
Olympiads in Informatics, 2013, Vol. 7, 61–77 61
© 2013 Vilnius University

Algorithmic Results on a Novel Computational
Problem

Minko MARKOV1, Krassimir MANEV2

1Department of Computing Systems, Faculty of Mathematics and Informatics
“St. Kliment Ohridski” University of Sofia
5 J. Bourchier Blvd, P.O. Box 48, BG-1164 Sofia, Bulgaria

2Department of Computer Science, New Bulgarian University
21 Montevideo St., 1618 Sofia, Bulgaria

e-mail: minkom@fmi.uni-sofia.bg, kmanev@nbu.bg

Abstract. We propose a novel computational problem on undirected graphs, prove that it is N P -
complete, and design a linear-time algorithm for the special case when the graph is a cactus. The
decision version of the problem is, given a graph and a train in it, the train being an edge sequence
that forms a path with one vertex designated as the locomotive, can the train reach a certain target
vertex, or not? The movement of the train consists of elementary, single-edge moves with the
locomotive forward, the length of the train staying the same. Further, the movement of the train
is restricted: the train cannot self-intersect.
Key words: train in a graph, N P -completeness, algorithmic graph theory, cactus graphs.

1. Introduction

Pankov (2008) proposes the following problem, having already mentioned the concept of
a train in a graph:

Task 2. A graph is given. Firstly, the head H and the tail T of the train are in
two neighbor vertices. Write a program finding one of the shortest ways to be
passed by the train (moving forward only) in order to put its head to the primary
position of T and its tail to the primary position of H .

Similar problems called PATH TRANSFERABILITY and PATH REVERSIBILITY are intro-
duced and investigated by Torii (2008) though the results are not algorithmic. A vaguely
similar concept under the name snake of length two or three is used for proving results
on symmetric graphs by Tutte (1998).

We consider a modification of that problem, which is explained informally as follows.
Imagine a network of train rails of unit length. The network can have arbitrary topology –
it does not have to be planar and an arbitrary number of rails can meet at any junction.
There is a train in the network, its locomotive being a point and its carriages being of
unit length, each carriage being situated on a single rail. One endpoint of the train is the
locomotive and the train can only move with the locomotive forward; unlike real trains,

62 M. Markov, K. Manev

it cannot move backwards. Initially, the locomotive is situated over some junction x of
the network. The train travels by discrete moves with the locomotive forward. Each ele-
mentary move has unit length, therefore after it the locomotive arrives at some junction
y such that x and y are adjacent in the network, i.e., they are at the endpoints of some
rail. Junction y must have been unoccupied by the train before the move commences.
The length of the train does not change during its travel, so as the locomotive arrives at
y, some junction previously occupied by the train becomes free. Given the network and
some initial position of the train and some target junction, the question is, can the loco-
motive reach the target. The corresponding optimization problem is, what is the minimum
number of elementary moves in order to get the locomotive to the target.

In the degenerate case when the train has zero carriages and consists of a single
point – namely, the locomotive – the problem is equivalent to the SHORTEST PATH prob-
lem on unweighted undirected graphs. However, in general that is not the case. Without
loss of generality we can assume the corresponding graph is connected and thus the only
reason the locomotive cannot start moving towards the target on some shortest path is
that the body of the train gets into its way. Superficially, that problem is a minimiza-
tion one. However, if the body of the train blocks every path between the locomotive
and the target, we must find a long enough path inside the network so that the whole
train can be “stored” in it, thus freeing a path for the locomotive to go to the target. It is
well-known the LONGEST PATH problem is N P -complete on general graphs (Garey and
Johnson, 1979) and that is a strong indication that our problem is intractable, too. Indeed,
we prove its N P -completeness by a reduction from HAMILTON PATH.

However, on some restricted graph classes the problem is solvable in linear time.
There is an obvious trivial algorithm for trees. We propose a linear-time algorithm for the
said problem on cactus graphs.

2. Background

2.1. Graphs

We consider undirected graphs without multiple edges or self loops. Let G = (V, E) be
a graph. To delete a vertex u from G means to transform G into G′ = (V \ u, E \ {e ∈
E | u ∈ e}). We write G′ = G − u. If the vertex set of a graph G is not named explicitly
we denote it by V (G). Likewise, E(G) is the edge set. To remove an edge (u, v) from
G means to transform G into G′ = (V, E \ {(u, v)}). The result of the edge removal
operation is denoted by G − e. For any vertex u ∈ V (G), by N(u) we denote the set of
all vertices adjacent to u.

