4 3 3 3). Continuing from  00, if we split the values again (into sets 
f3g and f4g), we obtain the subsequence (3 3 3 3 3) as left child and (4 4) as right 
child, and the process stops.

For simplicity in the exposition, given a wavelet tree  we will usually talk about 
nodes in  to denote, interchangeably, the actual nodes that form the tree and the sub-
sequences associated to those nodes. Given a node  in , we denote by Left () its 
left-child and by Right () its right-child in . The alphabet of the tree is the set of 
different values that its root contains. We usually assume that the alphabet of a tree is a 
set Σ  = f1 2     σg. Without loss of generality, and in order to simplify the partition 
process, we will assume that every node  in  has an associated value m () such that 
Left () contains the subsequence of  composed of all elements of  with values  
≤ m (), and Right () the subsequence of  composed of all elements with values 
  m (). (In Fig. 1 the value m () is depicted under every node.) We can also as-
sociate to every node  in , two values l () and r (), such that  corresponds to 
the subsequence of the root of  containing all the elements whose values are in the 
range [l () r ()]. Notice that a wavelet tree with alphabet f1     σg has exactly 
σ leaves. Moreover, if the construction is done splitting the alphabet into halves in every 
node, the depth of the wavelet tree is (log σ).

Fig. 1. Wavelet tree for the sequence  = (3 3 9 1 2 1 7 6 4 8 9 4 3 7 5 9 2 
7 3 5 1 3). Solid lines illustrate the execution of rank3( 14). Dashed lines show the 
execution of quantile6( 7 16).
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As we will see in Section 4, when implementing a wavelet tree the complete infor-
mation of the elements stored in each subsequence of the tree is not actually necessary. 
But before giving any details on how to efficiently implement the wavelet tree, we use 
the abstract description above to show the most important operations over this data 
structure.

Traversing the Wavelet Tree

The most important abstract operation to traverse the wavelet tree is to map an index in 
a node into the corresponding indexes in its left and right children. As an example, let  

be the root node of wavelet tree  in Fig. 1, and  0 = Left (). Index 14 in  (marked 
in the figure with a solid line) is mapped to index 8 in  0 (also marked in the figure with 
a solid line). That is, the portion of sequence  from index 1 to index 14 that is mapped 
to its left child, corresponds to the portion of sequence  0 from index 1 to 8. On the other 
hand, index 14 in root sequence  is mapped to index 6 in Right ().

We encapsulate the operations described above into two abstract functions, 
mapLeft ( ) and mapRight ( ), for an arbitrary non-leaf node  of . In Fig. 1, 
if  is the root,  0 = Left () and  00 = Right (

 0), then we have mapLeft ( 

14) = 8, mapRight ( 0 8) = 5 and mapLeft ( 00 5) = 3 (all indexes marked 
with solid lines in the figure). Function mapLeft ( ) is essentially counting how 
many elements of  until index  are mapped to the left-child partition of . Similarly 
mapRight ( ) counts how many elements of  until index  are mapped to the right-
child partition of .

As we will describe in Section 4, these two operations can be efficiently implemented 
(actually can be done in constant time). But before going into implementation details, we 
show how mapLeft and mapRight can be used to answer three different queries by 
traversing the wavelet tree, namely, rank, range quantile, and range counting.

2.1. Rank

The rank is an operation performed over a sequence  that counts the occurrences of 
value  until an index  of . It is usually denoted by rank( ). That is, if  = (1 

    ) then

rank( ) = jf 2 f1     g j  = gj

So for example, in sequence  in Fig. 1 we have that rank3( 14) = 3.
Assume that  is a wavelet tree for , then rank( ) can be easily computed with 

the following strategy. If  ≤ m () then we know that all occurrences of  in  appear 
in the sequence Left (), and thus rank( ) = rank(Left () mapLeft ( )). 

Similarly, if   m () then rank( ) = rank(Right () mapRight ( )). We 
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repeat this process until we reach a leaf node; if we reach a leaf  with this process, we 
know that rank( ) = .

In Fig. 1 the execution of rank3( 14) is depicted with solid lines. We map index 
14 down the tree using either  mapLeft or  mapRight  depending on the  m value 
of every node in the path. We first map 14 to 8 (to the left), then 8 to 5 (to the right) and 
finally 5 to 3 (to the left), reaching a leaf node. Thus, the answer to rank3( 14) is 3.

