
Olympiads in Informatics, 2013, Vol. 7, 140–152 140
© 2013 Vilnius University

Informatics Everywhere: Information and
Computation in Society, Science, and Technology

Tom VERHOEFF
Department of Mathematics and Computer Science, Eindhoven University of Technology
Den Dolech 2, 5612 AZ, Eindhoven, The Netherlands
e-mail: t.verhoeff@tue.nl

Abstract. Informatics is about information and its processing, also known as computation. Nowa-
days, children grow up taking smartphones and the internet for granted. Information and computa-
tion rule society. Science uses computerized equipment to collect, analyze, and visualize massive
amounts of data. Scientific theories more and more involve computational models. Technology
incorporates computational mechanisms, even on a nano, molecular, or quantum scale, in every
imaginable product. A story.

Key words: information, computation, society, science, technology.

1. Introduction

In this article, I tell a story of why informatics is highly relevant and extremely exciting as
a scientific discipline. Of course, informatics professionals already know all this (I would
hope), but do IOI participants know this story? To develop and apply informatics further,
we need to mobilize fresh talent and bring them up to speed. IOI participants are good
candidates, but they often need some further coaxing and coaching beyond algorithms
and programming.

As the title suggests, I will touch on five areas, but do so in a different order.

Society is pervaded with informatics: information and its (automated) processing –
known as computation, in informatics lingo – are everywhere.

Information and computation: two key concepts united in informatics. No information
without computation, no computation without information.

Science is about understanding ‘the world’ as it is; information and computation turn out
to be indispensable tools for this; not only in analyzing data for scientific research,
but also in defining models and theories. Biology, even chemistry, physics, social
sciences, psychology, etc. revolve around information and computation.

Technology is about putting ‘the world’ to our use; most technological products, in-
cluding medicines, involve ways to exploit nature for dealing with information and
computation.



Informatics Everywhere: Information and Computation 141

2. Society

Society, and I mean human society in particular, has always been centered around in-
formation and its processing. Compared to other species, human beings, as individual
organisms, lack many physical characteristics – think of sheer strength, weaponry, ar-
mor, speed, camouflage – to survive among other organisms and the violence of nature.
What has made us so successful is our capacity to communicate with each other and op-
erate in organized groups. Information connects us and makes it possible to transcend our
individual limitations.

In primitives times, information mostly concerned communication about the location
of food and shelter, about danger and safety. It also concerned the tracking of human re-
lationships. Group operations require organization, which typically followed blood lines,
and a healthy population requires the avoidance of incest. Later, notions such as property,
trading, and money got institutionalized. These require administration, which at its core
concerns information. Also, farming and hunting benefit from storage and communica-
tion of information, no matter how primitive.

Information used to be handled via simple carriers, such as sounds, marks on rocks
and trees, knots in ropes, signs on clay tablets, parchment, and papyrus. Information
was known only in concrete physical forms. The development of writing systems and
subsequently of book printing meant big leaps forward. That way, it became clear that
the same language can live in diverse carriers. The information revolution was catapulted
by our ability to harness information digitally and decouple it completely from physical
carriers. That is, instead of just focusing on the physical information carriers, we are
able to view information as something abstract and not necessarily physical. Almost any
signal can be digitized and subsequently processed in the abstract digital domain. Such
digital signals can then be translated either into physical actions or signals that we can
understand. Informatics deals with information and computation in ways that abstract
from the physical carriers.

Over time, we have also discovered and developed new ways of observing the world
(sensors) and interacting with it (actuators). Information storage and processing used to
be done by persons, and was therefore slow and error-prone. Through specialized equip-
ment, the handling of information has now been automated to such an extent that, in
numerous cases, it can be delegated to autonomous man-made systems. I will elaborate
this point in Section 6.