A path in G is a sequence p = u0, e0, u1, e1 . . . en−1, un, for some n � 1, of al-
ternating vertices u0, u1 . . . un and edges e0, e1 . . . en−1 such that for 0 � i < n,
ei = (ui, ui+1). u0 and un are called the endpoints of p, and the remaining vertices
are the internal vertices of p. The length of p, denoted by |p|, is n. The set of the vertices
of p is denoted by V (p).

Algorithmic Results on a Novel Computational Problem 63

If all vertices in a path are distinct, the path is simple. When we say general path
we mean a path that is not necessarily simple. If p is a path such that the only repeating
elements are u0 = un and n � 4, we say p is a cycle. The length of a path or a cycle z

is the number of edges in it and is denoted by |z|. For any two vertices u, v ∈ V (G),
the distance between u and v, denoted by dist(u, v) is the length of a shortest path
with endpoints u and v in G. If there is no path between u and v then we define that
dist(u, v) = ∞. For any vertex u and cycle s, the distance between u and s is the length
of a shortest path connecting u to a vertex from s; we denote that by dist(u, s).

When we consider a path or cycle we actually think of the subgraph that has those ver-
tices and edges, rather than some concrete description such as u1, e1, u2, e2 . . . en−1, un.
A path and its description are conceptually different objects, and likewise with cycles.
Any simple path of length � 1 has two different descriptions and any cycle of n � 3 ver-
tices has 2n different descriptions. Let us think of cycles as subgraphs. An arc in a cycle
s is any path p such that the vertices and edges of p form a contiguous sequence in some
description of s.

Since we do not consider multi-graphs, we define paths and cycles by listing only the
vertices and not the edges.

2.2. Trains in Graphs

A train in a graph G is a simple path p = x0, x1 . . . xq in G. There is a direction associated
with the train: the leftmost vertex x0 in its description is considered its first vertex and we
call it, the locomotive. The vertices of G are partitioned into occupied and free, the former
ones being precisely the vertices that belong to the train. An elementary move of the train
is transforming it into another path p′ = x′, x0, x1 . . . xq−1 where x′ is a vertex such that
x′ ∈ N(x0) and x′ is free before the move. The move is considered instantaneous. After
it, vertex xq is free and x′ is occupied. The target is some vertex ω ∈ V (G) that may or
may not be free initially. There is precisely one train in any graph we consider.

So far we have defined “train” as a temporary object being identified with its current
position – after any move, the train is a different object. However, it is helpful to think of
the train as permanent object whose current position is just one of its attributes.

The following two definitions are relative to some concrete position x0 . . . xq of the
train. For any β ∈ V (G), a β-trajectory is any general path p = x0, x1 . . . β such that
the locomotive can reach β by moving along p. For any free vertex v, a v-free path is any
simple path p with one endpoint the locomotive and the other endpoint v such that all its
vertices at that moment, except for the locomotive, are free. A zero-length path in which
the locomotive coincides with v is considered v-free, too. When we say simply a free
path we mean an ω-free path; of course, ω must be a free vertex, unless it coincides with
the locomotive.

The goal is to compute whether a ω-trajectory exists, in the decision version of the
problem, or to compute an ω-trajectory of minimum length, in the optimization version.
It is important to realize that initially there can be no free path and yet there can exist an
ω-trajectory. If a free path exists initially the answer to the decision problem is trivially

64 M. Markov, K. Manev

Fig. 1. There is an ω-trajectory although initially the train blocks all its possible paths to ω.

YES. Figure 1(a) depicts a graph and a train in it. The train is drawn with a thick gray
line and the locomotive is where the arrow tip is. Initially, there is no free path. However,
the train can get into the position shown on Fig. 1(b). Now there is a free path outlined by
a dashed line. Clearly, the locomotive can reach the target along the free path (Fig. 1(c)).

Note that if the length of the train is zero, i.e., if the locomotive consists of a single
vertex-locomotive, the problem becomes the SHORTEST PATH problem, which is a very
well-studied problem. Therefore, we assume the train is always longer than zero.

