
Olympiads in Informatics, 2013, Vol. 7, 3–13 3
© 2013 Vilnius University

Growing Algorithmic Thinking Through Interactive
Problems to Encourage Learning Programming

Sébastien COMBÉFIS1,3, Virginie VAN den SCHRIECK2,
Alexis NOOTENS3

1Department of Computer Science Engineering, Université catholique de Louvain
Place Sainte Barbe 2, 1348 Louvain-la-Neuve, Belgium

2École Pratique des Hautes Études Commerciales (EPHEC)
Avenue du Ciseau 15, 1348 Louvain-la-Neuve, Belgium

3Computer Science and IT in Education ASBL, Belgium
e-mail: sebastien.combefis@uclouvain.be, v.vandenschrieck@ephec.be, alexis.nootens@csited.be

Abstract. Attracting pupils from secondary schools (12–18 years old) to learn programming is not
easy. It is especially the case in Belgium where there is no or very few programming and algorithm
design courses in secondary schools. Another issue is that teachers who are in charge of computer
science courses are afraid of teaching a matter they do not feel comfortable with, especially when
they are not informatics teachers. This paper presents ILPADS, interactive learning of program-
ming and algorithm design skills, an interactive website which aims at gradually growing algorith-
mic thinking skills to lead pupils towards the learning of the Python programming language. That
website aims to serve as working material to support teachers for their computer science courses in
secondary schools. Pupils can also use the website at home to continue learning on their own. The
paper presents the interactive website and mainly focuses on the design of the ILPADS activities.
Future work includes testing the website in real classrooms and evaluating it.

Key words: algorithmic thinking, learning programming, teaching, distance learning, interactive
learning.

1. Introduction

Trying to attract more pupils to participate at the International Olympiad in Informatics
(IOI) is not an easy task. It is especially the case in countries like Belgium where there
are no or only a few computer science related courses in secondary schools (12–18 years
old). Although there are pupils that are good at programming and designing algorithms,
some of them may just ignore it and they consequently will not participate to the selection
for the IOI (Combéfis and Leroy, 2011).

Moreover, there are no or few computer science teachers in the secondary schools
of those countries where informatics is not part of the curriculum. That latter fact does
not ease the task of introducing computer science and especially programming to the
pupils. In such countries, it is even more difficult to develop and propose activities to be
organised by the teachers in their classrooms, since they do not feel comfortable with the
material to teach.



4 S. Combéfis et al.

One possible way to propose activities to pupils is through online platforms. Vari-
ous platforms, such as Pythia (Combéfis and Le Clément de Saint-Marcq, 2012), Putka
(Urbančič and Trampuš, 2012) or France-IOI (Hiron and Février, 2012) do exist but are
mainly focused on directly teaching programming. Most of the time, pupils and even
teachers do not have any idea about what is behind the word programming and the notion
of algorithm design. However, proposing online self-contained activities helps teachers
to support taught courses and provides the possibility for pupils to continue learning at
home.

Before teaching programming to pupils, it is important to develop their ability to
think algorithmically. Computational thinking (Wing, 2006), also referred to as algorith-
mic thinking (Futschek, 2006), is a key ability that can be learned independently from
programming, and that is maybe easier to introduce in secondary school. It has been de-
fined as: “the thought process involved in formulating problems and their solutions so
that the solutions are represented in a form that can be effectively carried out by an
information-processing agent” (Cuny et al., 2010).

It is possible to teach and encourage algorithmic thinking without using a computer
by proposing pen-and-paper exercises, as it is for example done in the frame of the Aus-
tralian Informatics Competition (Burton, 2010) or for the Bebras contest (Futschek and
Dagiene, 2009). The philosophy behind those concepts is that the learners do not need any
additional background than the one they have while being in their schools. Pursuing those
activities drives them towards developing algorithm design skills, but not programming
skills.

This paper proposes learning activities supported by an interactive website whose goal
is to develop algorithmic thinking amongst pupils. The activities are first designed to im-
prove the problem solving skills of the learners. They also gradually drive the learners
towards programming skills, as an embodiment of the reasoning they developed before-
hand.