Information is even more important to be successful nowadays than it was in the
past. Informatics can make and break a society. For individuals, the world has become
rather more complex, not so much physically, but informationally. You need the ability
to tap very diverse sources of information: in order to select proper food, health care,
and products, to deal with your finances and property, to plan your travels and navigate
the roads, to interact with the government and companies, to connect to relatives and
friends. Moreover, organizations and institutions themselves (government, military, edu-
cation, law, commerce, industry, entertainment) have become more information centered.
The internet, though primitive by some standards, has clearly made its mark. Cyberspace



142 T. Verhoeff

started as a of virtual world, but has become an integral part of our everyday reality.
This poses new problems and dilemmas, whose understanding requires familiarity with
informatics: digital ownership and copyright, privacy, identity, and (in the future) even
existence. Gleick (2011) tells more of this story.

3. Information

So, what is information? Can you deal with information without dealing with some phys-
ical carrier of that information? In one sense, information is that which reduces uncer-
tainty or, to put it differently, answers a question. The unit of information is the bit,
which represents the answer to a question with two equiprobable answers. Typically,
such an answer is denoted abstractly by the choice between a 0 and a 1. This notion of
information does not involve specific physical carriers. Physically, a bit can be repre-
sented in many ways, for instance, the direction of magnetization of a small region in
a material (such as a hard disk; soon to disappear), or the presence/absence of a pack-
age of electrons in a (semi)conductor (in your smartphone). More about this in Sec-
tion 6.

Claude Shannon developed this probabilistic information theory. If you successively
answer 100 yes/no questions where the answers are not equiprobable, you can convey the
answers in less than 100 bit (data compression). If you have a communication channel
that introduces some random errors (noise), then you can throw in a few well-chosen ex-
tra bits (redundancy) to protect against accidental loss of information (error correction).
And when you want to prevent unauthorized persons from tapping your information, you
can jumble up (encrypt) the bits to protect them against eavesdropping (cryptography).
Every imaginable piece of information, for instance, numbers, lists of numbers, text, and
pictures, can be encoded in appropriate sequences of bits. All of this is abstract, math-
ematical. In that sense, informatics is a science of the artificial (Simon, 1996), and not
a natural science (but also see Section 5). Note that there is more to information than
Shannon’s probabilistic theory of information, (Adriaans and van Benthem, 2008).

Data compression, error correction, cryptography, and encoding all involve (abstract)
operations on information. In informatics we refer to such information processing as
computation, even if the information does not involve numbers but involves text, graphics,
etc. Bits become information – get meaning – through computations that operate on these
bits and use them to make decisions. Such computations could take place in a brain or
a computer. Computation is the topic of the next section. Interestingly, even if you try
to confine yourself to the world of information, you will discover that computation can
emerge in that world. Let me illustrate that.

Consider the famous Game of Life (GoL) defined by Conway (Berlekamp et al., 2004;
Ch. 25). It is ‘played’ on an unbounded 2D grid of square cells, where each cell is in
one of two states: dead or alive (or, if you prefer bits, 0 or 1; see Fig. 1 left). Each
cell is said to have eight neighbors: two horizontal, two vertical, and four diagonal. In
the next generation, a dead cell will become alive when it currently has exactly three



Informatics Everywhere: Information and Computation 143

Fig. 1. Three successive generations in the Game of Life: a white cell is alive, a black cell dead, a diamond
marks a newly born cell, and a cross marks a dying cell.

live neighbors, a live cell dies out when it has fewer than two or more than three live
neighbors; otherwise, a cell does not change state.

Figure 1 shows three successive generations of a Game-of-Life configuration that
starts with five live cells. Going from generation 2 to 3, one sees that

• three new live cells appear (diamonds);
• one cell dies from starvation, having only one live neighbor (left cross);
• one cell dies from crowding, having four live neighbors (right cross).

You might think of this grid of bits as a pure ‘information world’, that evolves ac-
cording to a simple rule. You can experiment with the Game of Life (and similar worlds)
using Golly (Golly, 2013). It turns out to be an interesting world. In fact, it is highly
unpredictable, even though the rules are deterministic. That is, given an initial configu-
ration, there is no general way of telling how it will evolve, e.g., whether it will die out
completely, stabilize with some live cells, become periodic, or ‘explode’.