Rank is computed by performing (log σ) calls to (either) mapLeft or mapRight , 
thus the time complexity is ( ×  log σ) where  is the time needed to compute the 
map functions. Also notice that a rank operation that counts the occurrences of  be-
tween indexes  and  can be computed by rank( ) − rank(  − 1), and thus the 
time complexity is also ( ×  log σ). 

2.2. Range Quantile

The range quantile operation is essentially Query 1 described in the introduction: given a 
sequence  = (1     ), quantile(  ) is the value of the -th smallest element 
in the sequence ( +1     ). For instance in Fig. 1 for the root sequence  we have 
that quantile6( 7 16) = 7 It was shown by Gagie et al. (2009) that wavelet trees 
can efficiently solve this query.

To describe how the wavelet tree can solve quantile queries, lets begin with a simpler 
version. Assume that  = 1 and thus, we want to find the -th smallest element among 
the first  elements in . Then having a wavelet tree  for , quantile( 1 ) can 
be easily computed as follows. Let  = mapLeft ( ). Recall that mapLeft ( ) 
counts how many elements of  until index  are mapped to the left-child of . Thus if  

≤  then we know for sure that the element that we are searching for is in the left subtree, 
and can be computed as

quantile(Left () 1 mapLeft ( ))

On the other hand, if    then the element that we are searching for is in the right 
subtree, but it will no longer be the -th smallest in Right () but the ( − )-th small-
est and thus can be computed as

quantile( − )(Right () 1 mapRight( ))

This process can be repeated until a leaf node is reached, in which case the answer is 
the (single) value stored in that leaf.

When answering quantile(  ) the strategy above generalizes as follows. We 
first compute  = mapLeft ( ) − mapLeft (  − 1). Notice that  is the number of 
elements of  from index  to index  (both inclusive) that are mapped to the left. Thus, 
if  ≤  then the element we are searching for is in the leftchild of  between the indexes 
mapLeft (  − 1) + 1 and mapLeft ( ), and thus the answer is
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quantile(Left () mapLeft (  − 1) + 1 mapLeft ( ))

If    then the desired element is in the right and can be computed as

quantile( − )(Right () mapLeft(  − 1) + 1 mapLeft( ))

As before, the process is repeated until a leaf node is reached, in which case the an-
swer is the value stored in that leaf. In Fig. 1 the complete execution of quantile6( 

7 16) is depicted with dashed boxes in every visited node.
As for the case of the rank operation, quantile can be computed in time ( ×  log σ) 

where  is the time needed to compute the map functions.

2.3. Range Counting

The range counting query range[](  ) counts the number of elements with values 
between  and  in positions from index  to index . That is, if  = (1     ) then

range[](  ) = jf 2 f     g j  ≤  ≤ gj

A sequence of size  can be understood as the representation of a grid with  points 
such that no two points share the same row. A general set of  points can be mapped to 
such a grid by storing real coordinates somewhere and breaking ties somehow. For this 
representation the range counting query corresponds to count the number of points in a 
given subrectangle (Navarro, 2014).

To answer a range counting query over a wavelet tree  we can use the following re-
cursive strategy. Consider the interval [l () r ()] of possible elements of a sequence 
. If [l () r ()] does not intersect [ ], then no element of the sequence is in [ 

] and the answer is 0. Another case occurs when [l () r ()] is totally contained in 
[ ]; in this case all the elements of the sequence between  and  are counted, so the 
answer is j[ ]j =  −  + 1.

The last case (the recursive one) is when [l () r ()] intersects [ ] (but is not 
completely contained in [ ]); in that case the answer is the sum of the range counting 
query evaluated in both children. The queries for children are called with the same [ 

] as in the parent’s call, but the indexes  and  are replaced by the mappings of these 
indexes. That is, the answer is

range[](Left () mapLeft ( ) mapLeft ( )) +

  range[](Right () mapRight ( ) mapRight ( ))

Note that if range is called on a leaf node , then l () = r () = , so the inter-
val is either completely contained (if  2 [ ]) or completely outside (if  62 [ ]). 
Both cases are already considered.
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It is not difficult to show that for a range counting query, we have to make at most 
(log σ) recursive calls (Gagie et al. (2012) show detailed proof), and thus the time 
complexity is, as for rank and quantile, ( ×  log σ) where  is the time needed to 
compute the map functions.