Section 2 draws up related work where activities are developed either online or in
a pen-and-paper fashion, to teach algorithmic thinking to secondary school pupils without
any prior knowledge in computer science. Section 3 presents ILPADS and focuses in
particular on the design of activities, with a concrete example. It also motivates the design
according to educational sciences theories. Section 4 discusses how the approach will be
evaluated. Finally, the last section concludes the paper with some perspectives.

2. Related Work

This section presents related work on activities and tools that have been developed in or-
der to develop algorithmic thinking by pupils from secondary schools.

Algorithmic thinking is somewhat different from natural thinking. Both consist of
finding a solution to a problem, but whereas in everyday life problem solving is for hu-
mans, algorithmic thinking consists in finding a solution meant to be encoded in a com-
puter. Several abilities are part of algorithmic thinking, including analysing the problem,



Growing Algorithmic Thinking Through Interactive Problems 5

finding basic actions that are adequate and constructing the algorithm with the basic ac-
tions (Futschek, 2006).

Futschek and Moschitz have been working on activities where learners can play algo-
rithms, either virtually or by themselves (Futschek and Moschitz, 2010) or with tangible
objects (Futschek and Moschitz, 2011). Their work focuses on the fact that the concepts
of algorithmic thinking must be reduced to natural thinking for beginners. Learners are
playing algorithms themselves, acting like intelligent processors than can execute algo-
rithms. A model for learning by inventing algorithms proposed in Futschek and Moschitz
(2010, 2011) proposes activities targeted at primary schools where pupils can manipulate
tangible objects to discover the notion of algorithm. In those two approaches, the learn-
ers will not have to write an algorithm using a programming language, but will directly
play with it. The activities proposed in this paper follow the same philosophy of thinking
about algorithms by playing with them. But in this paper, the learners are driven up to
programming their algorithms.

Other activities that have as a goal teaching algorithmic thinking to pupils are the
ones proposed by CSUnplugged (Bell et al., 2009). The proposed activities cover vari-
ous subjects in computer science from numbers representation with binary numbers to
cryptography. They are meant to be organised by a trainer with a group of pupils. In op-
position to the activities proposed in this paper, the role of the trainer is essential for
CSUnplugged activities.

Finally, as already introduced, another way to teach algorithmic thinking is through
contests (Burton, 2010; Futschek and Dagiene, 2009). In those approaches, the pupils are
first confronted to the problems on their own. Teachers are not obliged to go through the
questions of the contest with the pupils afterwards.

3. The ILPADS Website

This section presents ILPADS, a website which aims at supporting the learning of algo-
rithm design skills and programming, through interactive problems.

3.1. General Presentation

ILPADS is a website that proposes a set of learning activities. Each activity has, as a main
goal, to develop the ability for the learners to solve an algorithmic problem. Activities are
centred around concrete problems and are decomposed into three stages of increasing
difficulty. At each stage, the learners get a new understanding of the problem and its
solution.

Figure 1 shows the three stages of an ILPADS activity. They are not all mandatory and
the learners can stop at any stage. However, progressing through the stages will lead the
learner towards a solution in a programming language, which is the intent in a recruiting
prospective for the selection for the IOI.

In the first stage, the learners are confronted to an interactive animation allowing them
to play with an instance of the problem. It allows them to discover the algorithm and build



6 S. Combéfis et al.

Fig. 1. The three stages composing an ILPADS activity. The stages drive the learner from the simple under-
standing of the algorithm to writing it in a programming language.

it in their mind. In the second stage, they have to concretise the algorithm they have in
their mind. They do it with an executable flowchart that can be run on an instance of the
problem. Finally, the last stage allows the learners to write a program representing their
algorithm.

In order that decomposition to be possible, the chosen problem should not be too hard.
It should indeed be ensured that the learners will get an algorithm idea during the first
stage, that is, they have a preconceived, possibly wrong, idea in their mind. The first stage
is therefore the crucial point in the design of ILPADS activities.