How do we know this? Because we have found out that we can exploit this ‘infor-
mation world’ to do arbitrary computations for us (Berlekamp et al., 2004; Ch. 25).
Given any computation, you can construct a Game-of-Life configuration that will sim-
ulate that computation. Figure 2 shows a configuration that ‘generates’ twin primes;
that is, it ‘searches’ for twin primes, and whenever it ‘finds’ a pair it will ‘report’ that
in a way that is recognizable from the configuration. The question whether there are
infinitely many twin primes is then equivalent to whether there are infinitely many re-
portings during the evolution of that Game-of-Life configuration. Since we do not know
whether there are infinitely many twin primes, the behavior of this configuration is not
(yet) predictable.

Anything that can be computed, can be ‘computed’ by an appropriate Game-of-Life
configuration (the Game of Life is universal). Thus, even in a pure ‘information world’
that was not designed for doing general information processing, the possibility of gen-
eral computation can emerge, provided the ‘information world’ is ‘sufficiently rich’. You
can ‘see’ the computational aspects when you put on the right kind of interpretational
‘glasses’.



144 T. Verhoeff

Fig. 2. Game-of-Life configuration to report twin primes; it starts with 3062 live cells (in white).

4. Computation

The counterpart of a pure ‘information world’ is a pure ‘computation world’. Can you
have computation without information? The lambda calculus and, even more intrigu-
ing, combinatory logic can be viewed as pure computation worlds. In lambda calculus
and combinatory logic, there are only functions, in the mathematical sense. These func-
tions take one argument and return one result, and both the argument and the result are
a function. A function of two parameters, such as add(x, y) = x + y must be treated
as a function of one parameter that returns a function of one parameter: add(x) returns
a function, say with parameter y, that adds x to its argument y. In the notation of lambda
calculus:

add = (λ x . (λ y . x + y)). (1)

A term of the form (λ x . t) is called a λ-abstraction; in it, all free occurrences of x in t

are said to be bound by the λ x.
Another term in the lambda calculus is application of function f to argument x, writ-

ten as (f x). Parentheses can be omitted under the assumption that function application
is left-associative. That is, f x y means ((f x) y), and thus add x y = x + y.

In lambda calculus, you express which functions are applied to what arguments. It
abstracts completely from the nature of the ‘data’ passed in the arguments, like passing
around envelopes without ever opening them. Only a few rules are needed to define the
meaning of lambda terms. In particular, there is β-reduction, that defines the effect of



Informatics Everywhere: Information and Computation 145

applying a λ-abstraction (λ x . t) to a term u:

(λ x . t) u = t[x := u], (2)

where t[x := u] denotes a capture-avoiding substitution: it is obtained from t by replac-
ing every free occurrence of x in t by u, ‘avoiding capture’ of free variables in u by
λ-abstractions occurring inside t (if needed, bound formal parameters inside t are sys-
tematically renamed through so-called α-conversion). The technical details are easy to
find, so we will skip them here (Moore and Mertens, 2011; Chu-Caroll, 2013).

To illustrate this shuffling of unopened envelopes, consider the following function f

defined by

f = (λ x . (λ y . (λ z . x z y))). (3)

Thus, f x y z = x z y; that is, f applies its first argument to its third and then its second
argument; it switches the roles of the two arguments of x.

The notation of lambda calculus involves formal parameters to help define how ar-
guments are used by the function. However, such explicit parameters can be avoided, by
starting with three special functions, called combinators, defined as follows.