3. Simple Update Queries

We now discuss some simple update queries over wavelet trees. The idea is to shed light 
on the versatility of the structure to support less classical operations. We looked for 
inspiration in typical operations found in competitive programming problems to design 
update queries that preserve the global structure of the wavelet tree. We only describe 
the high level idea on how these queries can be adopted by the wavelet tree, and we later 
(in Section 4) discuss on how to efficiently implement them.

3.1. Swapping Contiguous Positions

Consider Query 2 in the introduction denoted by swap( ). That is, a call to swap( ) 
changes  = (1     ) into a sequence (1     +1      ).

The operation swap( ) can be easily supported by the wavelet tree as follows. 
Assume first that  ≤ m (). Then we have two cases depending on the value of +1. 
If +1  m (), we know that   is mapped to the left subtree while +1 is mapped 
to the right subtree. This means that swapping these two elements does not modify any 
of the nodes of the tree that are descendants of . In order to modify , besides actu-
ally swapping the elements, we should update mapLeft ( ) and mapRight ( ); 
mapLeft ( ) should be decremented by 1 and mapRight ( ) should be incre-
mented by 1 as the new element in position  is now mapped to the right subtree. Notice 
that these are the only two updates that need to be done to the map functions.

The other case is if +1 ≤ m (). Notice that both   and +1 are mapped to 
Left (), and moreover, they are mapped to contiguous positions in that sequence. 
In this case, no update should be done to mapLeft ( ) or mapRight ( ). Thus, 
besides actually swapping the elements in , we should only recursively perform the 
operation swap(Left () mapLeft ( )) The case in which   m () is sym-
metrical. The complete process is repeated until a leaf node is reached, in which case 
nothing should be done.

To perform the swap in the worst case we would need to traverse from top to bottom 
of the wavelet tree. Moreover, notice that the map functions mapLeft and mapRight 
are updated in at most one node. Thus the complexity of the process is ( ×  log σ + 

) where  is the time needed to update mapLeft and mapRight , and  is the time 
needed to compute the map functions.
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3.2. Toggling Elements

Assume that every element in a sequence  has two possible states, active or inactive, 
and that an operation toggle( ) is used to change the state of element  from active 
to inactive, or from inactive to active depending on its current state. Given this setting, 
we want to support all the queries mentioned in Section 2, but only considering active 
elements. For example, assume that  = (1 2 1 3 1 4) and only the non 1 elements 
are active. Then a query quantile2

 ( 1 6) would be 3.
A simple augmentation of the wavelet tree can be used to support this update. Besides 

mapLeft and mapRight , we use two new mapping/counting functions activeLeft 
and activeRight . For a node  and an index , activeLeft ( ) is the number 
of active elements until index  that are mapped to the left child of , and similarly 
activeRight ( ) is the number of active elements mapped to the right child. Be-
sides this we can also have a count function for the leaves of the tree, activeLeaf ( 

), that counts the number of active elements in a leaf  until position . We next show 
how these new mapping functions should be updated when a toggle operation is per-
formed. Then we describe how the queries in Section 2 should be adapted.

Upon an update operation toggle( ) we proceed as follows. If  ≤ m () then 
we should update the values of activeLeft ( ) for all  ≥  adding 1 to 
activeLeft ( ) if  was previously inactive, or substracting 1 in case  was pre-
viously active. Now, given that  is mapped to the left child of , we proceed recur-
sively with toggle(Left () mapLeft ( )). If   m (), we proceed sym-
metrically updating activeRight ( ) for  ≥ , and recursively calling 
toggle(Right () mapRight ( )). We repeat the process until a leaf is reached, 
in which case activeLeaf should also be updated (similarly as for activeLeft ). 
The complexity of the toggle operation is then (( + ) ×  log σ), where  is the time 
needed to update activeLeft and activeRight in every level (plus activeLeaf 
in the last level), and  is the time needed to compute the map functions mapLeft 
and mapRight .

Consider now the quantile(  ) query. Recall that for this query we first com-
puted a value  representing the number of elements of  from index  to index  that are 
mapped to the left. If  ≤  we proceeded searching for quantile in the left subtree, 
and if  ≥  we proceeded searching for quantile( − ) in the right subtree (mapping 
indexes  and  accordingly in both cases). In order to consider the active/inactive state 
of each element, we only need to change how  is computed; we need to consider now 
how many active elements from index  to index  are mapped to the left, and thus  is 
computed as

 = activeLeft (  − 1) − activeLeft ( )

Then, we proceed exactly as before: if  ≤  we search for quantile  in the left 
subtree, otherwise, we search for quantile( − ) in the right subtree. Notice that we 
always assume that when executing quantile(  ) the number of active elements 
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between  and  in  is not less than  (which can be easily checked using activeLeft 
and activeRight ).

