
Olympiads in Informatics, 2013, Vol. 7, 55–60 55
© 2013 Vilnius University

Computer Maintenance via Batch Execution

Martin MAREŠ ∗

Department of Applied Mathematics, Faculty of Mathematics and Physics
Charles University in Prague
Malostranské nám. 25, 118 00 Praha 1, Czech Republic
e-mail: mares@kam.mff.cuni.cz

Abstract. Organization of programming contests often involves maintenance of hundreds of com-
puters. While parallel installation of operating systems is a well understood problem, further main-
tenance of installed systems is often cumbersome. We present a simple, yet powerful batch pro-
cessing system, which makes this task easier.

Key words: cluster maintenance, batch processing.

1. Introduction

Large programming contests, like the International Olympiad in Informatics, ACM ICPC,
or many regional competitions often involve hundreds of computers. Some machines
are used directly by the contestants, while the others work behind the scenes as contest
servers or worker nodes of a grading system.1

The whole infrastructure is usually set up for the duration of a single contest. Within
a couple of days, the computers need to be installed and configured for their intended
roles. During the contest, further administrative actions have to be performed: distribution
of files related to contest tasks, fixing of minor bugs, pro-active checking for hardware
problems, and so on.

Generally speaking, administration of the contest network is similar to that of a com-
puter cluster. We will follow the terminology commonly used for clusters and call an
individual computer a node of the system. Unlike a typical cluster, our nodes can act in
different roles, so it will be useful to divide them to groups such that all nodes within
a group are handled in the same way.

Parallel installation of software to multiple nodes, including the operating system, is
a well understood task. The nodes can be booted via network (e.g., using PXELinux by
Anvin et al. (2013)) and execute an automatic installation script. Then the software can
be installed package by package, for example by a tool like FAI (Lange et al., 2013).
Alternatively, a full disk image can be copied. The latter approach is less flexible, but it

*Partially supported by the Center of Excellence – Institute for Theoretical Computer Science, Prague
(project P202/12/G061 of the Grant Agency of Czech Republic).

1For a description of a typical contest system, please see Mareš (2009) or Maggiolo and Mascellani (2012).



56 M. Mareš

can be significantly faster if a multicast-based or tree-based distribution protocol is used
(see Knaff et al. (2012) or Mareš et al. (2009)).

Management of already installed nodes is a more complex problem. A part of its com-
plexity lies in the ad-hoc nature of maintenance tasks. It is therefore hard to find a general
framework where all such tasks fit. On the other hand, most tasks can be expressed as shell
commands. There are multiple tools for running shell commands in parallel on a group
of nodes. A typical example is ClusterSSH by Fergusson (2010): it opens one terminal
window per node, the user then types commands in a master window and the keystrokes
are broadcast to the other windows.

ClusterSSH is easy to use, but it has several drawbacks. First, it is hard to express
tasks, which need to be applied conditionally, depending on the state of the node. More
importantly, it fails when a node is inaccessible due to a temporary hardware or software
problem. With an increasing number of nodes, the probability that there is a faulty node
converges to 1. We need to save the failed commands and repeat them later, when the
node recovers.

These problems have led to development of complex configuration engines – most
notably GNU cfengine (Burgess, 1995) and Puppet (Puppet Labs, 2013). They are given
a declarative description of the intended state of the cluster (which packages should be in-
stalled where, which user account should exist, etc.). The engine then periodically checks
if the nodes conform to the description and attempts to fix any discrepancies.

This approach is robust with respect to software and hardware failures. It also makes
repeated administrative tasks (e.g., installation of software packages) easy, as long as
a parametrizable template can be written. On the other hand, one-of-a-kind tasks take too
much effort to declare and the complexity of the engine makes failures unnecessarily hard
to diagnose.

We have designed and implemented a new cluster management tool, built upon queues
of batch jobs. It retains the straightforward simplicity of shell-based tools, but hopefully
eliminates most of their drawbacks.

In the following sections, we describe the data model of our system. Then we discuss
operations defined on the model and their reference implementation.

