
Olympiads in Informatics, 2016, Vol. 10, 125–159
© 2016 IOI, Vilnius University
DOI: 10.15388/ioi.2016.09

125

Programming in Slovak Primary Schools

Martina KABÁTOVÁ1, Ivan KALAŠ1,2, Monika TOMCSÁNYIOVÁ1

1Department of Informatics Education, Comenius University
Mlynska dolina, 842 48 Bratislava, Slovak Republic
2UCL Knowledge Lab, Institute of Education
23-29 Emerald Street, WC1N 3QS London
e-mail: martina.kabatova@gmail.com, {kalas; tomcsanyiova}@fmph.uniba.sk

Abstract. In our paper, we want to present the conception of elementary programming in primary
Informatics education in Slovakia and the process of its integration into ordinary classrooms.
First, we will familiarize the reader with the tradition of so called ‘Informatics education’ in
Slovakia and with the various stages of the process of its integration. We will formulate the learn-
ing objectives of the elementary informatics as a school subject in Slovakia (referring to Blaho
and Salanci, 2011) and give reasons why we believe that it offers an important opportunity for
developing informatics knowledge, computational thinking and problem solving skills. We will
primarily focus on the presentation of our arguments why we consider programming (in the form
rigorously respecting the age of the primary pupils) to be appropriate and productive constituent
of learning already for this age group. Several recent research findings, presented by Ackermann
(2012) and others support our position here. In the next chapter, we will present in detail the
conception of elementary programming and how it is implemented in the continuing professional
development (CPD) of primary teachers in Slovakia. We will examine which programming en-
vironments are being used, what kind of pedagogies and which specific learning objectives our
teachers apply. We will list programming concepts and identify corresponding cognitive opera-
tions, which we find appropriate for primary pupils. Then we will present and analyse the CPD of
our in-service teachers (and the position of programming in this process) which we have recently
implemented in Slovakia. Another important element of our CPD strategy is the well-known
Bebras contest (in Slovakia it is called ‘iBobor’ or ‘Informatics Beaver’). In the next chapter of
our paper, we will apply qualitative educational inquiry methods to examine how our concep-
tion of elementary programming has really penetrated into primary classes in Slovakia. We are
also interested in how it is being received by the teachers and pupils. Through interviews with
the teachers we will identify different aspects of the whole process and main risk factors, which
may complicate or hinder the implementation. In the final chapter, we will study the tendency
to develop informatics and programming at the primary level in the context of various research
projects presented in the academic research literature. We will compare various key findings of
other research projects with our own experience.

Keywords: educational programming, primary education, computing, computational thinking.

M. Kabátová, I. Kalaš, M. Tomcsányiová126

1. Introduction

In recent years many educators, education policy makers and scientists call for integra-
tion of what they call computational thinking into primary education of all pupils. In in-
fluential documents like (The Royal Society, 2012) a need to distinguish computational
thinking (or computer science, informatics or computing education) from the ICT educa-
tion is declared. However, reasons for such reflections differ – computer scientists and
industry leaders feel that not enough young people (and only very few women) choose to
pursue a career in computer science and they believe that if pupils become familiar with
some informatics concepts (within their primary education already) they will favour it
later in their lives and careers. Others believe that computational thinking is equally
important and key skill as literacy and mathematical thinking and they call for a redefi-
nition of literacy and for integrating digital literacy development into primary education
for the sake of educating a fully developed citizens to live in the digital world.

While ICT oriented education is included in most national curricula, many countries
do not pay any special attention to including other (and in our opinion more interesting
and more important) informatics concepts. However, we can observe important new step
in the UK by establishing computing as a compulsory subject in every school year since
September 2014.

The situation in Slovakia is different from most of the countries. Informatics as a
separate mandatory subject was established many years ago and for many years we have
been systematically preparing teachers for teaching it. The authors of our national cur-
riculum took a great care to include topics from core informatics along with learning of
basic ICT skills.

Since Comenius University plays a key role in building National Informatics Cur-
riculum (2011, 2015) we have a lot of experience with integrating educational informat-
ics both into schools (primary, lower secondary and upper secondary) and into teachers’
professional development (PD). Some activities with digital technology were recently
nation-wide integrated into early childhood education (or children 3 to 6) as well: see
e.g. (Pekarova, 2008) and (Kalaš, 2010).

The whole conception of informatics is a broad and interesting topic to study, but for
the purpose of this paper we fully focus only on one of its topics, namely, on program-
ming at primary level in Slovakia. We will discuss its conception and the process of its
integration into ordinary classrooms. We will present and explain:

The reasons and short history of implementing primary informatics as a modern (a)	
core subject taught in Slovak primary schools.
Why we consider appropriate to have separate school subject focused on ICT and (b)	
informatics, while we also support integration of ICT across curriculum.
What role primary programming plays in our conception of informatics educa-(c)	
tion and what forms, methods and pedagogies we consider appropriate in this
context.
How we proceed with the implementation of these objectives through in-service (d)	
teacher development.

Programming in Slovak Primary Schools 127

What problems we have encountered, how this process actually evolves in our (e)	
schools, how the teachers read our objectives, which objectives and correspond-
ing skills they have mastered, how they interpret them and finally – which factors
of the implementation we and the teachers perceive as risky or unfulfilled.

Brief History of Informatics at Slovak Schools

First we will familiarize the reader with the tradition of informatics education in Slova-
kia and various stages of the process of its implementation. We will briefly describe how
the informatics education was established – from the period of experimental education
at upper secondary schools in late 60s and early 70s, to the current stage of informatics
as mandatory school subject for students from grade 2 (i.e. 7 to 8 year olds) up to the
mid-upper secondary stage (i.e. 16 to 17 year olds).

In early 70s some of the vocational technical schools began to prepare students for
operating industrial machinery via computers. In these schools some students learned
basics of programming in Fortran and Cobol. Students first designed their programs us-
ing flowcharts, then they prepared corresponding punch cards which were then taken to
the computer lab. Students never saw the computer themselves since it was usually lo-
cated in a different institution and it took up several rooms. In the late 70s some schools
built their own computer labs. In some industrial towns (where most of the vocational
technical schools were located) special central computer labs were established. At that
time new study programmes were launched at universities called informatics (at the
beginning called cybernetics).

In 80s most of the upper secondary schools opened special classes focused on infor-
matics. However, appropriately qualified teachers were absent. In school year 1982/83
Faculty of Mathematics and Physics of Comenius University opened a new study pro-
gramme focused on upper secondary informatics teachers’ pre-service education. Those
students had access to the university computer EC1010 where they could write and run
programs in Pascal. Soon after that several universities began to build computer labs
equipped with 8-bit computers (e.g., PMD-85, Didaktik Alfa, PP-01), often using a ver-
sion of Basic as a programming language

Many activities designed to attract young people to informatics emerged – in 1985
a P category of International Mathematical Olympiad started (later transformed into a
stand-alone International Olympiad in Informatics). A series of articles on program-
ming in environments like Karel and Logo were issued in the Zenit magazine targeted
at secondary school students. Since 1986 a school subject “Informatics and comput-
ers” became part of the National Curriculum. Special classes focused on algorithms
and programming were established at several grammar schools and vocational techni-
cal schools.

In early 90s most of the upper secondary schools taught informatics. A special com-
puter lab with several PCs was usually dedicated to this subject, mostly taught by special-
ized teachers. The educators inspired by success at upper secondary school developed
an experimental informatics curriculum also for lower secondary schools. For example,

M. Kabátová, I. Kalaš, M. Tomcsányiová128

Kosicka Str. Primary School in Bratislava opened a class focused on programming. Pu-
pils aged 11 to 15 wrote game-like programs in a visual programming environment
called Comenius Logo (Blaho et al., 1995) and (Tomcsanyiova and Tomcsanyi, 1997).
In the second half of 90s computers become more affordable and many businesses and
households acquired them. In order to train students to use computers effectively, in-
formatics in schools changed its orientation and became more user oriented – students
learned how to create electronic documents (in T602, a text editor of that time), use
spreadsheet editor, send and receive e-mails, navigate files and operating systems etc. In
late 90s the National Curriculum was revised to incorporate five main topics – Informa-
tion around us; Communication through ICT; Problem solving and algorithmic thinking;
Principles of ICT; and Information society.

In 2008 a new National Curriculum for primary and secondary schools prescribed to
teach informatics as a mandatory core subject from year 2 (7 to 8 year olds) to mid-upper
secondary stage (16 to 17 year olds). At all school years five main topics of informatics
remain the same and they cover basic digital literacy, ICT user skills, programming and
core concepts of informatics, hardware and other digital technology related concepts,
digital safety and other information society related concepts. At different school years
the topics are taught differently – first and foremost respecting the pupils, their age and
developmental stage.

There is an intense initiative in Slovakia to integrate digital technology into early
years (pre-primary) education as well. Through an EU funded project teachers in early
years education centres (kindergartens) are being educated to use digital technology ap-
propriately with their children. Programmable toy Bee-Bot have been introduced, see
(Pekarova, 2008) and (Kalaš, 2010).

According to our anecdotal information, programming at upper secondary level is
mostly done in Delphi or Lazarus environments, with more and more schools gradually
switching to Python. At lower secondary schools, Imagine Logo and Scratch are popular
programming languages. At primary schools most widespread environments are Thomas
the Clown, EasyLogo and several other microworlds that have been created in our de-
partment (we will present them in chapter 3).

2. Elementary Informatics, Computational Thinking and Programming

In accordance with the recent report of Informatics Europe and ACM Europe (2013)
we will use the term informatics when we are speaking about the broad scientific field
behind the digital technology. For us “informatics” is also an umbrella term that includes
computing, ICT, and digital literacy – basically all concepts that have anything to do
with digital technology, information or theory behind them.