Each stage has a precise final objective in terms of what the learners will develop as
skills. There is also a motivation for each step, related to the utility and usefulness of the
trained skills.

1. Playing interactively on instances of the problem helps the learners understand the
problem and guides them towards an algorithm. That stage is used as a mental
gymnastics. After having played, the hypothesis is that it will be easier for the
learners to solve new instances of the same problem.

2. The organisation of the algorithm found in the first stage into steps using flowcharts
helps the learners take the algorithm out of their mind and concretise it. For the
learners, it is the first step towards programming as they have to communicate their
algorithm to the computer.

3. Finally, the learners will get to the writing of their algorithm using a programming
language. That step is somewhat the holy grail as it will take the learners from
a reasoning in their mind to a concretisation inside the computer.

3.2. Activities Design

This section presents how the different stages are implemented and what technologies are
used to support them. The description is illustrated with an ILPADS activity example that
is related to sorting algorithms.



Growing Algorithmic Thinking Through Interactive Problems 7

3.2.1. Playing Interactively
In the first stage, the learners have to be able to play with the problem to be solved.
Animations are important to provide an additional view of the problem. They help to
understand algorithms better than a traditional textual or pictorial presentation (Rodger,
1996). ILPADS activities propose interactive animations that the learners can play with.
The first stage is composed of a sequence of interactive animations that follow each other
as in a comic strip (Biermann and Cole, 1999).

The learners are first completely free to play with the animation, and then some in-
structions are given to them in order to make an algorithm appear in their minds. As they
are progressing in the story of the comics, their idea about an algorithm to solve the
problem should be growing and becoming clearer in their mind.

Figure 2 shows the first interactive animation of the comics that is used for the sorting
example. For that ILPADS activity, the learners are faced to a set of seven bottles, each
with a different weight going from 1 to 7 ounces. The learners have to sort the bottles in
increasing order of weight. To help them, they can use the provided machine which, once
set with a reference weight, will output the lighter bottles on the left, the heavier ones on
the right and the ones with the reference weight on the front.

The learners are completely free to play with that first interactive animation of the
comics, to solve the problem, that is, sorting the bottles. The learners have to put the
bottles in the right order on the result tray (not shown on the figure) and can check whether
their solution is correct or not.

Since all the bottles have distinct weights, a solution to sort them is quite easily found.
For example, the learners can successively set the machine with every value between 1
and 7, each time finding the next bottle to place on the result tray, which allows them to
find the correct ordering.

The second box of the comics goes one step further. Now, the bottles do not necessar-
ily have distinct weights. The weights are still between 1 and 7 ounces, but it may be the
case that more than one bottle has the same weight.

Figure 3 shows a possible situation where the learners have set the machine with
a reference weight of 3. Two bottles have that weight, two are lighter and three heavier.

Fig. 2. The interactive animation of the sorting ILPADS activity. With that animation, the learners can ask the
machine to group the bottles according to a reference value they chose. The goal for the learners is to sort all
the bottles in increasing order of weight.



8 S. Combéfis et al.

Fig. 3. The interaction animation of the comics for the sorting ILPADS activity. Contrary to the first interactive
animation, there may now be bottles with the same weight. The learner cannot just rely on the position in the
result tray to place the bottles.

One of the bottles weighing 3 ounce has already been placed on the result tray. The second
bottle should be placed on position 4 since there are only two lighter bottles.

The idea with the second interaction animation of the comics is to drive the learners
towards the selection sort algorithm. The learners should configure the machine with
increasing values to fill the result tray from left to right. It is of course not the only
possible solution, but the more convenient and easy to explain.

A comic strip always comes with additional textual information. Each box of the
comics is enriched with textual information, coming as real-time feedback that can appear
either when the learners check whether their solution is correct, or after any targeted
action.