Identityfunction : (4)I = (λ x . x),

Constantfunction : (5)K = (λ x . (λ y . x)),

Substitutionfunction : S = (λ x . (λ y . (λ z . x z (y z)))). (6)

These functions are uniquely characterized by the following properties:

I x = x, (7)

K xy = x, (8)

S x y z = x z (y z). (9)

The beautiful thing is that every lambda term can be expressed by an appropriate com-
bination of SKI combinators. For instance, function f defined above in (3) can also
defined by

f = S(S(KS)(S(KK)S))(KK). (10)

If you carefully carry out ten reductions, then you obtain (see Appendix A):

S(S(KS)(S(KK)S))(KK) x y z = x z y. (11)

The SKI combinators are basic forms of passing around empty envelopes; they suffice
to express any other form. In fact, with a bit more juggling, you can even come up with
a single combinator that can express all lambda terms. Unfortunately, I do not know of
a Golly-like program for lambda calculus.



146 T. Verhoeff

To define this pure ‘computation world’ takes a bit more effort than defining the pure
‘information world’ Game of Life. The surprising thing is that in this ‘computation world’
without data, it is possible to ‘discover’ data. In a way similar to how certain Game-
of-Life configurations can be interpreted as doing information processing, you can also
interpret certain pure functions as data values. For instance, the natural number n can be
represented by the function

n̂ = (λ s . (λ z . sn z)), (12)

where sn consists of n applications of function s. For example, the number two is repre-
sented by

̂2 = (λ s . (λ z . s (s z))). (13)

To understand this representation, it may help to think of parameter s as a successor
function that adds one, and parameter z as a zero function. The number n is represented
by a function that applies its first argument s precisely n times to its second argument z.
In a way, this definition is very practical, since the function that represents the number n

captures what it means to do something n times. These are known as Church numerals.
Other functions can be defined to operate on these ‘numbers’, such as addition:

add x y = (λ s . (λ z . x s (y s z))). (14)

In this definition of add , ‘number’ y = n̂ is used as the ‘zero’ of ‘number’ x = m̂, and
since x applies s precisely m times to that ‘zero’, it yields the function that applies s

precisely m+n times to z. hence, representing the sum m+n: add m̂ n̂ = m̂ + n. Here
is 2 + 2 in lambda calculus (see Appendix A for details):

add ̂2̂2

= {definitions of add and ̂2}
(λ s . (λ z . (λ s . (λ z . s (s z))) s ((λ s . (λ z . s (s z))) s z)))

= {four β − reductions}
(λ s . (λ z . s (s (s (s z)))))

= {definition of ̂4}
̂4

In a similar way, we can define boolean values and boolean operators. With some more
effort, we can define an if -construct, and also a loop-construct (fixpoint combinator). That
way, we have a full-blown (universal) programming language.

Any data that can be described, can be described by appropriate pure functions. Thus,
even in a pure ‘computation world’ that was not designed for general data representation,
the possibility of describing arbitrary data values can emerge, provided the ‘computation
world’ is sufficiently rich. You can ‘see’ the data values (information) when you put on
the right kind of interpretational ‘glasses’.



Informatics Everywhere: Information and Computation 147

5. Science

Science aims to understand the world around (and inside) us. Ultimately, such under-
standing could give us the ability to find out what will happen in any given situation,
that is, to predict (some aspects of) the future. For instance, whether in the next year,
a specific asteroid will hit the Earth or pass by at a safe distance. Or, whether a specific
molecular compound will be toxic or work as a medicine. Typically, scientific theories
have a mathematical basis, and predictions are obtained through computations. The de-
velopment, fine tuning, and testing of theories involves huge amounts of data. At CERN,
the Large Hadron Collider generates petabytes of data (CERN, 2013).

However, it is not this kind of informatics involvement in science that I consider fun-
damental. More interesting is that scientific theories and models themselves have be-
come more and more computational in nature. Such computational models involve sys-
tem states described by relevant information, and state changes described by computa-
tional steps on that state information. Constructing, analyzing, and applying such models
requires informatics skills. Also, the development of tools to assist in such modeling ac-
tivities belongs to the domain of informatics.