Queries rank and range[] are even simpler. In the case of rank we only need 
to consider the active elements when we reach a leaf; in the last query rank( ) in a 
leaf , we just answer activeLeaf ( ). In the case of range[](  ), we almost 
keep the recursive strategy as before but now when [l () r ()] is totally contained 
in [ ] we only have to consider the number of active elements between index  and 
index , which is computed as

(activeLeft ( ) + activeRight ( )) −

  (activeLeft (  − 1) + activeRight (  − 1))

In the case in which  is a leaf, this value is computed as activeLeaf ( ) −
activeLeaf (  − 1).

The complexity of these new queries is (( + ) ×  log σ) where  is the time 
needed to compute the activeLeft and activeRight functions and  is the time 
needed to compute the map functions.

3.3. Adding and Deleting Elements from the Beginning or End of the Sequence

Consider the operations pushBack( ), popBack(), pushFront( ) and 
popFront(), with their typical meaning of adding/deleting elements to/from the be-
ginning or ending of sequence .

First notice that when adding or deleting elements we might be changing the alpha-
bet of the tree. To cop with this, we assume that the underlying alphabet Σ  is fixed and 
that the tree is constructed initially from a sequence mentioning all values in Σ . Thus, 
initially there is a leaf in the tree for every possible value. We also assume that in every 
moment there is an active alphabet, which is a subset of Σ , containing the values actu-
ally mentioned in the tree. To support this we just allow some sequences in the tree to 
be empty; if there is some value  of Σ  not present in the tree at some point, then the 
sequence corresponding to the leaf node associated with  is the empty sequence. It is 
straightforward to adapt all the previous queries to this new setting.

Consider now pushBack( ) and assume that before the update we have jj = 

. Then, besides adding  to the end of sequence , we should update (or more pre-
cisely, create) mapLeft ( +1) and mapRight ( +1). If  ≤ m () then we 
let mapLeft (  + 1) = mapLeft ( ) + 1 and mapRight (  + 1) = 

mapRight ( ), and then perform pushBack(Left () ). If   m () then we let 
mapLeft (  + 1) = mapLeft ( ) and mapRight (  + 1) = mapRight ( 

)+1, and then perform pushBack(Right () ). Finally when we reach a leaf node, 
we just add  to the corresponding sequence.

The popBack() operation is similar. Assume that jj = , then besides deleting 
the last element in , we should only delete that element from the corresponding sub-
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tree. Thus, if  ≤ m () then we do popBack(Left ()), and if   m () we do 
popBack (Right ()). When we reach a leaf node we just delete any element from it. 
Notice that in this case no mapLeft or mapRight needed to be updated.

The pushFront and popFront are a bit more complicated. When we do 
pushFront( ) we should do a complete remapping: if  ≤ m () then for every  2 
f1     g we should do

 mapLeft (  + 1) = mapLeft ( ) + 1

mapRight (  + 1) = mapRight ( )

and finally set mapLeft ( 1) = 1 and mapRight ( 1) = 0 and perform the call 
pushFront(Left () ). If   m () then we should do

 mapLeft (  + 1) = mapLeft ( )

mapRight (  + 1) = mapRight ( ) + 1

and finally set mapLeft ( 1) = 0 and mapRight ( 1) = 1 and perform the call 
pushFront(Right () ). When a leaf node is reached we just add  at the begin-
ning of the corresponding sequence. The popFront() operation is similar. Let jj = 

. If 1 ≤ m () then we should update mapLeft  ( ) to mapLeft  (  + 1) −
1, and mapRight ( ) to mapRight (  + 1) for all  from 1 to  − 1, and then do 
popFront(Left ()). Symmetrically if 1  m () then we should update mapLeft ( 

) to mapLeft (  + 1), and mapRight ( ) to mapRight (  + 1) − 1 for all  
from 1 to  − 1, and then do popFront(Right ()). Upon reaching a leaf node, we just 
delete the value from the front.

The complexity of all the operations above is (( + ) ×  log σ) where  is the 
time needed to update mapLeft or mapRight in every level, and  is the time needed 
to compute the map functions. Just notice that for the cases of the pushFront and pop-
Front we have to update several values of mapLeft and mapRight per level.