An effort to distinguish various fields within school informatics is apparent in the
Royal Society report (2012). However, we use these terms in a slightly different way
from definitions provided there. By the term ICT we understand a set of user oriented
skills (e.g., using a text editor, spreadsheet editor, creating graphics, animation, working
with sounds …). Digital literacy in our context is understood as a set of basic skills that

Programming in Slovak Primary Schools 129

everyone should acquire during their education in order to use digital technology (not
only computers but all digital devices) effectively, safely and meaningfully to solve their
everyday problems and tasks.

To understand what exactly is covered by our informatics (as a school subject) let’s
have a closer look at the five main topics in next chapter of our paper.

2.1. Informatics as a School Subject in Slovakia

Slovak National Curriculum (2011) codifies the following core school subjects rooted in
informatics science (however, since 2015 both subjects are unified as Informatika):

“●● Informaticka vychova”, or Elementary Informatics in English, for school years
2 to 4 (pupils aged 7 to 10), while whole primary education consists of year 1 to 4
(i.e. pupils aged 6 to 10).
“●● Informatika”, which translates as Informatics, for school years 5 to 11 (pupils
aged 10 to 17) at so called lower secondary and upper secondary schools.

For each of these subjects there is about 1 lesson per week, usually in a computer
lab. Besides these dedicated subjects many ICT (and some informatics) elements are
integrated across subjects as well, but that aspect will not be discussed in this paper.

Informatics as a core school subject is designed for every pupil regardless of their
gender, future career or highest level of education they will reach. Great emphasis is on
the age appropriateness – the content and form should always respect developmental
stage of the pupils.

In all school years the five main topics of informatics remain the same, their content
is always designed to fit the specific age group. National curriculum of primary infor-
matics is presented in detail in Blaho and Salanci (2011). At primary schools the five
topics cover:

I●● nformation around us is the most comprehensive topic that includes working
with text, graphics and multimedia. At primary school, pupils explore data struc-
tures – simple tables, graphs, dictionaries and mind maps.
Communication via ICT●● – pupils work with websites relevant to their interests;
they learn to use a web browser, e-mail client and chat.
Methods, problem solving and algorithmic thinking●● – pupils learn to solve
various problems and write down solutions (using words, icons or specific com-
mands), they learn to control an agent directly and later by planning commands
in advance. They learn to understand the causal connection between the program
and behaviour of the agent. In this paper we will focus solely on this part of school
informatics – and specifically on the elementary programming.
Principles of ICT●● topic deals with hardware parts of the computer (keyboard,
mouse, display) and external devices. Pupils also learn to work with folders and
files.
Information society●● – pupils learn about risks involved in using digital technolo-
gy, about privacy and about the impact of information technology on the society.

M. Kabátová, I. Kalaš, M. Tomcsányiová130

We believe that these five topics cover the same concepts as three topics suggested in
the Royal Society report (2012): digital literacy, information technology and computer
science – which resulted into introducing a new compulsory subject computing in the
UK since 2014.

In some other countries there is a strong initiative to include computational think-
ing and informatics concepts into all school subjects, see (Barr and Stephenson, 2011),
instead of creating a separate dedicated subject. However, Slovak tradition of “infor-
matics” as a school subject is a long one (including corresponding pre-service and in-
service teacher development) and we believe that informatics is a distinct and important
scientific field that should have a similar position in the education as mathematics or
physics. Another contributing fact is that it seems to be unreasonable to demand from all
the teachers to learn informatics concepts or how to incorporate computational thinking
into their respective subjects – according to our experience they already struggle with
integrating basic ICT elements into their teaching.

2.2. Programming as a Component of School Informatics

The core topic in the National Curriculum (2011, 2015) of school informatics that is
most interconnected with informatics as a science is named Methods, problem solving,
and algorithmic thinking. In it we expect pupils to learn how to solve various types of
problems, externally represent a solution, and use such representation as an object to
think with about the problem. Carefully chosen problems and well thought out peda-
gogy can lead directly to computational thinking development and even rather deep into
elementary programming.

The term computational thinking was introduced and later developed by Wing,
who understands it as

“a thought process involved in formulating problems and their solu-
tions so that the solutions are represented in a form that can be effec-
tively carried out by an information-processing agent” (Wing, 2011).

Recently, an interesting study by Selby (2013) refines the definition of computa-
tional thinking as...

“a focused approach to problem solving, incorporating thought pro-
cess that utilizes abstraction, decomposition, algorithms, evaluation,
and generalization.”

Wing and several other authors call for incorporating computational thinking into
formative education of children (Wing 2008), (Lu and Fletcher, 2009), (Lee et al., 2011)
and (Hu, 2011). In some countries the focus is still on implementing informatics educa-
tion only into secondary school, see e.g. (Hubwieser, 2012) and (Settle et al., 2012).
Our main interest lies in developing computation thinking “from the bottom” – i.e. form
preschool and primary education. However, it is difficult to choose appropriate form

Programming in Slovak Primary Schools 131

and content when it comes to this target group. According to Piaget’s theory of cognitive
development (1993), in accordance with Hu (2011) and also according to our own expe-
rience, most children reach the ability to work with abstractions only around their tenth
year and some of them even later. It is agreed in the relevant literature that abstraction is
the very essence of computational thinking. And yet we believe that supporting the de-
velopment of computational thinking can productively start at the age of 5 or 6 by con-
ducting well thought introductory steps leading to what we call elementary informatics.

Our first steps begin with direct manipulation with objects without the need to ab-
stract or represent the process that is involved in their manipulation. While these activi-
ties may not resemble computational thinking at a first glance, we believe they are good
preparation for development of higher order cognitive skills.

By elementary programming we understand activities in which pupils perform
certain problem solving tasks of controlling an agent or planning its future behaviour
– in a digital environment (programmable toy, microworld, programming environ-
ment...). We strongly believe that elementary programming is an excellent means for
developing, implementing and verifying problem solving skills within the domain of
computational thinking. If initiated at the primary stage of education, we also call it
primary programming. An interesting study on connection of computational think-
ing and programming can be found in (Selby, 2012). There are many age-appropriate
tools and environments that allow us to design meaningful and engaging elementary
programming activities while respecting children’s developmental stage. We believe
we comply with the Blackwell’s definition of programming (2002):

“Programming involves loss of direct manipulation as a result of ab-
straction over time, entities or situations. Interaction with abstrac-
tions is mediated by some representational notation.”

However, several problems arise if we want to define elementary programming ac-
tivities. As we have already mentioned above – children in our target group have not
yet developed their abstract thinking, and so abstracting over time itself is a problem.
On the other hand, we believe that many valuable activities can be conducted before
any kind of abstraction is involved. Moreover, these activities often have other features
that are compatible with programming (e.g., some sort of representation is being used;
planning future behaviour is expected etc.). We believe that learning to think com-
putationally and to program one’s solutions can be done gradually by doing specific
activities that only slowly lead to a true abstraction, decomposition of problems and
generalization of solutions.

We are aware that some authors consider programming at such an early age to be at
least disputable, see (Lu and Fletcher, 2009), some regard programming as a significant
form of computing but mathematical in its foundation, see (Hu, 2011). In this context
we perceive elementary (or primary) programming as a tool for developing early com-
putational thinking skills. We believe that carefully chosen tools, activities and pedago-
gies are an excellent way of integrating both – elementary programming and computa-
tion thinking – into primary education of all pupils. We – in accordance with Resnick
(2012) – “believe in Papert’s dream of computational fluency for everyone”, that

M. Kabátová, I. Kalaš, M. Tomcsányiová132

“children should learn to program their own animations, games and
simulations – and in the process learn important problem-solving
skills and project-design strategies” and that it is necessary “to ex-
pand the conception of digital fluency to include designing and creat-
ing, not just browsing and interacting”.

However, we need to carefully build these skills gradually, always thinking about
age-appropriateness.

There are several educators that promote programming as a productive and engaging
activity even for very young children. They are looking for age-appropriate forms and
study how do children approach various programming situations.

Mogardo et al., (2006) deal with a pioneer experiment of Perlman who in 1970s de-
signed a programming tool for preschool (and preliterate) children. The TORTIS system
consisted of physical floor turtle that was controlled by logo-like commands depicted on
plastic cards. Cards were placed into slots and after pushing a button they were executed
by the floor turtle. Both the agent and the commands were tangible. Authors themselves
admit that in the time of the described experiment there was only a little understanding
of developmental psychology of a child and Perlman probably had not designed the tool
in accordance with what we now would consider appropriate for such young children
(the paper describes working with 3–5 year olds). However, some of her observations
(analysed in 2006 by Mogardo et al.) are valuable even now – e.g., that children didn’t
manage to associate the screen commands with the movements of the turtle and even
after adding the plastic cards (which were basically physical representations of screen
commands for the turtle) children failed to understand that each card represents a move-
ment of the turtle. We believe this problem is closely associated with a cognitive devel-
opmental stage of the children – at the age of 5 they definitely do not possess the ability
to understand the connection between the plastic cards picturing commands and move-
ments of the turtle on the floor. Our suggestion is to conduct different pre-programming
activities that do not involve external representations (e.g. playing with Bee-Bots or
even more trivial tools that involve “one command, one move” direct manipulations
of the agent at a time) – and leave the programming activities involving abstractions
and representations to later stages when pupils begin to develop the understanding of
abstraction and external representations.

Ackermann deals with young children and their programming adventures in (2012)
where she describes three aspects of programming as observed by the work with pre-
school children:

“1) making things do things (instruct them to follow and execute or-
ders); 2) animating things (endow them with a mind of their own,
teach them to look after themselves); 3) poking things (modulate how
things act and interact by tweaking some parameters in their environ-
ment).”