2. Data Model

The data model used by our system consists of multiple instances of two simple building
blocks: jobs and queues.

2.1. Jobs

A job is an abstraction of an action, which can be executed on a node. Each job has
a header and a body.

The body of the job is a script to be executed – by default, it is a shell script, but other
interpreters, like Perl or Python, can be used.



Computer Maintenance via Batch Execution 57

The header is a collection of job attributes, written as arbitrary key/value pairs. The
attributes can influence handling of the job. The basic attributes include:

• ID – a unique alphanumeric identifier of the job. If unspecified, the identifier is
generated automatically, but jobs can be also given meaningful names.

• Subject – a one-line textual description of the job, intended to make lists of jobs
comprehensible.

Execution of a job on a node consists of three phases:

• Preparatory phase: the body of the job is transferred to the node, possibly wrapped
in a common prolog and epilog code (outside obvious use for initialization and
cleanup, the prolog can also serve as a library of functions available to all jobs).

• Running phase: The script is run on the node, either within a terminal or non-
interactively, depending on system configuration.

• Cleanup phase: The files related to the job are removed from the node.

Additionally, each job can request special handling in the preparation and cleanup
phases. The attributes of the job can include shell commands to be run in these phases.
The job can also specify its attachments – extra files uploaded to the node in the prepara-
tory phase, available to the job during its execution in its current working directory, and
removed in the cleanup phase.

Let us consider possible failure modes. A job can fail in the preparatory phase, in
which case we just abort its execution (and optionally run the cleanup phase to remove
all traces of the job). If a cleanup fails, the remnants of the job have to be removed
manually (or by retrying the cleanup later). When running the job fails, we cannot be
sure which part of the job was completed; it is even possible that the whole job was run,
but the connection broke before the information about completion was transmitted. In
all such cases, the execution of the job can be retried later. Because of that, all jobs are
generally expected to be idempotent.

2.2. Queues

Scheduling of jobs on nodes is represented by queues. Each queue keeps its own set of
jobs and known nodes. For each node, some of the jobs can be enqueued (scheduled for
execution).

The jobs can be assigned to nodes individually, but it is more common to enqueue
a job on a group of nodes. Groups are defined in the configuration of the system; each
group contains a set of nodes and possibly includes other groups. When a job is enqueued
on a group, the group is immediately expanded to its constituent nodes.

Later, a queued job is executed. The result of the execution is recorded in a status
file. If the execution was successful, the job and its status file are moved to an archive of
historic jobs. Otherwise, the job is kept in the queue and its status reported.

For each host, the queued jobs are naturally ordered by their identifiers and usually
executed in this order. As the automatically generated IDs are based on timestamps, the
jobs are by default executed from the oldest to the newest. However, applications requir-
ing specific order can issue specific IDs.



58 M. Mareš

Generally, all jobs in the queue can be executed simultaneously, but this is seldom
welcome. The queue therefore specifies a locking model, which restricts the degree of
concurrency. The default model forbids multiple parallel jobs on the same node, but par-
allelism between nodes is allowed.

3. Implementation

We have written a reference implementation of our queueing system. It was developed on
Linux and it should run on all POSIX-compliant operating systems. It is available from
http://mj.ucw.cz/sw/bex/ and it can be distributed under the terms of the GNU
General Public License.

The implementation is written in the Perl language in a spirit similar to the Git revi-
sion control system (Hamano and Torvalds, 2013). It consists of a core library, a driver
program bex, which parses arguments and passes control to different subcommands,
each handling one type of operations.

The whole program runs on one node, designated as the master of the cluster. It com-
municates with the other nodes via the Secure Shell protocol (SSH), leaving all the intri-
cacies of authentication and encryption to it. No special software is required on the other
nodes, except for basic system tools.

The following basic operations are supported:

• bex qman – manage queues: list available queues, or add a new one.
• bex add – add a new job and enqueue it on a set of nodes and/or groups. The

job can be created either interactively in a text editor, or completely specified by
command-line options. It is also possible to take a job which was already completed
and re-queue it for repeated execution.