4. Implementation

In this section we explain how to build a wavelet tree and how to construct the auxiliary 
structures to support the mapping operations efficiently. Based on this construction we 
also discuss how to implement queries explained in the previous section. Additionally, 
we present an implementation strategy alternative to the direct pointer based one. We 
implemented both approaches in C++ and the code is available in github1.

1 https://github.com/nilehmann/wavelet-tree
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4.1. Construction

A wavelet tree implementation represents an array [0  − 1] of integers in the interval 
[0 σ − 1]. Our construction is based on a node structure and pointers between those 
nodes. Every node  will be identified by two elements   and   (which essentially 
correspond to l () and r () in Section 2), and an associated sequence 

 which is 
the subsequence of  formed by selecting elements in the range [ ]. As we will see, 
values  and  and the sequence 

 do not need to be explicitly stored and can be 
computed when traversing the tree if needed.

The construction of a wavelet tree starts creating the root node associated to the 
original array  and the interval [0 σ − 1]. We then proceed recursively as follows. In 
each node  we found the middle of the interval 

 = ( + )2 (which corresponds 
to the value m () described in Section 2). We create two new nodes  and  as left-
child and right-child of , respectively. Then, we perform a stable partition of the array 

  into two arrays 

 and , such that 
 contains all values less than or equal to 


 and 

  those greater than . The construction continues recursively for the left 
node with the array 

  and the interval [], and for the right node with 
  and 

the interval [
 + 1 ]. The base case is reached when the interval represented by the 

node contains only one element, i.e.,  = . It is not necessary to store arrays 
 cor-

responding to each node . They are only materialized at building time to construct the 
auxiliary structures to support the mapping operations required to traverse the tree as 
described below.

As previously discussed, the fundamental operations mapLeft and mapRight cor-
respond to count how many symbols until position  belong to the left and right node 
respectively. To support these operations, when building a node  we precompute for 
every position  how many elements in the array 

 belong to the right node – they are 
greater than 

 – and store the results in an array . We could store a similar array  0
 

to store how many elements belong to the left node, but it is easy to note that values of 
both arrays are related as follows:  0

 [] =  − [] + 1.

To understand how 
  is computed, it turns out useful to associate a bitvector 

 

that marks with 0’s elements less than or equal to 
 and with 1’s those greater than . 

This bitvector must support the operation of counting how many bits are set to 1 until a 
position , which is commonly referred as a rank operation. Our array 

 is computed on 
build time as the partial sum of 

 by the recurrence [0] = [0] [] = [ − 1] 

+ [], thus supporting the rank operation in constant time. The compression character-
istics of the wavelet tree arise mainly because it is possible to represent these bitvectors 
succinctly while maintaining constant-time rank queries (Clark, 1998; Okanohara and 
Sadakane, 2007; Raman et al., 2002). However, in a competitive programming setting 
memory constraints are less restrictive and our representation shows off to be sufficient. 
In case the memory is an issue, a practical and succinct implementation is presented by 
González et al. (2005).
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4.2. Implementing Queries and Updates

We now briey discuss how every operation in Section 2 can be efficiently implemented.

mapLeft and mapRight. These two operations can be easily implemented with the array 
; in a node  the number of elements until position  that go to the left is  −  [] + 

1. Since we are indexing from 0, position  is mapped to the left to position  −  []. 
Analogously, a position  is mapped to the right to position [] − 1. Notice that both 
mapping functions can thus be computed in constant time, which implies that rank, 
quantile and range operations can be implemented in (log σ) time.

swap. The swap operation first map the position  down the tree until we reach a node  
where the update needs to be performed. At this point the (virtual) bitvector 

 is such 
that [] 6= [ + 1]. Swapping both bits can only change the count of 1’s until posi-
tion , and thus, only [] should be updated. If [] = 0 we do [] = [] + 1, and 
if [] = 1 we do [] = [] − 1. This shows that the map functions can be updated 
in constant time after a swap operation, which implies that the complexity of swap is 
also (log σ).

toggle. In this case we only need to implement activeLeft, activeRight and ac-
tiveLeaf. To mark which positions are active we can use any data structure represent-
ing sequences of 0’s and 1’s that efficiently supports partial sums and point updates. For 
example we can use a binary indexed tree (BIT) (Fenwick, 1994) which is a standard 
data structure used in competitive programming that supports both operations in (log ) 
time. Thus with a BIT we are adding a logarithmic factor for each query and now rank, 
quantile and range operations as well as toggle can be implemented in (log  ×  
log σ). In terms of construction, when using a BIT in every level we are only paying a 
constant factor in the size of the wavelet tree.

pushBack and popBack. These operations only modify the array 
  in some nodes. 