2.3. Cactus Graphs

A cactus graph, shortly cactus, is a connected graph G in which every edge is in at most
one cycle. The edges of G are partitioned into tree edges and cycle edges, the former
being the ones that are in zero cycles. For any cycle s in G, the constituents of s are the
connected components of G left after the removal of all edges of s. For each vertex u ∈ s,
the u-constituent of s is the constituent that u belongs to.

Let v be any vertex of G. Let G1, . . . , Gt be the connected components of G − v. Let
v1, . . . , vt be new vertices. We are going to use each of them as a replacement of v in
precisely one of G1, . . . , Gt. For each Gi, 1 � i � t, let G′

i be Gi plus vertex vi plus
the one or two edges that used to connect v to vertices from Gi; now these edges connect
vi to those one or two vertices. Finally, rename vi to v in all G′

i. The renaming does not
mean we identify all vi vertices. It means we get t connected graphs, each having a vertex
with name v. We say that G′

1, . . . , G′
t are the fragments of G relative to v.

3. Intractability Results

Let us recall the formal definitions of two computational problems first: the newly in-
troduced TRAIN IN A GRAPH in its decision version and a version of the the classical
HAMILTONIAN PATH (Garey and Johnson, 1979, pp. 60).

Algorithmic Results on a Novel Computational Problem 65

Computational Problem TRAIN IN A GRAPH

Generic Instance: Undirected graph G, a train in it, a target vertex ω

Question: Is there an ω-trajectory in G? �

Computational Problem HAMILTONIAN PATH BETWEEN TWO POINTS

Generic Instance: Undirected graph G, vertices u and v in G

Question: Is there a Hamiltonian Path in G with endpoints u and v? �

For brevity we call the latter problem simply HAMILTONIAN PATH. It is N P -complete
just as the common version of the problem (Garey and Johnson, 1979, pp. 60).

Theorem 1. TRAIN IN A GRAPH is N P -hard.

Proof. The notation “∝” stands for “Karp-reduces to”. We prove that HAMILTON PATH

∝ TRAIN IN A GRAPH. Assume G, u, v is an instance of HAMILTON PATH. Let |V (G)|
be n. Let Z = {x, z0, z1 . . . zn−1, ω} be a vertex set such that Z ∩ V (G) = ∅. Let G′ =
(V ∪Z, E′), where E′ = E∪ {(z0, z1), (z1, z2) . . . (zn−3, zn−2), (zn−2, v), (v, x), (x, u),
(v, ω)}. Let x, v, zn−2, zn−3 . . . z1, z0 be a train in G′ with x as the locomotive. The
length of the train is n − 1. Let ω be the target in G′. We constructed an instance of
TRAIN IN A GRAPH. Figure 2 illustrates our construction. The original graph G is drawn
with solid lines while the added vertices are black and the added edges are drawn with
dotted lines.

We claim there is a Hamilton path with endpoints u and v in G iff there is an ω-
trajectory in G′. Assume there is a Hamilton path p in G with endpoints u and v. As
|V (G)| is n, |p| = n − 1. Of course, initially there is no free path in G′ but let the train
move along p until the locomotive is at some vertex w ∈ N(v). Since the train’s length

Fig. 2. The construction for the Karp reduction in Theorem 1. The original graph is G and the vertices u and
v are in it. To G we add the vertices z0, . . . , zn−2, x, and ω, plus the dotted edges, obtaining G′. In G′ we
construct the train indicated by the thick gray line.

66 M. Markov, K. Manev

is n − 1, it is obvious at that moment the other endpoint of the train is at x and thus v is
a free vertex. With two elementary moves the locomotive reaches ω.

Now assume there is a way for the train to reach ω, starting at the described initial
position. Clearly, the ultimate move for the locomotive is from v to ω and the penultimate
one, from some vertex w′ ∈ N(v) to v. In order the train to make that penultimate move,
it must be the case that v is free. However, in order v to be free at that moment, at the
initial moment there has to be a simple path p′ of length � n − 2 in G; furthermore, v

cannot be in p′. Obviously p′ is a Hamilton path between u and some vertex w′ ∈ N(v)
in G − v. It follows immediately that p′, v is a Hamilton path in G. �

Theorem 2. TRAIN IN A GRAPH is in N P .