For example, for the sorting ILPADS activity in the interactive animation of the
comics, the learners may get the following textual message when checking their answer:

“Congratulations, you succeeded in ordering the bottles in increasing order
of weigh. The machine has done a total of 28 weight comparisons.”

That success message adds information about the comparisons that have been done
by the provided machine. It serves as an indirect way to sensitise learners to performance
issues. For the second interactive animation of the comics, the learners may be confronted
to the following message when moving a bottle in the result tray:

“You are moving a bottle in the result tray, for the fourth time. Are you sure
you cannot avoid it?”

The goal of that message is to draw the attention of the learners on the fact that the way
they are proceeding is not necessarily the best one. Another kind of textual information
that may appear when the learners place a bottle on the result tray is:

“You placed a bottle weighing 3 ounce on position 2 but there are two lighter
bottles. Are you sure it is a correct position?”

Again, that message is used to lead the learners towards a correct solution. The added
textual information is very important to support the learning and help the learners to find
the algorithm to solve the problem. This is discussed in Section 3.3.



Growing Algorithmic Thinking Through Interactive Problems 9

3.2.2. Drawing Flowcharts
Once the learners have played with the interactive animation and have gone through the
different interactive animations of the comics, they are ready to get their algorithm out of
their minds.

The idea of that second stage is to use the same animation as the one used in the
previous stage. The difference is that learners will not be able to directly interact with
the animation. The only way to control the animation is though a flowchart they have
to design. It is essentially the same idea as the one of Scratch (Maloney et al., 2004). It
allows the user to build an algorithm visually by choosing and organising together blocks
representing instructions or control structures.

Figure 4 shows a flowchart for a correct algorithm for the first interaction animation
of the sorting ILPADS activity. There are two kinds of elements: diamond-shaped boxes
are used to make a decision and rectangular boxes represent actions. Those two kinds of
elements make it possible to represent all the basic operation of computer programs, that
is, conditionals, loops and sequences of actions.

The actions can be parametrized with values that are directly related to the interactive
animation, so that the learners can see directly the link with the animation. Moreover,
it is important that the different actions available to design the flowchart are related to
the ones the learners used during the first stage. In order to present to the learners the
different possible actions, whenever the learners are clicking on the different elements of
the interactive animation, a list of the possible actions is presented to the learners.

At any time, the learners can execute the flowchart and see directly the result on the
animation. For the learners to succeed that stage, they have to design a flowchart that can
solve any instance of the problem.

The goal of an ILPADS activity is not to directly teach learners how to use flowcharts,
how to compose the different elements or link them together. However, provided that

Fig. 4. Flowchart diagram that represents a correct algorithm for the first situation of the sorting ILPADS
activity.



10 S. Combéfis et al.

a simple flowchart example is given to the learners and since they are able to execute
them and visually see the result of the execution, it could be able to teach learners to use
flowcharts with a set of simple ILPADS activities based on very simple problems.

3.2.3. Writing Down the Program
The last stage consists of writing down the algorithm using a programming language.
That stage should be made easier by the previous stage where the learners were forced
to think carefully and structure their algorithm. During that stage, the learners will write
their algorithm with the Python programming language.

For the learners, that final stage essentially consists in translating the flowchart de-
signed in the previous stage into a Python program. To do so, Python functions corre-
sponding to the actions from the flowchart are made available to the learners. The main
goal is thus essentially to translate a flowchart to a computer program. Reaching that stage
fulfils the main goal of the ILPADS website, which is to drive the learners from thinking
in their minds up to writing their solution with a programming language.

That latter stage is supported by Pythia (Combéfis and Le Clément de Saint-Marcq,
2012) which is an online platform that can safely execute computer programs, test them
and provide intelligent feedback about their correctness.

3.3. Behind the Scene

The interactive animations are developed using the HTML5 canvas element that is used
to render 2D shapes (Smith, 2012) and Javascript that is used to animate the shapes and
to interact with the user, in order to get an interactive animation.