Ackermann admits that this is hardly a definition of programming per se and that
the concept of programming is difficult, ever-changing and bearing many meanings to
different people of different professions. However, she agrees that “programming, at

Programming in Slovak Primary Schools 133

its core, is about giving instructions – or commands – to be executed by a machine”.
She presents several “settings where youngsters are asked to give and execute orders,
take over control”. For example – ambient programming is a new promising style that
has a potential to attract many children, even those who in general do not incline to
more traditional programming activities. Another take on ambient programming is de-
scribed by Eisenberg (2009). On the other hand Ackermann refers to these activities
as “programming (in a weak sense)” and she puts the word programming into quota-
tion marks. In agreement with this approach we also distinguish our activities from
hard programming and we will refer to them as elementary programming or primary
programming. Another approach to programming, currently getting growing attention
and becoming more widespread in all stages of education is physical computing and
educational robotics programming, see e.g. (Przybylla, Romeike, 2014) or (Mayerova,
Veselovska, 2016).

An interesting attempt at programming with primary school children is reported also
by Gibson (2003). Probably the most successful initiative for programming for children
is the Scratch community. Programming environment is being developed by researchers
at the M.I.T. and it is continuously being improved and thoroughly studied, see Maloney
et al. (2009) and Brennan et al. (2012).

3. Slovak Conception of Primary Programming

In this chapter we will present the conception of programming in Slovak primary educa-
tion, based on current National Curriculum (2011, 2015) and materialised in the struc-
ture and content of the recent nation-wide professional development (PD) project for
700 primary teachers (see chapter 4). We will briefly characterise programming environ-
ments that have been used in the PD sessions and are currently being used in primary
schools, what kind of pedagogies teachers apply and what are their learning objectives.
We will analyse programming concepts and identify corresponding cognitive operations,
which we consider appropriate for primary pupils.

In the Slovak approach to primary programming we can identify three domains with
several sub-domains (with several overlaps and without any strictly predefined order
of implementation, although with numerous dependencies in developing programming
concepts and operations):

 1)	 Solving problems and handling solutions.
 2)	 Controlling an agent:

Direct control of an agent.●●
Indirect control (building and handling future behaviours).●●
Some advanced concepts of primary programming (e.g. parameters, loops and ●●
procedures).

 3)	 Tinkering with interactive environments:
Multiple agents and their properties.●●
Static scenarios.●●
Dynamic scenarios.●●

M. Kabátová, I. Kalaš, M. Tomcsányiová134

3.1. Solving Problems and Handling Solutions

One of the main learning goals of primary informatics is to learn how to solve problems,
and represent, evaluate, verify and reflect on their solutions. We consider concepts and
practices in this domain to be exceptionally productive and developmentally appropri-
ate. They can naturally contribute to all topics of primary informatics – including el-
ementary programming.

In informatics education we focus especially on the procedure of problem solving
which leads from the initial to the final state (the solution) while keeping given rules.
Pupils probably do not perceive the procedure as the most important part of solving
problems, but from the perspective of informatics education it is the core of the problem
solving – the product (drawing the house, cannibals and missionaries transported to the
opposite bank of the river, getting to the target square of the ‘snake-and-ladder’ game)
is only a means of motivation. Therefore we choose problems that have interesting solv-
ing procedure (method or steps). We should always focus on the procedure of finding
the solution and on its externalized representation (see Fig. 1). We should not neglect
to verify if pupils are able to execute, communicate, analyse, evaluate and modify the
discovered method of solution.

When designing lesson plans dealing with problem solving, it is important to choose
both appropriate problems and learning activities to be conducted during the lesson. For
some problems there exist supporting digital environments that enable pupils to solve
them through direct interaction and visualization. This hands-on approach to solving
problems supports experiments, iterative solutions, repeating solutions and trying out
different solutions.

For example: the well-known puzzle about transporting the wolf, the goat and a cab-
bage across the river using one boat is an ideal problem for implementing via a software
environment (Fig. 2 left). By clicking objects pupils experiment with transporting them.

Fig 1. The first image is the required outcome – a one stroke drawing. The second and the third images
(the third one being in fact a sequence of images) are possible notations of the procedure of
how to solve it. Both solutions demonstrate how a solving procedure can be noted.

Fig. 2. On the left the Wolf, Goat and Cabbage puzzle environment. Right: screenshot from a
similar puzzle with missionaries and cannibals, see http://game-game.sk/18394/.

Programming in Slovak Primary Schools 135

Usually they solve the puzzle by trial-and-error method. Though, when they are asked
how they have done it, they are motivated to reproduce and describe the solution and
some of them are easily prompted also to put down the sequence of steps for transporting
all items successfully.

If the environment is well designed it makes it easy to proceed from (1) solving the
problem, through (2) experimenting with the solution procedure to the (3) represent-
ing/recording the procedure for future repeated solving of the same problem (maybe
even without its immediate execution). These three steps in fact describe the advance-
ment from solving problems to programming.

These are computational cognitive operations that are involved while solving prob-
lems and handling their solutions:

Discuss and think about the core of a problem, about the relevant information ●●
provided by the problem assignment, about the conditions of solvability, about
an appropriate procedure that will find a solution, about the difficulty level of
the given problem, to look for similar problems that will help us to solve the
problem.
Use different strategies for finding the solution – like drawing a diagram, list-●●
ing all combinations, guess-and-confirm, divide problem into smaller parts, find a
similar problem, find a repeating pattern, look for the solution form the end etc.,
see Polya (1957).
Explain the solution to someone else, to teach a friend how to solve it (verbally, ●●
by non-verbal means, using a specific language).
Learn from someone else how to solve the problem (using verbal or non-verbal ●●
communication).
Write down the solution (by a picture, or series of pictures, using icons, text, video ●●
or audio).
Reason about the language and the form of notation of the solution in order to ●●
make it eligible for others.
Execute the solution and verify its validity, correct wrong steps of the solution.●●
Review certain properties of the solution (its eligibility, length, ‘price’…), assess ●●
and compare it with several different solutions.
Look for different solutions of the same problem.●●
Reason about the non-existence of the solution.●●

3.1.1. Activities and Examples
An interactive microworld inspired by a task from the Bebras contest (see e.g. Dagienė
and Stupurienė, 2016) enables pupils to experiment with sorting a group of children ac-
cording to their heights (Fig. 3). It is possible to switch two children by clicking on the
first one then the second one. This microworld also records the steps of the solution into
a text file. A teacher or a researcher can use it to find out what strategy pupils used – if
they all solved the problem similarly or if they applied different strategies – systematic
or more random.

M. Kabátová, I. Kalaš, M. Tomcsányiová136

3.1.2. Pedagogy – Observations and Recommendations
The specific organization of the lesson is up to the teacher – she is responsible for choos-
ing the problems and selecting the activities according to the learning goals of the topic.
Teacher can use many ready-to-use applications, microworlds and pre-made lesson plans.
Many problems can be solved without the computer. Many tasks from the Bebras contest
are suitable and they are available through the Bebras portal. The activities should be
built around a direct manipulation with physical objects; or if they are implemented via
some software application they should use appropriate pictures (dice, beads, building
blocks, animals, persons …). It is crucial to motivate the pupils to actively think about
the solution method and not to focus only on the end product – i.e. they should realize
the difference between the procedure of drawing a house by one stroke and the resulting
drawing where they can see no longer how it was done.

3.2. Controlling an Agent

Second domain of primary programming deals with two important and crucial concepts
of pre-programming activities – direct and non-direct control of an agent. The first one
is represented by a set of activities and suitable software applications that allow pupils
to command an agent (a toy, another child, an on-screen character or animal etc.) to do
something – mostly, to move to a given location. Each command is immediately ex-
ecuted and a result can be observed. Non-direct control of an agent gets pupils into real
programming – they are asked to construct a sequence of commands in advance, which
is then executed.

3.2.1. Direct Control of an Agent
Direct control of an agent can take place in a physical world where the teacher conducts
an activity during which pupils give other pupils certain pre-defined commands (e.g.
turn left, walk) to solve a given task (e.g. guide your friend from the desk to the door).
Sometimes the commanded child can be replaced by a toy that is moved by hand ac-
cording to the commands. There are also toys that can be controlled by a remote con-
trol, or digital toys with control buttons placed directly on them. Ambient programming

Fig. 3. Interactive application for a problem solving task.

Programming in Slovak Primary Schools 137

can also have similar characteristics, see (Eisenberg, 2009). In a software application a
pupil controls a virtual agent. It is crucial for such microworlds to maintain age-appro-
priateness – using child-friendly graphics, presenting an engaging agent that a child can
identify with or that can be perceived as a hero protagonist. In both cases (physical and
virtual) the agent can execute only small set of well-defined basic commands – make
a step, turn left, turn right, play a sound, take an object, pick a colour, set a pen size,
turn pen down etc. In many software applications the virtual agent can be controlled
directly but also by programming, i.e. without immediate execution of the command
(see the next chapter 3.2.2.).

The most basic task for an agent is to move from one place to another. This task is of-
ten motivating enough and pupils are willing to carry it out and think about the sequence
of commands to accomplish this goal. They gradually realise that:

Only a limited set of commands is available to use in the solution (in a physical ●●
environment the teacher determines them, in a microworld they are usually set by
the application itself).
The current state of the agent is always represented by its visible attributes: rota-●●
tion, position, pen colour etc.
The execution of each command has a very concrete, specific and unambiguous ●●
effect on the agent and/or on the whole scene where it acts.

We choose the agents so that pupils are familiar with them and the activities they
perform are more or less grounded in their reality (e.g. a bee flies to the flower, an ant
moves objects) or at least actions of the agent should be believable (e.g. a turtle moves
around and draws a line with its tail). Most agents therefore are animals, vehicles or
human characters.

Many cognitive tasks listed in part 3.1. can be practised using activities mentioned
in this chapter – by directly controlling the agent pupils can reason about the procedure
of finding the solution, they can explain their solution to a friend, they can review spe-
cific properties of a given solution and it’s correctness, or think about possible notation
of the solution.