• bex queue – inspect a queue. Shows jobs in the queue, together with their status.
The listing can be filtered to show only specific jobs, specific nodes or for exam-
ple jobs whose execution failed. Additionally, jobs can be removed or moved to
a different queue.

• bex run – run jobs sequentially. Takes a queue and runs all queued jobs one after
another. Again, the set of jobs can be limited to a subset of nodes, or a specific job.
Job locking rules are respected, so it is safe to run multiple instances of bex run
simultaneously.

• bex prun – run jobs in parallel. Takes a queue and runs all queued jobs, as many
at a time as allowed by the configuration. Locking rules are again respected (in
fact, bex run is run internally to handle the low-level details). Current status of
all nodes and jobs is shown on a status screen.

All jobs are allowed to be interactive, i.e., require a controlling terminal. When we run
jobs sequentially, they inherit the terminal from which bex run was started, tunnelled
via SSH. Parallel execution employs a terminal multiplexer to create a virtual terminal for
every running job. An obvious choice is GNU Screen (Chowdhury et al., 2013), but we
were unable to create new virtual terminals on the background, which made interaction



Computer Maintenance via Batch Execution 59

with the parallel execution almost impossible. We therefore use tmux (Marriott et al.,
2013) instead, whose design is less convoluted and which has much better remote control
capabilities.

4. Conclusion

We have designed and implemented a new cluster management tool, based on parallel
batch scheduling. The tool is very simple, but several years of experience with its use
have confirmed that it is very effective. We have been using it to manage a network of
about 60 computers at our department and also to manage contest systems at several
programming competitions we organize.

The implementation should scale well to hundreds of nodes. The only problem we
are aware of is the layout of the status screen in bex prun, which may become hard to
read; this however does not impact running of the jobs and furthermore it should be easy
to fix.

With an increasing number of nodes, SSH connections could become a bottleneck.
Experimental results show that this is not an issue as long as the jobs are reasonably
small. If huge attachments are needed, the performance can be limited not only by SSH,
but also by the bandwidth of the network interface of the master node. Such cases can be
worked around by using a clustered filesystem to distribute the files. A more systematic
fix, which should not be hard to implement, could be to allow multiple instances of bex
prun running on different master nodes and sharing a queue.

In the future, it could be useful to replace ID-based ordering of jobs by a full system
of dependencies between jobs. This would allow parallel execution of independent jobs
on one node, or operations like “requeue a job together with all dependent jobs”. It would
also lead to better handling of errors.

References

Anvin, H.P. et al. (2013). The Syslinux Project. http://www.syslinux.org/
Burgess, M. (1995). A site configuration engine. USENIX Computing Systems, 8(3). Available from

http://www.iu.hio.no/cfengine/
Chowdhury, S.H. et al. (2013). GNU Screen. http://www.gnu.org/software/screen/
Ferguson, D. (2010). Cluster SSH. http://clusterssh.sourceforge.net/
Hamano, J., Torvalds, L. et al. (2013). Git Revision Control System. http://www.git-scm.com/
Knaff, A. et al. (2012). Udpcast. http://www.udpcast.linux.lu/
Lange, T. et al. (2013). FAI – Fully Automatic Installation.

http://fai-project.org/
Maggiolo, S., Mascellani, G. (2012). Introducing cms: a contest management system. Olympiads in Informatics,

6, 86–99.
Mareš, M. (2009). Moe – design of a modular grading system. Olympiads in Informatics, 3, 60–66.
Mareš, M. et al. (2009). The Shcp Tool, Part of the Sherlock Holmes Search Engine.

http://www.ucw.cz/holmes/
Marriott, N. et al. (2013). TMUX. http://tmux.sourceforge.net/
Puppet Labs (2013). Puppet Open Source.

https://puppetlabs.com/puppet/puppet-open-source/



60 M. Mareš

M. Mareš is an assistant professor at the Department of Applied Math-
ematics of Faculty of Mathematics and Physics of the Charles Uni-
versity in Prague, organizer of several Czech programming contests,
member of the IOI Scientific Committee, and a Linux hacker.