Pushing an element at the end updates the (virtual) bitvector 
 appending a new 0 or 1 

(depending on the comparison between the new element and ), so 
 being a partial 

sum of 
 of size 

 only needs a [] = [ − 1] + [ − 1] update. Popping 
an element from the end updates 

 and 
 doing the inverse operation, so if 

 is of 
size 

 we only need to delete [ − 1] from memory. Both operations can be done in 
amortized constant time using a dynamic array, thus the complexity of all queries plus 
pushBack and popBack is (log σ) time.

pushFront and popFront. These are similar to pushBack and popBack, but act at the 
beginning of the bitvector . To prepend a bit  to a bitvector 

 we must prepend its 
value to . If the value of  is equal to 1 we must also increment by 1 every value in 
. Because it is too slow to update every position of , we define a counter δ  that 
starts at 0 and is incremented by 1 every time a bit equal to 1 is prepended. We then just 
prepend  − δ  to , in which case the real count of ones until position  is obtained 
by []  +  δ. Popping an element is as easy as deleting the first element of 

  from 
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memory and decrementing δ by 1 if the value of [0] + δ was equal to 1. If we want 
to mix front and back operations, we could use a structure such as a dequeue (Knuth, 
1997), which allows amortized constant time insertions at the beginning and end of an 
array while maintaining constant random access time. Thus the complexity of all queries 
is still (log σ) time.

4.3. Big Alphabets and the Wavelet Matrix

In a competitive programming setting the size of the array  will depend on time restric-
tions, but typically it will not exceed 106. However the number of possible values that  

can store could be without any problems around 109. Thus the number of values actually 
appearing in  is much smaller than the range of possible values. For this reason one 
usually have to map the values that appear in the sequence to a range [0 σ − 1]. Com-
monly, this will require a fairly fast operation to translate from one alphabet to the other 
with a typical implementation using, for example, a binary search tree or a sorted array 
combined with binary search.

To avoid having this map operation, the wavelet tree could be constructed directly 
over the range of all possible values allowing the subsequences of some nodes to be emp-
ty. A naive pointer-based construction will require (σ) words which might be excessive 
for σ = 109. Because many nodes will represent empty subsequences, one can save some 
space explicitly tracking when some subsequences become empty in the tree.

There is an alternative implementation of the wavelet tree called wavelet matrix 
(Claude et al., 2015) that was specifically proposed in the literature to account for big 
alphabets. Given an alphabet its size can be extended to match the next power of two, 
yielding a complete binary tree for the wavelet tree representation. For each level, 
we could then concatenate the bitvectors of each node in that level and represent the 
structure with a single bitvector by level. The border between each node is lost, but it 
can be computed on the fly when traversing. This means extra queries yielding worse 
performance. Instead, the wavelet matrix breaks the restriction that in each level sib-
lings must be represented in contiguous positions in the bitvector. When partitioning 
a node at some level  the wavelet matrix sends all zeroes to the left section of level 
 + 1 and all ones to the right. The left and the right child of some node at level  do 
not occupy contiguous positions in the bitvector at level  + 1, but the left (resp. right) 
child is represented in contiguous positions in the left (resp. right) section of the level 
 + 1. Additionally, a value  is maintained at each level to mark how many elements 
were mapped to the left.

With this structure the traversing operations can be directly implemented by per-
forming rank operations on bitvectors at each level. Specifically, instead of maintaining 
an array 

 for every node, we maintain an array 
 for each level. Array 

 store the 
cumulative number of 1’s in level . Then, a position  at level  is mapped to the left 
to position  − [] at level  + 1. The same position  is mapped to the right to position 
 + [] − 1.
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The wavelet matrix has the advantage of being implementable using only (log σ) 
extra words of memory instead of the (σ) used to store the tree structure in the pointer 
based alternative while maintaining fast operations. This (log σ) words are insignifi-
cant even for σ = 109, which means that the structure could be constructed directly over 
the original alphabet. On the other hand the wavelet matrix is somehow less adaptable, 
because it does not support directly the pop and push updates. However, it can support 
swap and toggle in a similar way as the one described for the wavelet tree.