In biology, this became obvious with the discovery of the genetic code and the mecha-
nisms of self-reproduction. DNA is a carrier of genetic information, which is manipulated
(transcribed, repaired, and copied) by protein structures in cells (Verhoeff, 2010); for an
interactive challenge to write a self-reproducing program. These protein structures im-
plement information processors, that is, computations. But also other sciences became
more computational. Think of catalytic surface reactions in chemistry modeled by cellu-
lar automata like the Game of Life. In digital physics (‘it from bit’, as Wheeler phrased
it (Gleick, 2011; Wikipedia, 2013); the universe is modeled as one big computation, with
discrete information ‘particles’ as fundamental building blocks. This theme is also pur-
sued in Wolfram (2002), Rucker (2006) for a readable summary. Investigating nature is
very much like investigating the (artificial) Game of Life. Information and computation
turn out to be inherent in nature: nature is universal, in a computational sense. Thus, in-
formatics is not just a science of the artificial, but a natural science as well (Rosenbloom,
2013).

More philosophically, when it comes to contemplating the predictability of the future,
again, informatics is highly relevant. What does it mean that something is predictable?
That we have a model that enables us to deduce information about a future state, given
sufficient information about the current state. Note that it is not necessarily the case the
we can deduce the future state in full detail. To be more precise, the method for deducing
information about that future state must be effective, that is, the method must be unam-
biguously executable in finite time. And that is precisely what, in informatics, we call an
algorithm. A model is capable of predicting the future, when there is an algorithm that,
given a current state as input, outputs information about a future state. Interestingly, from
informatics, we know that for certain questions about the future of certain models, there
exist no algorithms to decide those questions. Actually, any model that is sufficiently
‘rich’ (universal, in informatics terminology) is inherently unpredictable. Furthermore,



148 T. Verhoeff

some models are such that any algorithm to predict its future necessarily runs longer than
just letting reality unfold (and bring about its own future).

This brings me to algorithmic information theory (AIT), as opposed to the probabilis-
tic information theory of Section 3. In AIT, the information content of an object (such
as a bit string), is defined as the length of a shortest program that generates the object. If
a shortest program to generate a given bit string has ‘nearly’ the same size as the object
itself, then that object is said to be random. A bit string consisting of one million zeros
is clearly not random. There is no shortcut to storing or communicating a random bit
string: you might as well store or communicate (a copy of) it. When observing the bits
of a random bit string one by one, each next bit cannot be predicted efficiently. Discov-
ery of patterns in the structure or behavior of nature is, in this sense, proof that nature is
not completely random. However, there is no inherent reason why nature would not be
random, at least in some respects. Indeed, ‘most’ bit strings turn out to be random, and
indeed many processes in nature turn out to be ‘chaotic’, that is, their behavior is highly
unpredictable.

6. Technology

Technology aims to provide artifacts that can help us live better in this world. Through
technology, we twist nature to our intent. The artifacts vary over a wide range of products,
including tools to assist in design and production. They interact with the world and with
us. Some artifacts mostly have a physical purpose, like a hammer, a bow and arrow,
a bridge, or a steam engine. Other artifacts, although physical in their construction, (also)
concern information and computation, like a planetarium, a clock, a lock-with-key, or an
abacus.

Technological artifacts somehow involve control, sensors, and actuators. Control and
sensing used to be exclusively in human hands. But this turns out to be tedious, time
consuming, costly, and error prone. Hence, there is a long history of automating the con-
trol. Initially, mechanical control mechanisms were invented and discovered, such as the
centrifugal governor on a steam engine to stabilize its operating speed, the camshaft in
a combustion engine to time the ignition, and the punched cards that controlled Jacquard’s
loom. Then, control became electro-mechanical, e.g., the rotating drum sequencers in old
telephone exchanges and dish washers.

In hindsight, control centers around information and its processing. However, early
controllers involved particular physical information carriers, and they were designed with
a focus on the physical carriers, rather than on information as an abstract concept. This
changed with the advent of electronics. Controllers became computers based on binary
logic.