Activities and examples
Each of the software applications that will be presented in this chapter has its own spe-
cific features. They use different agents and different control interface, some of them
record a sequence of commands. If the sequence of the steps can be recorded, we should
consider its level of abstraction – the commands could be e.g. coloured pieces of paths
(Thomas the Clown) or arrows that guide the agent (World of the Ant, Bee Tasks). An-
other significant difference in various microworlds and applications is whether the agent
moves in a rectangular grid (Ice Cubes, Bee Tasks, World of the Ant, EasyLogo, Baltie),
in a graph (Thomas the Clown) or with no visible constraints (Scratch). Rotation mode is
closely related to the movement and the grid type – the agent can rotate either relatively
or absolutely. Relative rotation means that the agent turns depends only on its previ-
ous heading; this is most common in open complex environments (Baltie, EasyLogo,
Scratch). Absolute rotation is common in simpler applications where the agent moves in
rectangular grid, usually only in four possible directions.

The agent in Thomas the Clown application is the clown on the bicycle. He moves in
the graph-like network of roads. The child controls him by clicking the blue, yellow
or red road piece in the right centre of the screen (see Fig. 4 left). The commands are
executed immediately but the sequence is also recorded at the bottom of the screen. The
task is to get Thomas from one place on the map to another.

In the Ice Cubes microworld the robot pushes the ice cubes (Fig. 4 right). It is controlled
by the keyboard keys and the task is to move all ice cubes to their designated places. The
sequence of moves is not recorded. Many similar microworlds are available on the web,
though they are often perceived as games without educational dimension. Both applica-
tions check if the solution is correct.

The World of the Ant application features an Ant as the agent (see Fig. 5 left). The goal
is to guide it through the maze to the door. Pink flower and blue star enable the Ant to
walk through colourful walls. The Ant is controlled by the keyboard keys. The sequence
is not recorded.

In the Bee Tasks the agent is a blue insect controlled by clicking the buttons with arrows
(see Fig. 5 right). The goal is to guide it to the flower. The sequence of the commands
is recorded on the bottom of the screen. Both microworlds verify whether the solution
is correct.

Fig. 5. On the left the World of the Ant application, on the right the Bee Tasks.

Fig. 4. On the left Thomas the Clown application, on the right an Ice Cubes microworld.

Programming in Slovak Primary Schools 139

EasyLogo is open environment in which it is possible to change the appearance of the
agent (in this case a frog). The agent is controlled by three buttons in the top right corner
(Fig. 6 left). Forward arrow moves it one step forward on the grid – the agent moves
along the grid lines, not from centre of the square to the next square. The left and right
arrows turn the agent relatively to its current position. The goal is to guide the frog to the
pond. This application does not check whether the solution is correct, nor does it record
the sequence of commands in the direct mode.

Baltie is another open environment (Fig. 6 right). The grid where the agent (a sorcerer
named Baltie) moves is not visible. Similarly to EasyLogo there are three buttons for
the movement – first turns the agent relatively to the left, second moves Baltie one step
forward and the third turns him relatively to the right. Baltie can conjure pictures – a
child can choose pictures form the huge pre-prepared set. The picture will appear in front
of Baltie and it is also possible to construct more complex images consisting of many
smaller pictures. There is no in-built control of the correctness and the application does
not record the sequence of commands in this mode.

Some of these applications allow creating and adding custom tasks for pupils –
World of the Ant and EasyLogo. In World of the Ant we cannot choose a different agent
or change the final goal of tasks, but we can design the maze and place object on differ-
ent positions. EasyLogo is more opened – it allows to change the agent to any picture,
set different backgrounds and completely rephrase the goal of the task (e.g. instead of
guiding a frog to the pond we can ask pupils to move the frog along a square shape). We
consider this an important feature – the teacher can design her own tasks which are bet-
ter suited for the pupils and their skills, or match the motivation for the specific lesson.
However, designing new tasks, creating custom pictures and related technical obstacles
put a lot of demands on the teacher.

Open programming environments, such as Baltie, Scratch or EasyLogo can be used
for the direct agent-controlling activities as well. However, a meaningful task has to be
designed (or programmed) by the teacher first. There is no in-built solution checking and
if the teacher needs such feature she has to virtually create the microworld to achieve
this. A pre-made and partially programmed activity e.g. in Scratch can simulate desired

Fig. 6. On the left is EasyLogo, on the right is Baltie.

M. Kabátová, I. Kalaš, M. Tomcsányiová140

features of direct agent control. A path for the agent is in the following example a part
of the backdrop (Fig. 7 right). The cat is controlled by keyboard arrows – this behaviour
was programmed by the teacher in advance. Teacher also included a script that checks
whether the cat is at the end of the path or whether it deviated from the path earlier.
Similar assignments can be added to EasyLogo (Fig. 7 left), but it is not possible to add
automatic solution checking.

Pedagogy – observations and recommendations
A teacher conducting these or similar activities must remember that the learning goal is
to build basic understanding of controlling an agent by specific commands. The pupils
should realize there is a causal connection between the commands and the behaviour
of the agent. Since the control is direct and each command is immediately carried out,
making this connection is possible for pupils before reaching formal operational stage
of their cognitive development. In each application we presented the behaviour of the
agent is visualized. This allows pupils to immediately see how they are progressing in
the solution. We recommend using activities or environments that automatically check
if the solution is correct. According to our experience, pupils are more motivated to
solve problems if they have immediate feedback on their success. In our approach we
always use direct control of an agent as an introductory activity to the very basics of
elementary programming.

3.2.2. Indirect Control of an Agent – Building and Handling Future Behaviours
In the previous chapter we described activities in which the agent immediately carried
out each command. Next step may naturally be focusing on planning the whole sequence
of commands which will be executed only once it is complete. We call this approach
an indirect control of an agent. Here again we can control either a physical agent (a
classmate, a toy, or special programmable digital toy such as a Bee-Bot that is designed
for that purpose) or a virtual one “living” in a software application on the screen. When
working with physical agents pupils can write down the sequence of their commands on
the paper, or draw it using pictures (an interesting activity by itself is to design the proper
notation and discuss what ‘proper’ means in this context). E.g. programmable Bee-Bot

Fig. 7. Similar assignments in EasyLogo and Scratch.

Programming in Slovak Primary Schools 141

does not display the sequence at all – it is entered by pressing the buttons atop the toy,
but the child has to remember it or observe it when the toy moves according to the com-
mands. When using software applications, notation is usually given by its designers –
some applications use icons with arrows, icons combined with text or different kind of
pictures (e.g. colour of the road in Thomas the Clown).

Indirect agent control assignments usually have the same goal as activities described
in the previous part – to guide the agent from one place to another. Again it is possible
to include also other actions e.g., picking and using items or avoiding obstacles. Since
the sequence of commands is explicitly recorded – and thus visualized and editable –
pupils can finish the sequence or add missing commands, or even correct the sequence,
i.e. work with the representation. We can classify the cognitive operations according to
what has to be done with the sequence of commands:

Construct the sequence that guides the agent from its initial position to a final re-●●
quired position according to the assignment.
Interpret a given sequence of commands (there are various ways of how to verify ●●
the interpretation, the most straightforward is when pupils move the agent accor-
ding to the given sequence e.g., by clicking on the grid squares).
Identify the final position of the agent after executing the commands.●●
Identify the correct sequence among several sequences (more advanced version is ●●
to identify an incorrect sequence among several correct ones).
Complete the sequence if the last step is missing, or two last steps are missing, or ●●
any step is missing.
Identify and correct an incorrect command within the sequence.●●
Find alternative solution, find a solution with specific properties (e.g. the path is ●●
the shortest possible, or on its path the agent will cross equal count of yellow and
blue squares etc.).

Activities and examples
While most activities described above are suitable for implementation in a virtual micro-
world, it would probably be unreasonable to include all possible types of assignments
into one environment, thus getting too complex or too much time consuming for primary
pupils. Therefore several different applications are being used in our primary schools
that focus on specific tasks or certain groups of tasks.

Indirect controlling of an agent in Thomas the Clown is implemented e.g. in the straw-
berry picking task (Fig. 8 left): the robot is waiting at the entrance to the garden, once
a player completes a sequence of commands for moving and picking the strawberries,
the robot will execute it. The goal is to pick all ripe red strawberries in the garden. Se-
quence is created by clicking the icons in the left part of the screen and it is recorded on
the panel above the stage. When the sequence is being executed the active command is
always highlighted. This microworld automatically generates different gardens of 2 by
3 grid squares.

In the World of the Ant (Fig. 8 right) we can also choose indirect control mode. At the
bottom of the stage there is a set of commands – four arrows are for absolute rotation

M. Kabátová, I. Kalaš, M. Tomcsányiová142

and icon with legs represents moving one step in to the direction set previously. The Ant
will carry out the sequence only after the child pushes the red button. The application is
open to design many different mazes.

The Bee Tasks microworld was designed to offer several possible types of tasks we
mentioned earlier. In its current version there are nine types – the first one was already
described in part 3.2.1. as it is a direct control of the agent. The others are: interpreting
a sequence of commands, constructing a sequence (the Bee has to get to the square with
the flower, see Fig. 9 left), placing the flower on the square where the Bee will end up
after completing the given sequence (again interpreting the sequence), adding a missing
command (last one, last two, any in the middle), constructing a sequence (the Bee has
to end in the square with the flower, but there are obstacles as well), and identifying a
right sequence among several given (Fig. 9 right). A sequence is constructed by click-
ing on the icons with arrows – based on the same principle as in Thomas the Clown
microworld.

Fig. 9. Two different assignments in the Bee Tasks microworld.

Fig. 8. On the left Thomas the Clown, on the right World of the Ant.

Programming in Slovak Primary Schools 143

EasyLogo offers a mode in which children plan and construct the sequence of com-
mands (Fig. 10 left). However, this application behaves rather differently – it executes
the commands immediately after they are dragged into the sequence – it doesn’t wait for
completing the sequence (commands are in the column at the right side of screen). In
this sense the agent is directly controlled. However, there is a button “Run again” which
re-executes the sequence after it is created.