Proof. Unlike plenty of other N P -completeness proofs, the fact that this problem is
in N P is not obvious. A natural choice of certificate is an ω-trajectory. However, the
trajectory is a general path so it is not immediately obvious its length is polynomial in the
input size.

We prove that for every YES-instance of TRAIN IN A GRAPH, there exists an ω-
trajectory such that no vertex appears more than twice in it. Assume we are given an
YES-instance of TRAIN IN A GRAPH, the graph being called G and the train, x0, x2, . . . ,
xq with the locomotive at x0. Let X = {x0, x1 . . . xq }. If there exists a free path initially,
the claim is obviously true. Assume there is no free path initially. However, since this is
a YES-instance, there is an ω-trajectory p that the locomotive moves along. If all vertices
of p are unique, we are done with the proof. Assume there are repeating vertices in p.
Think of p as a string of vertex names with x0 at the left end. Let the leftmost repeating
vertex in that string be α. That vertex α is the first vertex that the locomotive “sees” for a
second time as it moves along p.

Now consider the moves of the train from its initial position until the locomotive hits
α for the first time, moving along p. If at any moment during that sequence of moves
there appears a free path, let the locomotive abandon the movement along p and instead
follow the free path to ω. In this case there are no repeating vertices in the overall path
the locomotive follows from its initial position to α.

Otherwise, consider the moment the locomotive gets to α for the first time. Clearly, the
sub-path of p between the first and the second appearance of α inclusive forms a simple
cycle s. Let the sub-path of p between x0 and the first α exclusive be called p1:

p = x0︸ ︷︷ ︸
p1

α︸ ︷︷ ︸
noαhere

α

︸ ︷︷ ︸
s

.

Note that s and p1 are vertex-disjoint because by construction α is the first repeated vertex
during the movement of the train.

Relative to the initial moment, let y be the following vertex. If ω �∈ X \ {x0} then
y is any vertex from X such that at the initial moment there is a path p2 between ω

and y that consists of free vertices, except for y. As G is connected, such an y exists. If

Algorithmic Results on a Novel Computational Problem 67

Fig. 3. The two possible placements of ω and the initial train, the latter drawn with a thick gray line. p3 is the
subpath of the initial train between y and the locomotive. p4 is the subpath of the initial train between y and
xq .

ω ∈ X \ {x0} then y = ω. Note that it makes no sense to consider the case ω = x0.
The two said possibilities for y are shown on Fig. 3. Let p3 be the subpath y . . . x0 of
the the initial train. If ω is not a train vertex (Fig. 3(a)) then p3 can be as small as the
single vertex x0. Otherwise (Fig. 3(b)), p3 cannot coincide with x0. Let p4 is the subpath
xq . . . y of the initial train. Clearly, V (p3) ∪ V (p4) = X .

To complete the proof, first assume V (s) ∩ (V (p2) ∪ X) = ∅ (see Fig. 4(a)). Let
the train move along p until the locomotive reaches α for the second time (Fig. 4(b)).
At this moment, the path that consists of p1, p3, and p2, in that order, is now free so the
locomotive can reach ω along it.

Now assume V (s) ∩ (V (p2) ∪ X) �= ∅. That overlap can be complicated as illustrated
by Fig. 5(a). Whatever the overlap pattern is, clearly there exists a vertex z ∈ V (s) ∩
(V (p2) ∪ X) such that there are no vertices from s that are between z and ω along the
path union of p2, p3 and p4. On Fig. 5(a) the said overlap is only in p3 and p4 and vertex
z is in p4. The moment when the locomotive reaches z (see Fig. 5(b)) there is a free path.
So the train abandons p and starts moving along that free path towards ω. �

COROLLARY 1. TRAIN IN A GRAPH is N P -complete. �

4. A Linear-Time Algorithm on Cactus Graphs

4.1. The Precomputing and the Algorithm

Although TRAIN IN A GRAPH is N P -complete, it is still solvable by efficient algorithms
on restricted graph classes. The solution on trees is trivial: root the tree at the vertex where
initially the locomotive is and use any algorithm for tree traversal to find out if ω and the
body of the train are in the same subtree relative to the root. If yes, the answer to the
decision version is NO, else it is YES. In the latter case, the answer to the optimization
problem is the length of the unique path between the root and ω.

68 M. Markov, K. Manev

Fig. 4. If s is disjoint with both p2 and X , the train can use s to make a U-turn. After the U-turn there is an
obvious free path.