We have used (and still use) all kinds of natural phenomena as information carri-
ers and processors in automated controllers (computers): electromagnetism (solenoid
relays, core memory, hard disks), electrons (vacuum tubes, radio valves, transis-
tors), photons (fiber optics), organic molecules (Adleman’s DNA computer), quan-
tum states of matter (quantum cryptography, experimental quantum gates and com-
puters). The possibility for nature to compute is an emergent property. Like the Game



Informatics Everywhere: Information and Computation 149

of Life, nature appears to be universal, when it comes to computing. For any imagin-
able computation, there is a way to ‘hardwire’ nature to do this computation. More-
over, this universality also implies that we can have programmable machines, where
we can change the computation by changing a program rather than changing the
‘wiring’. Informatics has contributed powerful programming techniques that enable us
to solve complex computational problems, thereby paling the primitive controllers of the
past.

Modern technology would be impossible without an abstract treatment of information
and its processing. A key informatics concept is the algorithm. It needs no explanation in
the IOI community, but for the general public it remains somewhat mystical. Fortunately,
informatics is slowly becoming accepted as a serious topic in general education. I can
recommend a book like (Cormen, 2013).

An overwhelming number of products nowadays contain computing devices and soft-
ware. We have fully automated factories, autonomous robots, chemistry labs on a chip,
and 3D-printers. The scale at which technology operates is shrinking: macro, micro, nano,
molecular, quantum level. Who knows what is still to come.

7. Conclusion

The basic building blocks of informatics are surprisingly simple. To describe any kind
of data, all you need is a bunch of bits, and to describe any kind of computation, all you
need is an SKI combination. Information can be studied without emphasis on computa-
tion, and computation can be studied without emphasis on information. But, in the end,
information and computation always go together.

Those basic building blocks are not convenient for practical application. Over the
years, we have acquired an awesome arsenal of algorithms and data structures to solve
many computational problems efficiently. This is well known to IOI participants. Some
limits of computability have been mapped out clearly, see for instance the challenging and
inspiring book by Hofstadter (1979), or Harel (2000), Moore+Mertens (2011), Cormen
(2013).

The power of informatics is in abstraction, also see (Verhoeff, 2011). Informatics
treats information and its processing without reference to concrete physical carriers (and
certainly not to concrete computers). In that sense, it is like mathematics, where numbers
are treated without reference to concrete physical objects. Guo (2010) defines informatics
as “efficiently implementing automated abstraction”. You might call informatics a branch
of mathematics, but informatics goes beyond mathematics: informatics automates math-
ematics.

Informatics has earned the status of a separate scientific discipline, as eloquently ar-
gued by Rosenbloom (2013). It has changed the way we look at society, science, and
technology. This concludes my story of informatics. However, the story of informat-
ics is unfinished, with numerous exciting open problems; see, for instance, (Adriaans,
2013).

I hope this article



150 T. Verhoeff

• inspires IOI coaches to broaden the view of IOI contestants on informatics,
• encourages discussion on informatics as a true scientific discipline, and
• persuades you to read some interesting literature on informatics topics.

Acknowledgments. I would like to thank Ruurd Kuiper for critically reading a draft
version of this article, and trying to keep me honest.

References

Adriaans, P., van Benthem, J. (2008). Philosophy of Information, Vol. 8 of the Handbook of the Philosophy of
Science, Elsevier.

Adriaans, P. (2013). Fundamental Problems in the Study of Information and Computation.
http://www.pieter-adriaans.com/information/fundamental-problems-in-the-
study-of-information-and-computation.html (accessed April 2013).

Berlekamp, E.R., Conway, J.H., Guy, R.K. (2004). In: Peters, A.K. (Ed.), Winning Ways for Your Mathematical
Plays, Vol. 4 (2nd edn.).

CERN. Computing. http://home.web.cern.ch/about/computing (accessed April 2013).
Chu-Caroll, M. C. (2013). Good Math: A Geek’s Guide to the Beauty of Numbers, Logic, and Computation.