If we want to use Scratch for this kind of activities, we first need to prepare a project –
create a suitable backdrop, create sprite(s) and build the scripts for all functions, includ-
ing script(s) to verify a solution (if we want to). An example below (Fig. 10 right) is an
activity in which the goal is to build a sequence of commands for the Beatle to move from
its green (start) square to another green (goal) square without even touching any other
non-white square. The backdrop is a grid of white and coloured squares. In the Beatle’s
scripts area there are four blocks prepared for the pupils – already with their inputs prop-
erly set (move to the centre of a neighbouring square and turn left or right 90). Pupils will
construct the whole solution (script) for that situation by duplicating and snapping the
blocks into one script. This task has many variants of different levels of difficulty.

In both of these examples the task could be to fill in one or more missing commands
into the incomplete sequence (solution). Some of the environments presented so far of-
fer an option for the pupils or for the teacher to add their own tasks of the same kind.
Scratch, World of the Ant and EasyLogo allow us to do so.

Similar tasks (where the goal is to guide the agent to a given goal) are used also in the
Bebras contest. Since 2010 primary pupils can be involved in the contest in a special
category specially designed for them. One task was inspired by Thomas the Clown (Fig.
11 left) – the farmer has to get to his cow, but on his way he needs to grab the bucket.
All possible paths are depicted as a graph with edges of different colours. Pupils are
prompted to select the track which meets the criteria.

Second example from the Bebras contest is quite difficult task that proved to be
problematic as only 20 % of pupils solved it correctly, 17 % didn’t answer at all. The
story is: “A mouse is roaming in the maze, until it eventually reaches the cheese. Philip
was observing the mouse and used small cards with arrows to record its movements.
Unfortunately he dropped the cards and only two of them stayed at their places (see the

Fig. 10. EasyLogo and Scratch.

M. Kabátová, I. Kalaš, M. Tomcsányiová144

upper row of squares). Place the remaining cards and restore Philip’s record.” The task
was interactive and pupils could drag the cards into empty slots using mouse.

The last described assignment illustrates that this kind of activity can be really diffi-
cult and can also be given to much older pupils. The variety of presented tasks show that
guiding the agent is very rich context with many possible activities and a lot of potential.
At the same time it is apparent that planning a sequence beforehand and executing it only
after it’s recorded is a programming-like activity that involves abstraction over time.
Also the specific notation and execution of the sequence by some automatic machine-
like agent is a feature of full-flagged programming activity. However, these tasks are still
set in a concrete situations and their solutions do not require pupils to design universal
solutions that involve this kind of abstraction.

Pedagogy – observations and recommendations
It proved to be crucial that the application itself verifies whether the solution is correct.
If the microworld offers several tasks or several levels of difficulty, pupils should not
be allowed to skip them freely. Most motivating environments have a game-like design
presenting a bit more difficult task in each level. The designers of the microworld should
always prepare a set of tasks to be solved by pupils. They should be ordered according
to their cognitive demands, they should be motivating and engaging, prompting pupils
to learn new concepts and challenging to engage more demanding (but still developmen-
tally appropriate) cognitive operations. It is useful if the designer prepares several sets of
tasks as they can be used for achieving different learning objectives, in different classes,
for pupils at various stages of the learning process. Interesting option is to allow teachers
to create their own tasks, however this approach has proven to be far too optimistic as
only a small fraction of teachers are ready to do so.

3.2.3. Classification of the Microworlds Used for Direct and Indirect Control
of a Virtual Agent
In part 3.2 we have presented several applications, microworlds and environments that
are suitable for solving problems and learning computational thinking via programming-
like activities. They are all suitable for primary school pupils as such or after certain
preparatory steps. We summarize their features in Table 1.

Fig. 11. Two Bebras tasks based on indirect control of an agent.

Programming in Slovak Primary Schools 145

3.2.4. Some Advanced Concepts of Elementary Programming
In the previous two parts we focused on basic concepts that are in our opinion and ac-
cording to our experience suitable and appropriate for all primary school pupils. Now
we will present several others – more advance concepts – which still could fit into upper
end of the primary programming, but probably not for the whole class and only with well
experienced teacher.

Parameters
In some applications parameters in existing commands are rather intuitive and easy to
use (e.g. in Scratch, Fig. 12 left). In this case there is no need to address this concept ex-

Table 1
Features of microworlds

Movement
commands

keyboard keys World of the Ant, Ice Cubes
icons with arrows Bee Tasks, EasyLogo
icons with agent image Baltie
icons with colours Thomas the Clown
cards with text Scratch

Agent rotation
style

without rotation Thomas the Clown
absolute rotation World of the Ant, Ice Cubes, Bee Tasks
relative rotation EasyLogo, Baltie, Scratch

Grid type graph Thomas the Clown
rectangles or squares Thomas the Clown, World of the Ant, Ice Cubes, Bee

Tasks, Baltie
rectangular – lines EasyLogo
free movement (coordinates) Scratch

Notation (in direct
control mode)

without notation World of the Ant, Ice Cubes, EasyLogo, Baltie, Scratch
automatic notation Thomas the Clown, Bee Tasks

Solution
verification

no verification EasyLogo, Baltie, Scratch
automatic verification Thomas the Clown, World of the Ant, Ice Cubes, Bee

Tasks

Agent actions only movement and/or rotation Thomas the Clown, World of the Ant, Bee Tasks,
EasyLogo, Baltie

collecting objects Thomas the Clown, World of the Ant
moving objects World of the Ant, Ice Cubes
using objects World of the Ant
other Baltie, Scratch

Goals arrive at destination Thomas the Clown, World of the Ant, Ice Cubes, Bee
Tasks, EasyLogo

other EasyLogo, Baltie, Scratch

Pre-made
activities

no in-built activities Baltie, Scratch
set of fixed inbuilt activities Thomas the Clown, Ice Cubes, Bee Tasks
set of activities provided,
custom ones may be added

World of the Ant, EasyLogo

M. Kabátová, I. Kalaš, M. Tomcsányiová146

plicitly – children will understand immediately how to use them. Rather intuitive way to
set the parameter is using a drop-down menu – in Scratch there are several – e.g. choos-
ing a sound which will play by the “play sound” command. In this case pupils cannot
make a mistake. Another child-friendly parameter is pen colour chosen from the palette
(see EasyLogo displayed on Fig. 12 right). Parameters are present also in some modes
of World of the Ant and in Baltie environment.

Loops
Several of described microworlds provide loops – Scratch, EasyLogo, Baltie. However,
they are usually present in more complex open programming environments. Led by our
department a small microworld focused on loop constructions was designed and devel-
oped (Fig. 13). In this application pupils control the Jumper who has to reach the door
by jumping over platforms. The microworld is designed as a game – there are 24 levels
in which the child solves more and more complex situations (it is also possible to design
and add custom levels). Eventually the space for the commands becomes limited and
pupils cannot solve the problem without using a repeat loop. This design proved to be
highly motivating and pupils are deeply keen on completing the “game”. On the other
hand, one of the teachers using this microworld reported that only about a half of pupils
aged 8 to 9 years were able to learn to use the loop themselves. Loops appear also in the
LEGO WeDo programming language that is designed for primary schools. In this case,

Fig. 13. A game-like microworld named Jumper is focused solely on loop constructions.

Fig. 12. Parameters used in Scratch and EasyLogo.

Programming in Slovak Primary Schools 147

however, some commands implicitly contain repeated behaviour – turning on the motor
means it will move until the program is stopped or some other action is assigned to it. As
our research team reported pupils use the loops block rather easily and they intuitively
understand their use in the programs they create for their robotic models.

Procedures
Some programming environments for primary pupils do not offer procedures (Scratch
1.4), others are designed to use them (EasyLogo, Scratch 2.0). According to our experi-
ence this concept is rather complex and is a good candidate to postpone to years 5 and
6. Here is an example of two procedures (Fig. 14 left) in EasyLogo. Pupils at first do not
design them, as these loops are already prepared in the activity; she is prompted to use
them in the program.

3.3. Tinkering with Interactive Environments

A programming environment named Living Pictures (influenced by Russian PervoLogo)
has been specifically designed in our department to teach pupils some object-oriented
concepts within elementary programming. In this environment pupils populate the virtual
world (represented by a background) with moving objects – characters, animals, vehicles,
plants or anything they choose from a pre-made set of pictures or draw them themselves.
From the perspective of primary informatics pupils learn to control one or more objects,
define their behaviours, clone them, set their properties and reactions to events.

Each object is at first depicted as a Logo turtle – the child should realise that this is
in fact an abstract object that can take any form. Each object has different properties, its
shape and position among them. Basic action of the object is its reaction to the onClick
event (e.g. it can move few steps forward). Other events are triggered when the project
is set to run and when objects collide, but we recommend to program these events later
– with lower secondary school students, or with only some high achievers at the end
of year 4. This programming environment is open – there are no pre-set activities. All

Fig. 14. EasyLogo procedures for drawing a yellow rectangle and red triangle are used to draw house.

M. Kabátová, I. Kalaš, M. Tomcsányiová148

assignments have to be designed and presented by the teacher. It is possible to add cus-
tom backgrounds and pictures. The teacher can adjust also the set of commands for the
objects so that the pupils see only a limited sub set (Fig. 15). We consider this high level
of customizability to be important especially if the application is designed for primary
pupils. Setting up the user environment so that it is as simple as possible is crucial for
the introductory lessons.

Another advantage of this application is that it is possible to export a project as an
executable file (EXE). Thus pupils can be motivated to create moving pictures for their
younger classmates (in accordance with Papert’s principles of constructionist learning).
Pupils can present the executable file to their friends or relatives.

In next parts we will illustrate several activities that can be done in this environ-
ment. We will focus on shape, position and rotation of the object, and we will use three
events – onClick, onRunProject and onCollision. We believe that the outlined sequence
of activities leads from designing a scene and setting the properties of objects to execut-
ing dynamic scenarios with multiple objects with different behaviour (which involves
abstraction over time and over situation as well, see Blackwell, 2002).