Fig. 5. s has common vertices with V (p2) ∪ X . s is drawn with thick black line.

Algorithmic Results on a Novel Computational Problem 69

Now assume the graph is a cactus graph. The cycles that are long enough so that the
train can make a U-turn are of special importance. Informally speaking, the train can
make a U-turn using cycle s iff it can enter s via some vertex u ∈ s, move only along s

in either direction and exit the cycle via u. In order to accomplish that, the train’s length
must be smaller than |s|, otherwise u will not be free when the locomotive attempts to
make the exit. It is clear that because of the nature of cacti, namely that cycles can have at
most a vertex in common, any cycle is either long enough and the train can make the U-
turn using it and no other cycles, or the cycle is useless with respect to making a U-turn.
The cycle s cannot be of partial help for the U-turn: if the train exits s through a vertex
that is not u, it has to leave s completely and make the U-turn in another cycle. It follows
that those long enough cycles make the problem on cacti interesting. If there is none of
them, the solution is completely analogous to the solution on trees.

The following algorithm solves the optimization version of TRAIN IN A GRAPH on
cacti. Let G = (V, E) be a cactus with vertex set V = {1, 2 . . . n}, a train x0, x1 . . . xq,
and target ω. The long cycles in the cactus are all cycles of length greater than q. As-
sume the locomotive is at x0. Let PREPROCESSING be an algorithm that computes the
following.

• For every edge e ∈ E it computes whether e is a tree edge or a cycle edge.
• The array D[1 . . . n] such that ∀v ∈ V : dist(x0, v).
• In case that q > 0, a boolean value S set to FALSE iff ω, on the one hand, and

x1 . . . xq , on the other hand, are in the same fragment of G relative to x0.
• In case that q > 0 and (x0, x1) is a tree edge, assuming G′ is the connected com-

ponent of G − (x0, x1) that contains x0, the value

δ = min {2 × dist(x0, c) + |c| | c is a long cycle in G′ }.

If there are no long cycles in G′, δ = ∞.
• In case that q > 0 and (x0, x1) is a cycle edge,

− the cycle s that (x0, x1) is in,
− |s|,
− the function ψ()

ψ(u) = min {2 × dist(u, c) + |c| | c is a long cycle in Hu}

for every vertex u ∈ s. Hu is the u-constituent of s. If there are no long cycles
in some Hu then ψ(u) = ∞.

− The set U of vertices from s that are not train vertices, plus x0.
− The vertex α from s such that ω is in the α-constituent of s. A boolean vari-

able T is set to TRUE iff α is a train vertex.
− If T is TRUE, U ′ is the set of vertices u ∈ U such that the arc of s with

endpoints α and u containing x0 has length �
⌈

s
2

⌉
− q − 1.

− If T is FALSE, U ′ ′ is the set of vertices u ∈ U such that the arc of s with
endpoints x0 and u avoiding x1 has length �

⌈
s
2

⌉
− q − 1.

70 M. Markov, K. Manev

− The length m of the arc of s with endpoints x0 and α that does not contain
x1.

− ∀u ∈ U , the value arc′(u): the length of the arc of s with endpoints x0 and u

that avoids vertex x1.
− ∀u ∈ U , the value arc(u): the minimum of the lengths of the two arcs of s

with endpoints u and α.

Both U ′ and U ′ ′ are defined by differences. If the respective quantity is negative then
the set is empty. It is easy to see that PREPROCESSING can be implemented by a modified
DFS.

TRAIN IN A CACTUS G: cactus; x1 . . . xq: train in G; ω: the target
1. PREPROCESSING(G, (x0, x1 . . . xq), ω)
2. if x0 = ω

3. return 0
4. if q = 0 or (q > 0 and S)
5. return D[ω]
6. if (x0, x1) is tree edge
7. return δ + D[ω]
8. if T

9. if q � |s|
10. tmp ← min {arc′(u) + ψ(u) + arc(u) | u ∈ U }
11. else
12. tmp ← min {arc′(u) + ψ(u) + arc(u) | u ∈ U ′ }
13. tmp ← min {m, tmp}
14. else
15. tmp ← min {arc′(u) + ψ(u) + arc(u) | u ∈ U ′ ′ }
16. tmp ← min {m, tmp}
17. return tmp + dist(α, ω)