5. Wavelet Trees in Current Competitive Programming

We conducted a social experiment uploading 3 different problems to the Sphere Online 
Judge (SPOJ)2. All the problems can be solved with the techniques shown in the previ-
ous sections. We analyze the solutions to these problems submitted by SPOJ users. Our 
analysis reveal two main conclusions: (1) experienced programmers do not consider the 
use of wavelet trees, even in the case that its application is straightforward, and (2) for 
the most complex cases when they succeed, they use fairly involved techniques produc-
ing solutions that are dangerously close to time and memory limits. We have found, 
however, some incipient references of wavelet trees in the competitive programming 
community3, as well as more detailed explanations in Japanese4, which obviously estab-
lish an idiomatic barrier for many programmers.

We identify the three mentioned problems as ILKQ1, ILKQ2 and ILKQ3 and they 
are described as follows.

ILKQ1 considers a slightly modified version of the quantile query. The size of the initial 
sequences is 105, the range of possible integer values in the sequence is [−109 109], and 
the number of queries is 105. The time limit is 1s. 

Link: http://www.spoj.com/problems/ILKQUERY

ILKQ2 considers rank queries plus toggling the state of arbitrary elements. The size of 
the initial sequence is 105, the range of possible values is [−109 109], and the number of 
rank plus toggle queries is 105. The time limit is 0.4s. 

Link: http://www.spoj.com/problems/ILKQUERY2

ILKQ3 considers the quantile query of ILKQ1 plus swaps of arbitrary contiguous posi-
tions. The size of the initial sequences is 106, the range of possible values is [−109 109], 
and the number of quantile plus swap queries is 105. The time limit is 1s. 

Link: http://www.spoj.com/problems/ILKQUERYIII/

Notice that ILKQ3 although involves the same query as ILKQ1, it is considerable 
harder as it can mix updates (in the form of swaps) and the input sequence can be 10 
times bigger than for ILKQ1. Table 1 shows an analysis of the submissions received5.

2 http://www.spoj.com/
3 http://codeforces.com/blog/entry/17787
4 http://d.hatena.ne.jp/sune2/20131216/1387197255
5 This data considers only until late March 2016.
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5.1. Analysis of Users Submitting Solutions

We received submissions from several type of users, several of them can be considered 
as experienced programmers. From them, even expert coders (rank 100 or better on 
SPOJ) got lot of Wrong Answers (WA) or Time Limit Exceeded (TLE) verdicts which 
shows the intrinsic difficulty of the problems. Considering the three problems, 5 out 
of the 10 distinct users who got an Accepted (AC) veredict have rank of 60 or better 
on SPOJ, and 8 are well-known ACM-ICPC World finalists. For problem ILKQ3 we 
received only two AC. Both users solved the problem after several WA or TLE verdicts. 
For ILKQ1 and ILKQ2 the best ranked submitter was the top 1 user in SPOJ who ob-
tained AC in both problems. For ILKQ3, the best ranked submitter was among the top 5 
in SPOJ and obtained only TLE veredicts.

5.2. Analysis of the Submitted Solutions

As we have told before, we received 0 submissions implementing a wavelet tree solu-
tion. We now briefly analyze the strategies of the submissions received. For the sake of 
the space, we cannot deeply analyze every strategy but we provide some pointers for the 
interested reader.

The most common approach for ILKQ1 was sorting queries (as the problem is of-
fline) plus the use of a tree data structure. One of the mainly used in this case was 
mergesort tree. In a mergesort tree, nodes represent sequences of contiguous elements 
of the original array and contains a sorted version of those sequences. Leaves represent 
one element of the array, and the tree is built recursively by merging pairs of nodes 
starting from the leaves. The construction can be done in ( log ) time and space. 
Quantile queries can be answered by identifying the, at most (log ), nodes that define 
a query range, and then doing two (nested) binary searches, one for counting elements 
less than or equal than a value , and the second over  to find the -th minimum ele-
ment. The total strategy gives (log3 ) time which can be optimized up to (log2 ) 
using fractional cascading. This was enough given the time constraints.