3.3.1. Multiple Agents and their Properties
In parts 3.1 and 3.2 pupils controlled only a single agent. Using Living Pictures (or
similar microworlds) it is possible to introduce multiple agents with different or identi-
cal properties. We prefer to tinker with properties that are visible – shapes, positions,
and rotations. First, pupils should encounter objects with shapes that enable to see its
rotation (character, animal …) later they will learn that for some shapes rotations are not
observable (snowflake, sun). A good metaphor for describing such activity is a theatre
– there are several actors on the stage, each of them has their own specific scenario and
eventually they interact. This description helps with distinguishing the preparation phase
(setting the properties, preparing sequences of commands) and the execution phase (the
objects carry out their instructions).

Activities and examples
A good introductory activity is populating the world – pupils choose the background
(green hills and sky) and place several objects on it, then change shapes of these objects

Fig. 15. Whole set of all commands (left) and limited set designed for a specific activity (right).

Programming in Slovak Primary Schools 149

so they look like sun, clouds and trees. We can ask pupils to shrink or grow the objects
according to their positions in the background so that an illusion of depth is created (Fig.
16 left). The features used here are: adding objects, changing their shapes, scaling down
and scaling up and cloning objects. This activity can be done in many different settings
– for example in the outer space (see Fig. 16 right). Rotation of the object can be also
used in static scenarios (the astronaut is looking towards the aliens).

3.3.2. Static Scenarios
Clicking on or touching objects in the screen is nowadays the most intuitive way of
interaction with the digital devices. This trend was set with the Windows interface and
now is reinforced with touch screen technology. Objects in Living Pictures have a pre-
set onClick even that is triggered if the object is clicked by a computer mouse. Pupils are
already familiar with this event and assigning a reaction to the object when it is triggered
is the next step.

Activities and examples
In Living Pictures each object has its own event window into which the commands
for the object are dragged from the command palette. When designing static scenarios
pupils will change the shape, size and rotation of the objects. The most straight forward
activity is changing costumes. First the background is chosen, then objects are placed.
For each object that is a piece of costume the pupils will set a behaviour – when it is
clicked its shape will change to the next one form the chosen set of shapes.

As an example let us select a winter background with a snowman. Objects that
will change their shapes with a mouse click are the hat, the broom, his face and but-
tons (Fig. 17 left). Similar projects are easily done in Scratch. The sprites have when
clicked event and a single next costume block rotates a set of prepared shapes for the
sprite. In our example (Fig. 17 right) three sprites can be clicked – clown’s hat, eyes
and mouth. Each object has the same and very simple script – switch the costume to
the next one.

The greatest disadvantage of Living Pictures is that pupils can not immediately test
the script and see what happens (they have to close the event window first and then run
the project) – in Scratch it is possible. In Living Pictures it is also not possible to see the

 Fig. 16. Two static scenarios done in Living Pictures.

M. Kabátová, I. Kalaš, M. Tomcsányiová150

set of shapes for the object or which one comes next. In both environments we should
encourage pupils to design the desired behaviour first for one object and only once it
is tested and it works properly they clone it. This is done in accordance with object-
oriented approach in programming where the programmer first designs the prototype
object and its methods. Only after that is it reasonable to create inherited classes and
objects with modified behaviour. Primary school pupils can learn to distinguish different
objects with different properties and behaviour, or to tell what objects have in common.
We believe this level of abstraction is appropriate for the primary pupils in the highest
years (10–11 year olds).

3.3.3. Dynamic Scenarios
Dynamic scenarios in Living Pictures environment involve assigning a motion to the
objects. Most common is setting an infinite loop for the motion, which is done by check-
ing one of the options in the script (note that loop is not provided here as a programming
structure). Throughout these activities pupils better understand the difference between
preparation of the scene and running a project.

Activities and examples
In the Pond project pupils are prompted to set a background that will represent the pond.
They place an object and change its shape so it looks like a fish. Then they set its direc-
tion – on our picture (Fig. 18 left) it will face right. In the event window they will com-
mand the fish to move forever forward. Default behaviour in Living Pictures is: if the
fish is on the right edge of the screen it does not stop to move but it reappears on the left
edge – objects do not bounce by default. This is a deliberate design choice that enables
us to have an object which is forever moving to the right on a finite screen. After testing
the fish’s behaviour pupils clone it. Now they can change direction for some of them, or
add some commands to onClick event (e.g. the fish disappears).

This is one possible set of activities in Living Pictures:
Setting properties (shape, position, scale, direction) and cloning objects.●●
One or more objects react to the ●● onClick event.

Fig. 17. Left: The “t1” window displays the onClick event with one command – change
shape to the next one – which looks like a filmstrip. On the right similar project built in
Scratch.

Programming in Slovak Primary Schools 151

One object moves and reacts to the keyboard arrows; navigating this object is ●●
similar to direct agent control activities described in 3.2.
Infinite movements of one or more objects; only one command is given to objects ●●
(usually move forward) and it is set to repeat forever.
Infinite random movement of one or more objects on the scene, e.g. a butterfly is ●●
flying on a meadow, or Thomas the Clown is cycling on the plaza.
Infinite (random) movement of one or more objects on the scene and their reaction ●●
to onClick event. This activity is on the edge of game design – pupils can prepare
a scene where objects move randomly, when they are clicked they disappear. Aim
of the game is to hit all the objects.
Infinite (random) movement of one or more objects on the scene and their reac-●●
tion to onCollision event. These kinds of activities are probably too complex for
primary pupils, but if they are familiar with all previously listed concepts, they
may be able to do them. An example: one object is a basket that reacts to the arrow
keys, other objects in the scene are apples that are falling down (they move for-
ever downwards), when the apple hits the basket it disappears. More complicated
scenarios can be devised, but we believe there is too much abstraction involved
and we do not consider this type of activity to be age-appropriate at Slovak pri-
mary level (consisting of only four years up to 10 years old pupils).

3.3.4. Pedagogy – Observations and Recommendations
We believe that tinkering objects, their properties and behaviours is an excellent oppor-
tunity for the primary pupils to learn the very basics of the object-oriented approach to
programming. Activities in Scratch or Living Pictures are very intuitive. Pupils learn to
change and set properties of objects, to distinguish the development phase form the run-
ning phase, to plan the future behaviour of objects, incorporate looping actions of objects
and even begin to tinker with random values. It is crucial that these environments contain
a large set of pre-made graphics and they should be opened to adding custom pictures.
We believe that properly designed environment for tinkering with objects should:

Allow to add object easily.●●
Make changes in object properties (like shape, size or position) immediately visible.●●

Fig. 18. The Pond project created in Living Pictures.

M. Kabátová, I. Kalaš, M. Tomcsányiová152

Enable the object to react to at least three events: ●● onClick, onRunProject, oOnCol-
lision.
Feature easy pupils-friendly manipulation with objects and their properties – by ●●
clicking and dragging.
Enable cloning objects together with their behaviours.●●

3.4. Implementation of Elementary Programming: Various Ways and Various Tools

It is apparent from activities described in parts 3.1, 3.2 and 3.3 that core of primary
programming can be learned using specialized software applications or microworlds
that are (a) specifically designed for primary pupils and (b) designed to address the
learning goals we have listed earlier. There are many similar applications being created
around the world: Scratch (and its newer version Scratch 2.0), Scratch Jr., Microworlds
JR, LEGO WeDo or Baltie. Several powerful microworlds have been developed in our
department and made available for teachers and their pupils through various portals,
websites, projects and PD sessions. Those include Thomas The Clown, World of the Ant,
EasyLogo, Living Pictures, Jumper and Bee Tasks. Ice Cubes microworld and many
similar ones originate from ‘Infovekacik’ – an older Slovak on-line magazine for pupils
created in cooperation with our department.

Another productive means to support implementation of primary programming into
formal education for all children is the international contest Bebras. In Slovakia we
initiated a special category for primary pupils and many contest tasks are deliberately
designed to incorporate problem solving and elementary programming concepts. The
national success and high number of contestants suggest that pupils and teachers are
interested in this form of informatics.

4. Programming in Primary Teachers’ Professional Development

All Slovak primary teachers have to get a master degree from a pedagogical faculty of
one of our universities. They are not specialists – they teach pupils of years 1 to 4 (6 to
10 years old children) all subjects (sometimes excluding foreign languages and/or infor-
matics). In 2008 a new compulsory school subject was introduced – primary informatics.
However, pedagogical faculties have failed to update their study programs to include
corresponding pre-service development for future teachers till today. Fortunately, a na-
tional project focused on professional development of in-service informatics teachers
was launched in 2008 (till 2011) and authors of this paper were involved – together with
the teams from five universities across the country – in developing its strategy and con-
tent and delivering it to 700 in-service teachers. The main goal of the project was to offer
a modern, up-to-date, high quality education necessary for teaching this new subject at
primary schools. Note that similar situation and PD strategy is being reported from the
Czech Republic by Vanicek (2013).

Programming in Slovak Primary Schools 153

Within the Slovak national project, 700 in-service primary teachers attended 18
study modules (each 6 hours long). Each module belonged to one of four tracks: Digi-
tal literacy; Informatics; Didactics of primary informatics; and Modern school. The
Informatics track included six modules: Computer and digital devices; Information
around us 1–3; and Problem solving and basics of programming 1–2. Teachers that
graduated from the PD should be able to use digital technologies both in their classes
and when preparing for them. They should perceive the elementary informatics as an
important part of pupils’ education and development, being able to meet the learn-
ing objectives of primary informatics as prescribed in the national curriculum. The
study materials and whole lecturing process was designed to prepare the teachers for
future development in digital technologies – for new microworlds and new operating
systems, and also for new devices that would be used in the classrooms in near future.
Authors of the study materials and lecturers took great care to introduce the teachers
to a variety of software applications and appropriate teaching strategies. Teachers were
learning how to evaluate appropriateness of software applications and microworlds
and how to use them in the classroom.