4.2. Verification

Assume that PREPROCESSING is correct. If the locomotive is at the target, the length of
the shortest trajectory is obviously 0. Line 3 takes case of that case. If the train consists of
a single vertex, namely the locomotive, the problem is the same as computing a shortest
path in an undirected graph. By assumption, the array D[1 . . . n] is stores the lengths of
shortest paths in G with respect to x0, so D[ω] is the answer (line 5). If the train is longer
than a single vertex but the target is in some fragment H relative to x0 such that x1 is not
in H (and consequently, x2, . . . , xq are not in H), the answer is again D[ω]. To see why,
note that any shortest path between x0 and ω lies solely in H , which follows from the
fact that x0 is a cut vertex; if x0 was not a cut vertex there would be only one fragment
relative to it. By assumption, S is set to TRUE by PREPROCESSING iff the target and x1

are in different fragments. Therefore, the returned value D[ω] is the correct answer in this
case, too.

Algorithmic Results on a Novel Computational Problem 71

Fig. 6. (x0, x1) is a tree edge.

In the remainder of the proof the train is longer than a single vertex and x1 and ω are
in the same fragment relative to x0. Suppose the train’s first edge (x0, x1) is a tree edge
(see Fig. 6(a)). Let G′ be the connected component of G that remains after the removal
of (x0, x1). In other words, G′ consists of all fragments relative to x0, except for the
one containing x1, being “glued together” at x0. We argue if there are no long cycles
in G′ then the locomotive can never reach the target. Indeed, suppose there are no long
cycles in G′ and consider any possible sequence of moves. If the locomotive traverses
a tree edge it only gets further from the target. If it moves along a cycle it still cannot
make a U-turn and, if it exits the cycle, it exits via a vertex different from the vertex of
entry, again finding itself even further from the target. As G is finite, at some moment
either the locomotive will be stuck in a vertex of degree 1 or in a cycle vertex of degree 2
but being blocked by the body of the train. In this case the variable δ is set to ∞ by
PREPROCESSING and therefore the returned value (line 7) is correct.

On the other hand, if there is at least one long cycle in G′, the locomotive can reach
the target. Because of the nature of cactus graphs, the locomotive has to get back to vertex
x0, with its body in G′ (see Fig. 6(b)). Now it can reach ω via a free path in G′ ′. The cost
of the solution is the length of the trajectory used to reach a long cycle, make the U-turn
and get back to x0, plus the length of the chosen free path from x0 to ω. A minimum is
obtained when both the trajectory and the free path are minimum. The minimum length
of a such a free path is the value stored in D[ω]. The minimum length of such a trajectory
is the value δ precomputed by PREPROCESSING. It follows the assignment at line 7 is
correct in the current case, too.

It remains to consider the subcase when (x0, x1) is a cycle edge. Because of the nature
of cacti that edge cannot belong to more than one cycle. We call the cycle s. It is obvious
that the overlap between the train and s is a contiguous sequence of vertices from s. If G

72 M. Markov, K. Manev

Fig. 7. (x0, x1) is a cycle edge.

Fig. 8. α is a train vertex. The body of the train at the initial moment blocks all paths between x0 and ω.

were a general graph that would not be necessarily true but it is true for cacti: either xq

is a vertex from s in which case the whole train lies over an arc of s (Fig. 7(a)), or there
is some intermediate train vertex xb, 2 � b � q − 1, such that all train vertices after xb

are in the xb-constituent – call it Gb – of s (Fig. 7(b)). We distinguish the following two
subcases. Call α the cycle vertex such that ω is in the α-constituent of s. Such an α exists
because the graph is connected. So, we distinguish the subcase when α is a train vertex
from the subcase when α is not a train vertex.

First assume α is a train vertex. Consider G (Fig. 8). If the train is longer than or equal
to the length of the cycle, there is only one way to get the locomotive to ω: use a long
cycle inside some u-constituent of s for a U-turn so that to bring the locomotive back to
the cycle, namely at vertex u, with the body of the train being in the u-constituent. An
additional limitation is that the cycle vertex u must not be one of x1, x2, . . . , xb. Figure 9
shows the train having performed the U-turn and gotten back to u. If such a u does not
exist then the algorithm must return ∞. Now note that if the case is the current one,
the variable T (line 8) has been set to TRUE on the assumption that PREPROCESSING is
correct, and further the condition at line 9 is TRUE. So, the assignment at line 10 takes
place: if such a u does not exist, the algorithm assigns ∞ to u and then returns ∞ at
line 17. On the other hand, if such a u exist, it is a vertex from U (as defined in the
description of PREPROCESSING). The overall trajectory consists four legs, as seen from
the locomotive:

• From x0 to u. There is only one choice for the direction along s. By assumption,
arc′(u) stores the length of this leg.