Table 1
General submission statistics

Submitted Accepted Non-accepted
WA TLE RTE

ILKQ1 49 9 19 18 3
ILKQ2 32 6 15   8 3
ILKQ3 35 2 12 15 6
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For ILKQ2 and ILKQ3 sorting of queries or any offline approach is not directly 
useful as queries are mixed with updates. For ILKQ2 we received some submissions 
implementing a square root decomposition strategy, and run extremely close to the time 
limit. The most successful strategy in both problems was the use of ideas coming from 
persistent data structures, in particular persistent segment trees6. As in any persistent 
structure, the main idea is to efficiently store different states of it. Exploiting the fact that 
consecutive states do not differ in more than (log ) nodes, it is possible to keep  dif-
ferent segment trees in ( log ) space. Persistent segment trees can be used to answer 
quantile queries but need some more work to adapt them for updates like swaps as in 
ILKQ3. The two correct solutions that we received for ILKQ3 make use of this structure. 
It’s relevant to notice that given the input size and the updates, implementing a persistent 
segment tree for this problem can use a considerable amount of memory. In particular, 
one of the AC submissions used 500MB and the other 980MB. Our wavelet tree solution 
uses only 4MB of memory.

6. Performance Tests

Existing experimental analyses about wavelet trees focus mostly on compression char-
acteristics (Claude et al., 2015). Moreover, they do not consider the time required to 
build the structure because from the compression point of view the preprocessing time is 
not the most relevant parameter. Thus, we conducted a series of experiments focusing on 
a competitive-programming setting where the building time is important and restrictions 
on the input are driven by typical tight time constraints. The idea is to shed some light on 
how far the input size can be pushed. We expect these results to be useful for competitors 
as well as for problem setters.

We performed experimental tests for our wavelet tree and wavelet matrix implemen-
tations comparing construction time and the performance of rank, quantile and range 
counting queries. We consider only alphabets of size less than the size of the sequence. 
To analyze the impact of the alphabet size, we performed tests over sequences of dif-
ferent profiles. A profile is characterized by the ratio between the size of the alphabet 
and the size of the sequence. For example, a sequence of size 103 and profile 05 has an 
alphabet of size 500.

Measurements. To measure construction time we generated random sequences of in-
creasing size for different profiles. For each size and profile we generated 1,000 se-
quences and we report the average time. For queries rank, quantile and range counting, 
we generated 100,000 queries uniformly distributed and averaged their execution time. 
The machine used is an Intel® Core™ i7-2600K running at 3.40GHz with 8GB of RAM 
memory. The operating system is Arch-Linux running kernel 4.4.4. All our code are 
single-threaded and implemented in C++. The compiler used is gcc version 5.3.0, with 
optimization flag -O2 as customary in many programming contests.

6 bit.ly/persistent-segment-tree
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Results. No much variance was found in the performance between different profiles, but 
as may be expected sequences of profile 1 – i.e., permutations – reported higher time in 
construction and queries. Thus, we focus on the analysis of permutations to test perfor-
mance on the most stressing setting. For the range of input tested we did not observe big 
differences between the wavelet tree and the wavelet matrix, both for construction and 
query time. Though there are little differences, they can be attributed to tiny implemen-
tation decision and not to the implementation strategy itself.

Regarding the size of the input (Fig. 2), construction time stays within the order 
of 250 milliseconds for sequences of size less than or equal to 106, but scales up to 
2 seconds for sequences of size 107, which can be prohibitive for typical time con-
straints. For the case of queries rank, quantile and range counting we report in Fig. 3 
the number of queries that can be performed in 1 second for different sizes of the input 
sequence. For rank and quantile, around 106 queries can be performed in 1 second for 
an input of size 106. In contrast for range counting, only 105 queries can be performed 
in the same setting (Fig. 3).

It would be interesting as future work to perform a deep comparison between the 
wavelet tree and competing structures for similar purposes such as mergesort trees 
and persistent segment trees, testing time and memory usage. From our simple analy-
sis in the previous section one can infer that wavelet trees at least scales better in 
terms of memory usage, but more experimentation should be done to draw stronger 
conclusions.

    
Fig. 3. Number of queries that can be performed in one second.

Fig. 2. Construction time in milliseconds.
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7. Concluding Remarks

Problems involving advanced data structures are appearing increasingly often in world-
wide programming competitions. In this scenario, competitive programmers often prefer 
versatile structures that can be used for a wide range of problems without making a lot of 
changes. Structures such as binary indexed trees or (persistent) segment trees, to name 
a few, conform part of the lower bound for competitors, and must be in the toolbox of 
any programmer. The wavelet tree has proven to be a really versatile structure but, as 
we have evidenced, not widely used at the moment. However, we have noted that some 
programmers have already perceived the virtues of the wavelet tree. We believe that the 
wavelet tree, being quite easy to implement, and having such amount of applications, is 
probably becoming a structure that every competitive programmer should learn. With 
this paper we try to fill the gap and make wavelet trees widely available for the competi-
tive programming community.
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