From the perspective of this paper we find most relevant the modules dealing with
problem solving, elementary programming and corresponding didactical materials.
These areas had not been treated until then in any literature in our country (and hardly
anywhere) and designing that content and delivering it to 700 in-service teachers was
a real challenge and important innovative step towards new primary informatics. For
the sake of the project, several new microworlds had been created, e.g. EasyLogo and
Living Pictures, and participants used many other already existing microworlds and pro-
gramming environments designed for primary pupils by experts in Slovakia.

One of the most successful new developments in the project was an idea and im-
plementation of the Cards Tool (Tomcsanyi 2012). It is an authoring application that
enables the teacher to design simple but vastly variable activities for any (primary)
school subject. Participants of the project enthusiastically used the tool and created
interesting activities that confirmed that primary teachers are creative and persistent
and can use digital technology in their teaching. Since then, several thousand differ-
ent activities created by the teachers themselves in the Cards Tool have been posted at
Slovak portal zborovna.sk.

Although we lost touch with most of the participants when the project finished, we
are interested in following how they manage to utilize new skills in their practice. There-
fore we sporadically address a small sample of the participants and ask them to reflect
about the project’s longer term benefits. From that (mostly anecdotal) data we may for-
mulate several interesting observations about the implementation of the problem solving
and programming activities at primary level:

Primary informatics lessons are usually run in a special computer lab, dedicated to ●●
primary key stage (older pupils usually use another computer lab).
In each year group (2, 3 and 4) around 5 to 8 lessons are allocated to ●● problem solv-
ing and programming. These are usually taught in a row, often towards the end of
the school year.

M. Kabátová, I. Kalaš, M. Tomcsányiová154

Teachers are using the study materials extensively and share them with other col-●●
leagues. They have altered their lesson plans to incorporate teaching methods ap-
plied in the project’s PD sessions.
Problem solving tasks (as presented earlier) are not highly popular among the ●●
teachers; many teachers simply skip them. They rarely realise that those tasks are
not puzzles nor riddles, nor that their goal is not to find the solution by trial-and-
error but systematically look for the solving method and reflect about the exter-
nally represented solution.
Teachers enthusiastically use some microworlds that were created for the project – ●●
most of all The Jumper, World of the Ant and The Living Pictures while EasyLogo
is less popular. Interestingly, each teacher has a strong preference for exactly one
of the microworlds.
Microworlds with the in-built sets of tasks of increasing difficulty and automatic ●●
verification of the solutions are used the most. Teachers often say they cannot pro-
vide immediate feedback for all pupils in the group and primary pupils are very
keen on learning if they are progressing in the assignments. The sets should be
designed to be solvable within one lesson (45 minutes). It should not be possible
to skip the tasks in the set – only after the task is solved correctly the child can
proceed to a harder one.
Open programming environments are difficult to use and the teacher has to be ●●
better prepared for designing her own meaningful assignments and tasks within
such environments (often it requires to attend extensive specialized training for
the chosen environment). Our primary teachers probably have not reached that
level of expertise yet.
Most of the teachers are familiar with, visit and use the ●● Infovekacik website – an
on-line magazine for children with dozens of game-like microworlds. It would
be probably useful to create a web portal with similar content and add lesson
plans and recommended teaching methods. Teachers need good resources for their
teaching that would inspire them to search for new suitable microworlds and soft-
ware applications.
Many teachers use The Cards Tool to design their own simple activities for ●●
other school subjects (mostly language and science, only rarely for primary
informatics).
All teachers are appreciative and see high value of the project’s PD and of the new ●●
subject.

In conclusion, we believe that the national project and its PD programs were well
designed and conducted. The participating teachers do incorporate learned skills and
knowledge into their teaching. However, some of our plans proved to be too optimistic –
most notably our inability to share with the primary teachers the importance and learning
potential of the problem solving tasks (as described earlier in 3.1). Another failed expec-
tation was to assume they would design their own sets of tasks for the pupils to support
their informatics learning objectives. Teachers prefer to use the activities we prepared
for them and their PD. Clearly it is vital to provide suitable series of activities with each
microworld or digital toy/tool.

Programming in Slovak Primary Schools 155

5. Discussion and Conclusion

Presented approach to primary programming has resulted from our previous experiences
with teaching programming and developing programming interventions for all stages of
schools, including university study programs for future teachers of informatics, for sev-
eral decades. Our professional roots lie in Logo culture, into which our Comenius group
has contributed by two internationally recognized versions of Logo: Comenius Logo and
Imagine Logo. From that background we inherited our endeavour to respect the needs of
students, together with other principles of Papert (1999) such as:

The Logo programming language is far from all there is to and in principle, we ●●
could imagine using a different language, but programming itself is a key element
of this culture.
So is the assumption that children can program at very young ages.●●
And the assumption that children can program implies something much larger: in ●●
this culture we believe (correction: we know) that children of all ages and from all
social backgrounds can do much more than they are believed capable of doing.
Just give them the tools and the opportunity.
Opportunity means more than just “access” to computers. It means an intellectual ●●
culture in which individual projects are encouraged and contact with powerful
ideas is facilitated.

We have also learned how important it is to integrate programming into pupils’ learn-
ing experience only if they themselves see the meaning in doing so and perceive pro-
gramming as a means to express themselves, to solve problems, to make things happen...
In the case of primary pupils, such programming should most probably restrict to build-
ing simple future behaviours in certain notational system and solving tasks, which arise
from handling such behaviours.

Although we consider elements of programming to be key constituent of informatics
in primary education, we do not develop it as a means to attract more students to later
Computer Science majors. We build it as a valued and legitimate core subject contrib-
uting to general education and complex development of every girl and every boy. Yet,
we hope, that it may consequently play that role as well – the skills, knowledge, and
attitudes, which pupils gain in elementary informatics may later help them build sound
understanding of Computer Science principles.

Programming, which we consider appropriate for primary pupils, can be naturally
divided into three domains (while first domain should proceed the other two, we believe
that the second and the third ones can be implemented in any order or even in parallel).
They are:

Solving problems and handling solutions.●●
Controlling an agent.●●
Tinkering with interactive environments.●●

For each domain we have presented its main learning goals, corresponding com-
putational concepts, computational practices, and essential cognitive operations to be
performed; selection of activities and examples, which in detail illustrate various types
of tasks and problems to be solved; several software applications that are being used;

M. Kabátová, I. Kalaš, M. Tomcsányiová156

and also several pedagogical observations and recommendations, which resulted from
our collaboration with the primary teachers.

Most of the programming environments, which are being used at Slovak primary
schools, are free applications, usually small microworlds focused on one of the domains
listed above, and one or several cognitive operations belonging to that domain. As partly
validated in chapter 4, teachers usually exploit environments which they find attractive
(although often not being able to verbalize which criteria they apply for judging this).
However, they clearly favour environments supplemented with teacher materials and
activities for pupils, and environments, which they may give away to their pupils for
their home work and play.

Our experience in implementing programming at the lower secondary stage ISCED 2
(although not based on systematic evidence yet) shows that three domains presented
in the paper for primary stage can seamlessly be picked up and further elaborated in
lower secondary years to cover further cognitive operations (like conditional steps in
programs, abstractions, i.e. procedures without or with parameters etc.). However, ex-
tensive research to help us better understand cognitive demands of such programming
and real values of educational programming for the complex development of primary
and secondary students is inevitable. We have already undertaken some initial steps in
this direction, see e.g. (Gujberova and Kalaš, 2013).

As we document in chapter 1, informatics in upper secondary education has con-
siderably long tradition in Slovakia. In recent years, it has been extended as a manda-
tory subject to lower secondary level (2005) and primary level (2008). In chapter 2, we
briefly characterized its curriculum and its learning goals and especially the key role of
programming within the subject.

We fully focused on educational primary programming in the paper. In chapter 3, we
presented in detail our approach to such programming together with corresponding com-
putational concepts, cognitive operations, and programming environments employed in
our classes. In chapter 4, we then described how the CPD for primary in-service teachers
has been implemented – with partial successes and numerous obstacles and challenges
that require permanent and intense support from the institutions responsible for educa-
tion. In spite of many obstacles and slow progression, there are many positive and stim-
ulating reactions from primary teachers who implement elementary informatics with
exceptionally positive involvement. They also report positive attitudes of their pupils.

The development of the subject of informatics in primary school is a long-term pro-
cess. In it, we must thoroughly respect the requirements of the developmental appropri-
ateness, carefully observe and analyse the needs of the pupils, respect all stages of their
learning processes, set correct priorities, and apply proper tools – so that we support the
development of such programming, which our pupils will clearly benefit from. In this
aspect, we deeply agree with Papert, Ackermann and other seminal authors when they
advise not to learn programming for the sake of programming. Instead, we should...

use the knowledge of programming to create contexts where other
playful learning can happen. Children will engage in programming
if they can get something out of it right now – not later when they’ll
grow up, (Ackermann, 2012).

Programming in Slovak Primary Schools 157

References

Ackermann, K.E. (2012). Programming for the Natives: What is it? What’s in it for the Kids? In: Kynigos, Ch.,
Clayson, J., Yiannoutsou, N. (Eds.), Proceedings of Constructionism, Athens, Greece August 2012. National
& Kapodiststrian University of Athens, Athens, 1–10. Updated version obtained via CRN Japan:
http://www.childresearch.net/papers/pdf/digital_2012_03_ACKERMANN.pdf

Barr, V., Stephenson, Ch. (2011). Bringing computational thinking to K-12: What is involved and what is the role of
the computer science education community? ACM Inroads, 2(1), 48–54. DOI: 10.1145/1929887.1929905
http://doi.acm.org/10.1145/1929887.1929905

Blackwell, A.F.(2002). What is Programming? In: Kuljis, J., Baldwin, L., Scoble, R. (Eds.), Proceedings of
14th Workshop of the Psychology of Programming Interest Group. Brunel University, 204–218.

Blaho, A., Kalaš, I., Tomcsanyiova, M. (1995). Experimental curriculum of informatics for 11 year old children.
In: WCCE´95 Liberating the Learner: Proceedings of the sixth IFIP World Conference on Computers in
Education. Chapman & Hall, London, 829–841.