Algorithmic Results on a Novel Computational Problem 73

Fig. 9. The train is longer than the cycle but still there is an ω-trajectory. Using some cycle vertex u and a long
cycle c in the u-constituent, the train performs a U-turn and the locomotive is again at u – see the dashed line.
Now the body of the train does not block the paths between x0 and ω.

• From u via c, making the U-turn, and back to u. By assumption, that is the value
ψ(u).

• From u to α. There are two choices for the direction along x, corresponding to the
two arcs of s with endpoint u and α. By assumption, arc(u) stores the minimum
of their lengths.

• From α to ω.

The last leg is independent of the choice of u and its contribution to the length of
the overall trajectory is the dist(α, ω) term at line 17. The sum of the other three legs
depends on the choice of u and therefore seeking the minimum at line 10 is the correct
thing to do.

Now suppose that α is a train vertex and the train is shorter than the cycle. In this
case the train does not have to perform a U-turn necessarily. If it just goes along the cycle
there will be a free path at the moment the locomotive is in N(xb). It follows that now
we always have a solution that is at least m + dist(α, ω) (recall the definition of m in the
description of PREPROCESSING), as shown on Fig. 10. It is guaranteed that the moment
before the locomotive gets at α, vertex α will be free.

However, that is not the only way to reach the goal under the current assumptions.
Even if the cycle is long enough relative to the length of the train, it may still be pos-
sible to get the locomotive to α by performing a U-turn within some u-component of s

(Fig. 11(a)) and going backwards along the cycle to x1 and then to α (Fig. 11(b)). The
overall trajectory may be shorter than the trajectory that the other way round s. Note that
if using a U-turn is to be beneficial, after getting to u for the second time, the locomo-
tive should go along s in the opposite direction to the one before – if it goes in the same
direction as before, the U-turn maneuver is just a useless detour (Fig. 11(c)).

74 M. Markov, K. Manev

Fig. 10. The train is shorter than the cycle. One way to reach the goal is to slide the locomotive along the cycle
until it reaches α – see the dashed line – and then perform the obvious thing.

Fig. 11. The train is shorter than the cycle. Another way to reach the goal is to make a U-turn inside some
u-constituent.

Now consider the possible locations of that vertex u in s. Let us fix a direction on
s such that x0, α, and x1 appear in that order in that direction. On all our figures that
direction is counter-clockwise. Let the antipodal vertex of α be the vertex in s that is at
distance

⌈
s
2

⌉
away from α in the said direction. Informally speaking, it makes no sense to

choose vertex u past the antipodal vertex because if the locomotive gets to the antipodal
vertex, the best thing to do is to let it slide in the same direction along the cycle until
it hits α. Furthermore, we can improve the maximum distance from α that the potential
vertex u can be. Since a U-turn inside the u-constituent costs at least q + 1 moves, the u

vertex should not be further away from α (in the said direction) than
⌈

s
2

⌉
− q − 1. Indeed,

the definition of U ′ in the description of PREPROCESSING provides that.
Note that the u vertex cannot possibly be past xb (in the said direction). Assume the

opposite: u is past xb but before α as shown on the figure on the left. Let k, l and t be the
distances shown there. Obviously, k + l+ t = |s|. In order the U-turn in the u-constituent
to make sense, it must be the case that k + q + 1 + k + t < k + l, because it has to

Algorithmic Results on a Novel Computational Problem 75

Fig. 12. Vertex u cannot be past vertex xb in the counter-clockwise direction from x0.

more beneficial the train to go to u in the said direction (cost k), make the U-turn (at
least q + 1), go back to x1 in the opposite direction (cost k) and then go to α still in the
opposite direction (cost t), rather than go in the said direction from x1 to α (cost k + l).
But

k + q + 1 + k + t < k + l ↔ k + q + 1 + t < l ↔ k + q + 1 + t + l < 2l

↔ |s| + q + 1 < 2l

and it is impossible to be the case that |s| + q + 1 < 2l because both |s| > l and q > l;
q > l because q > |s|. It follows that u cannot be a vertex outside U , thus the definition
of U ′ as a subset of U is correct.