The Pragmatic Bookshelf.
Cormen, Th.H. (2013). Algorithms Unlocked. The MIT Press.
Gleick, J. (2011). The Information: a History, a Theory, a Flood. Pantheon.
Golly (2013). An Open Source, Cross-Platform Application for Exploring Conway’s Game of Life and Other

Cellular Automata. http://golly.sourceforge.net (accessed March 2013).
Guo, P. (2010). What is Computer Science? Efficiently Implementing Automated Abstractions.

http://www.pgbovine.net/what-is-computer-science.htm (accessed April 2013).
Harel, D. (2000). Computers Ltd: What They Really Can’t Do. Oxford University Press.
Hofstadter, D.R. (1979). Gödel, Escher, Bach: An Eternal Golden Braid. Basic Books.
Moore, C., Mertens, S. (2011). The Nature of Computation. Oxford University Press.

http://www.nature-of-computation.org/
Rosenbloom, P. (2013). On Computing: The Fourth Great Scientific Domain. The MIT Press.
Rucker, R. (2006). The Lifebox, the Seashell, and the Soul: What Gnarly Computation Taught Me About Ulti-

mate Reality, the Meaning of Life, and How to Be Happy. Basic Books.
http://www.rudyrucker.com/lifebox/

Simon, H.A. (1996). The Sciences of the Artificial. The MIT Press, (3rd edn.).
Verhoeff, T. (2010). An enticing environment for programming. Olympiads in Informatics, 4, 134–141.
Verthoeff, T. (2011). On abstraction in informatics. In: ISSEP 2011: Proceedings of Selected Papers, on CD-

ROM. http://pubshop.bmukk.gv.at/detail.aspx?id=444. Download: http://www.
win.tue.nl/w̃stomv/publications/issep-2011-on-abstraction.pdf (accessed March
2013).

Wikipedia. Digital Physics. http://en.wikipedia.org/wiki/Digital_physics (accessed April
2013).

Wolfram, S. (2002). A New Kind of Science. Wolfram Media.

A Some Details

Here are the reductions to derive (11). Note that different reduction orders are possible.

S(S(KS)(S(KK)S))(KK) x y z

= {property (9) of S}



Informatics Everywhere: Information and Computation 151

S(KS)(S(KK)S) x (KK x) y z

= {property (8) of K}
S(KS)(S(KK)S) x K y z

= {property (9) of S}
KS x(S(KK)S x)K y z

= {property (8) of K}
S(S(KK)S x)K y z

= {property (9) of S}
S(KK x(S x))K y z

= {property (8) of K}
S(K(S x))K y z

= {property (9) of S}
K(S x) y (K y) z

= {property (8) of K}
S x(K y) z

= {property (9) of S}
x z (K y z)

= {property (8) of K}
x z y

Here is 2 + 2 in lambda calculus with all the details:

add ̂2̂2

= {definition of add }
(λ s . (λ z . ̂2 s (̂2 s z)))

= {definition of ̂2}
(λ s . (λ z . (λ s . (λ z . s (s z))) s ((λ s . (λ z . s (s z))) s z)))

= {β − reduction on underlined applications}
(λ s . (λ z . (λ z . s (s z)) ((λ z . s (s z)) z)))

= {β − reduction on underlined application}
(λ s . (λ z . (λ z . s (s z)) (s (s z))))

= {β − reduction on underlined application}
(λ s . (λ z . s (s (s (s z)))))

= {definition of ̂4}
̂4



152 T. Verhoeff

T. Verhoeff is an assistant professor in computer science at Eindhoven
University of Technology, where he works in the Group Software Engi-
neering & Technology. His research interests are support tools for ver-
ified software development and model driven engineering. He received
the IOI Distinguished Service Award at IOI 2007 in Zagreb, Croatia,
in particular for his role in setting up and maintaining a web archive

of IOI-related material and facilities for communication in the IOI community, and in
establishing, developing, chairing, and contributing to the IOI Scientific Committee from
1999 until 2007.