Blaho, A., Salanci, L. (2011). Informatics in primary schools: visions, experiences, and long-term research pros-
pects. In: Kalaš, I., Mittermeir, R. (Eds.), Informatics in Schools: Contributing to 21st Century Education.
LNCS 7013, Springer, 129–142. ISBN 978-3-642-24721-7.

Brennan, K., Resnick, M. (2012). Using artefact-based interviews to study the development of computational
thinking in interactive media design. Paper presented at annual American Educational Research Association
meeting. Vancouver, BC, Canada.

Dagienė, V., Stupurienė G. (2016). Bebras – a sustainable community building model for the concept based
learning of informatics and computational thinking. Informatics in Education, 15(1), 25–44.

Eisenberg, M., Elumeze, N., MacFerrin, M., Buechley, L. (2009). Children’s programming, reconsidered: set-
tings, stuff, and surfaces. In: Proceedings of the 8th International Conference on Interaction Design and
Children (IDC ‘09). ACM, New York, NY, USA, 1–8. DOI:10.1145/1551788.1551790
http://doi.acm.org/10.1145/1551788.1551790

Gibson, J.P. (2003). A noughts and crosses Java applet to teach programming to primary school children. In:
Proceedings of the 2nd International Conference on Principles and Practice of Programming in Java (PPPJ
‘03). Computer Science Press, Inc., New York, NY, USA, 85–88.

Gujberova, M., Kalaš, I. (2013). Designing productive gradations of tasks in primary programming education.
In: Proceedings of the 8th Workshop in Primary and Secondary Computing Education WiPSCE ’13. ACM,
New York, NY, USA, 108–117. DOI: 10.1145/2532748.2532750
http://dl.acm.org/citation.cfm?id=2532750

Hu, Ch., (2011). Computational thinking: what it might mean and what we might do about it. In: Proceedings
of the 16th Annual Joint Conference on Innovation and Technology in Computer Science Education (IT-
iCSE ‘11). ACM, New York, NY, USA, 223–227. DOI:10.1145/1999747.1999811
http://doi.acm.org/10.1145/1999747.1999811.

Hubwieser, P. (2012). Computer science education in secondary schools – the introduction of a new compulsory
subject. ACM Transactions on Computing Education, 12(4), Article 16 (41 pages).
DOI:10.1145/2382564.2382568
http://doi.acm.org/10.1145/2382564.2382568

Informatics Europe and ACM Europe (2013). Informatics Education: Europe Cannot Afford to Miss the Boat.
Report of the joint Informatics Europe & ACM Europe Working Group on Informatics Education.
http://www.informatics-europe.org/images/documents/informatics-education-europe-

report.pdf.

Kalaš, I. (2010). Recognizing the Potential of ICT in Early Childhood Education: Analytical Survey. UNESCO
Institute for Information Technologies in Education, Moscow. ISBN 987-5-905175-03-9.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J., Werner, L. (2011). Compu-
tational thinking for youth in practice. ACM Inroads, 2(1), 32–37. DOI:10.1145/1929887.1929902
http://doi.acm.org/10.1145/1929887.1929902.

Lu, J.J., Fletcher, G.H.L. (2009). Thinking about computational thinking. ACM SIGCSE Bulletin.
DOI:10.1145/1539024.1508959.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., Eastmond, E. (2010). The scratch programming language
and environment. ACM Transactions on Computing Education, 10(4), Article 16 (15 pages).
DOI:10.1145/1868358.1868363
http://doi.acm.org/10.1145/1868358.1868363

M. Kabátová, I. Kalaš, M. Tomcsányiová158

Mayerova, K., Veselovska, M. (2016). How to teach with LEGO WeDo at primary school. In: Proceedings of
7th International Conference on Robotics in Education (RiE 2016), Vienna. To be published in the Springer
Series: Advances in Intelligent Systems and Computing.

Mogardo, L., Cruz, M., Kahn, K. (2006). Radia Perlman – a pioneer of young children computer programming.
In: Current Developments in Technology-Assisted Education, 1903–1908. CiteSeerX: 10.1.1.99.8166.
http://citeseerx.ist.psu.edu/viewdoc /summary?doi=10.1.1.99.8166

National Curriculum, Informatics for ISCED 1 (2011, 2015). (In Slovak).
http://www.statpedu.sk/sites/default/files/dokumenty/inovovany-statny-vzdelava-

ci-program/informatika_pv_2014.pdf

Papert, S. (1999). What is Logo and who needs it. In: Logo Philosophy and Implementation. Highgate Springs,
Vermont: Logo Computer Systems Inc. ISBN 2-89371-494-3.

Pekarova, J. (2008). Using a programmable toy at preschool age: Why and How? In: Workshop Proceedings of
SIMPAR 2008, International Conference. 112–121. ISBN 978-88-95872-01-8.

Piaget, J., Inhelder, B. (1993). La Psychologie de l’enfant. Paris: Presses Universitares de France.
Polya, G. (2004). How to Solve It. Princeton University Press.
Przybylla, M., Romeike, R. (2014). Physical computing and its scope – towards a constructionist computer sci-

ence curriculum with physical computing. Informatics in Education, 13(2), 241–254.
Resnick, M. (2012). Point of view: reviving papert’s dream. Educational Technology, 52(4), 42–64.
Selby, C.C. (2012). Promoting computational thinking with programming. In: Proceedings of the 7th Workshop

in Primary and Secondary Computing Education (WiPSCE ‘12). ACM, New York, NY, USA, 74–77.
Selby, C.C. (2013). Computational thinking: the developing definition. In: ITiCSE Conference 2013, University

of Kent, Canterbury, England (e-prints), 6 p.
Settle, M., Franke, B., Hansen, R., Spaltro, F., Jurisson, C., Rennert-May, C., Wildeman, B. (2012). Infusing

computational thinking into the middle- and high-school curriculum. In: Proceedings of the 17th ACM An-
nual Conference on Innovation and Technology in Computer Science Education (ITiCSE ‘12). ACM, New
York, NY, USA, 22–27.

Tomcsanyiova, M., Tomcsanyi, P. (1997). Experimental IT education for lower secondary school using Win-
dows and Comenius LOGO. In: Learning and Exploring with LOGO: Proceedings 6th European LOGO
Conference. Budapest, 263–272. ISBN 963-8431-91-1.
http://eurologo.web.elte.hu/lectures/tomcsa.htm

Tomcsanyi, P. (2012). Small interactive computer activities made by primary teachers. In: Information and
Communication Technology in Education 2012. Ostrava: University of Ostrava, 263–272.

Vanicek, J. (2013). Introducing Topics from Informatics into Primary School Curricula: how do teachers take
it? In: Diethelm, I., Arndt, J., Dunnebier, M., Syrbe, J. (Eds.), Informatics in Schools: Local Proceedings of
the 6th International Conference ISSEP 2013, Oldenburg, Germany – Selected Papers. Universitätsverlag
Potsdam, 41–51.

Wing, J.M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the
Royal Society A, 366, 3717–3725. DOI:10.1098/rsta.2008.0118

Wing, J.M. (2011). Research notebook: computational thinking – what and why? In: The Link. Pittsburgh, PA:
Carnegie Mellon University.

Links to Microworlds and Programming Environments

Baltie: http://www.sgpsys.com/en/whatisbaltie.asp
Bee Tasks: see (Gujberova and Kalaš 2013), for the microworld itself contact the authors
Cards Tool: http://edi.fmph.uniba.sk/~tomcsanyi/Karticky/
EasyLogo: http://www.salanci.sk/EasyLogo/index.html
LEGO WeDo: http://www.legoeducation.us/eng/product/lego_education_wedo_software_

v1_2_and_activity_pack/2239

Microworlds JR: http://www.microworlds.com/solutions/mwjunior.html
Scratch: http://scratch.mit.edu/
Thomas the Clown: http://www.r-e-m.co.uk/logo/?Titleno=7485

Programming in Slovak Primary Schools 159

M. Kabátová, was an assistant professor of informatics education at
Faculty of Mathematics, Physics and Informatics at Comenius Uni-
versity, Bratislava. Her research interests included elementary pro-
gramming, educational robotics and qualitative research methodol-
ogy applied to educational research in informatics education. She is
a co-author of several research papers and learning materials deal-
ing mostly with educational robotics. Since 2014 she runs an SME
distributing cochlear implants in Slovakia and provides services for
cochlear implants users. Currently she is planning to initiate a work-
shop providing a learning space for children with or without cochlear
implants where they could explore programming and building autono-
mous LEGO robots.

I. Kalaš is a professor of informatics education at Comenius University,
Bratislava. His professional interests include development of construc-
tionist educational interfaces for learning for children and research in
the field of the impact of digital technologies on learning. Ivan is a co-
author of several programming environments for children, including
SuperLogo, Imagine Logo, Thomas the Clown and RNA (Revelation
Natural Arts) adopted by thousands of schools, home and abroad. He is
also an author or co-author of several books and textbooks on children
programming and informatics, which have been published in several
languages and countries in Europe and beyond. He has also been active
in several national and international policy efforts and initiatives. Ivan
represents Slovakia in the IFIP Technical Committee for Education.
From 2008 to 2013, he was a member of the International Advisory
Board of the ‘Microsoft Partners in Learning’ initiative. From 2014 he
is a visiting professor at UCL Knowledge Lab, London.

M. Tomcsányiová is an assistant professor of informatics education at
Comenius University, Bratislava. She is a guarantor of a bachelor study
programme for future teachers of informatics. She reads the courses on
programming and educational aspects of programming and conducts
corresponding research in the field of educational programming in all
levels of education. Monika is a co-author of several textbooks and
methodical teacher materials. She is also involved in designing small
educational software environments supporting informatics education
in Slovak primary and lower secondary schools. She develops tasks
and organizes informatics challenges for primary and secondary stu-
dents, including Imagine Logo Cup, Scratch Cup and national Bebras.
Her area of research is didactics of programming for lower secondary
schools. She is a co-author of research papers in this area.