It remains to consider only one more subcase: α is not a train vertex. In this case the
relevant part of the algorithm is lines 15 and 16 because by assumption, the variable T

is FALSE. The locomotive can always reach ω in this case because there is an obvious
solution with cost m + dist(α, ω). Note that the assignments at lines 16 and 17 provide
the output is at most m + dist(α, ω). That value correspond to a solution in which the
locomotive slides directly from x0 to α along s. However, there may be a better way
to reach α. The locomotive can reach α from the other direction. To accomplish that,
the train has to make a U-turn using some long cycle c inside some u-constituent of s

first. That maneuver makes sense only if u is one of the vertices from U ′ ′; for any vertex
from s past U ′ ′ (in the direction away from x0, avoiding x1) it is better not to try a U-
turn even if there is a long cycle in the u-constituent. And indeed, the code at line 15
ties to find a suitable U-turn only in the constituents of vertices from U ′ ′. The addition
arc′(u) + ψ(u) + arc(u) precisely corresponds to going from x0 to u (in the appropriate
direction), making the U-turn and going back from u via x0 to α. Because u is a vertex
from U ′ ′, the shorter arc between u and α is the one containing x1. Figure 13 illustrates
the possibility we just discussed.

That concludes the proof of correctness.

4.3. Time Complexity Analysis

Let G be the cactus we run our algorithm on with n = |V (G)| and m = |E(G)|. Clearly,
m = Θ(n). PREPROCESSING runs in time Θ(n + m) because that is the running time of
DFS in general and PREPROCESSING can be implemented as a modified DFS, keeping
the running time in the same asymptotic bound. For cacti, Θ(n + m) is Θ(n). So, PRE-
PROCESSING takes Θ(n) time. The three minima at lines 10, 11, and 15 take Θ(n) time
at worst, and the other computations are constant-time. It follows TRAIN IN A CACTUS

runs in time Θ(n).

76 M. Markov, K. Manev

Fig. 13. Although α is not a train vertex initially it makes sense to perform a U-turn and then reach α “back-
wards” via the shorter cycle arch containing x0 rather then simply follow the cycle forward to α.

5. Conclusions

We have constructed a linear-time algorithm for novel computational graph problem on
a restricted graph class, the problem being N P -complete in general. Our algorithm is
relatively straightforward and easy to grasp and implement, which makes it practical.

There are numerous possibilities for future research stemming from this one. Since
cacti are outerplanars, one may try to develop fast algorithms for the same problem on
more general graph classes, for example outerplanars or even on partial 2-trees. Another
way to generalize this result is to modify the rules of the train movement, for example
letting the train gain or lose length or move bidirectionally in some circumstances.

References

Garey, M., Johnson, D. (1979). Computers and Intractability. W.H. Freeman and Co.
Pankov, P. (2008). Naturalness naturalness in tasks for olympiads in informatics. Olympiads in Informatics, 2,

115–121.
Torii, R. (2008). Path transferability of graphs. Discrete Mathematics, 308(17), 3782–3804.
Tutte, W.T. (1998). Graph Theory As I Have Known It. Oxford University Press, Inc.

Algorithmic Results on a Novel Computational Problem 77

M. Markov is an assistant professor of discrete mathematics and algo-
rithms at Sofa University, Sofia. Bulgaria, PhD in computer science.

K. Manev is a professor of discrete mathematics and algorithms at
New Bulgarian University, Sofia, Bulgaria, PhD in computer science.
He was a member of Bulgarian National Committee for olympiads in
informatics since 1982 and president of NC from 1998 to 2002. He was
member of the organizing team of IOI 1989, IOI 1990, vice president
of IOI 2009 and a leader of Bulgarian team for IOI in 1989, 1998, 1999,
2000 and 2005. From 2000 to 2003 he was elected member of IC of IOI,

since 2005 to 2010 represented in IC the Host country of IOI 2009, and during IOI 2010
was elected as a member of IC of IOI again for the period 2010–2013.