The animations supporting the first stage are developed completely from scratch for
each ILPADS activity. The Javascript code used to manage the interactive animation is
decomposed in functions to have a direct mapping with the basic blocks provided to build
the flowcharts. For the sorting ILPADS activity, such a function is the one executed when
the user presses on the plus button (+) to increment the reference weight.

The flowcharts are also built with the canvas element of HTML5. The flowchart itself
is represented as a linked structure whose nodes are related either to the functions defined
for the animations of the first stage, or to functions that are especially defined for the
flowcharts. An example of that latter kind of function is the one corresponding to the
remove action of the sorting ILPADS activity.

Finally, as already mentioned in the previous section, the last stage is fully supported
by Pythia. The programs written by the learners are checked thanks to the capabilities
of the Pythia. In fact, the flowcharts designed during the second stage are checked the
same way. Flowcharts can indeed be automatically translated into a Python program that
is then checked by the Pythia.

3.4. Supporting Learning and Ensuring Motivation

The objective of the ILPADS activities is to help pupils learn new skills. Two main el-
ements are at the heart of the design choice that was made for this work. The first one



Growing Algorithmic Thinking Through Interactive Problems 11

comes from active pedagogical learning methodologies supported by the learning by do-
ing motto (Dewey, 1938). By placing the learners at the heart of the learning process, and
by allowing them to play with an interactive animation, it increases their motivation and
involvement.

The second important element that plays a role in the learning process is the feed-
backs. Pupils get feedback through the interactive animations in the first stage and through
the execution of the flowcharts in the second stage. For the third stage, feedbacks are in-
tegrated within those provided by the Pythia platform. Feedbacks are also important to
lead the learners towards a correct algorithm which solves the problem.

Finally, the motivation of the learners is improved by ensuring a high level of self-
efficacy (Bandura, 1977). Self-efficacy can be raised through four factors as identified by
Bandura. First of all, success raises self-efficacy, and the ILPADS activities are driving
learners towards success, in particular through the feedbacks. The second factor that en-
hances self-efficacy is the possibility for the learners to compare themselves with other
learners in the same situation. That is possible, from the second stage where pupils have
concretised their algorithms. The learners will get the possibility to visually compare their
solutions, and for example to discuss together in class.

4. Evaluation Plan

The proposed activities have not been evaluated yet. Evaluation is important when de-
signing new kind of activities. This section briefly presents the evaluation that is going to
be done, which is clearly a future work.

The idea is to measure whether pupils that had previously trained with the ILPADS
website are advantaged whenever confronted with a new instance of a given problem. The
hypothesis is that pupils who played with the ILPADS website before do have a better
structured and general algorithm in their minds than pupils who did not get that chance.
The textual feedbacks that are brought for each interactive animation of the comics bring
that advantage.

Experiments include confronting two groups of pupils with a set of problems. The
pupils from the first group will use ILPADS and the pupils from the second one will just
have a pen and a paper. Then, both groups will be confronted with new instances of the
problem and their performance will be evaluated. Performance includes the rate of correct
answers and the time used to solve the problems. The hypothesis is that ILPADS will help
the pupils from the first group to structure the intuitive idea they have in their minds so
as to be able to apply it to new instances of a problem they previously trained on.

Another important potential issue that may be raised is that by restricting what the
learners can do with the flowcharts, it may restrict the learners’ algorithmic thinking. The
possible actions correspond to the one the learners can execute on the interactive anima-
tion in the first stage so that the only potential restriction may come from the conditions.
Analysing the solutions proposed by the second group of pupils may help the designer of
the activities to detect such missing conditions.



12 S. Combéfis et al.

5. Conclusion and Perspectives

This paper proposes the ILPADS website that can be used to support teachers to propose
computer science related courses in secondary schools. The goal of the website is to
develop algorithmic thinking through problem solving that is supported by interaction
animations. The learners are guided through three stages that develop their programming
and algorithm design skills. Finally, at the end of an ILPADS activity, learners get to
produce a solution to the problem as a computer program.

Providing online self-contained learning activities allows pupils to learn at home. This
website can be used as an incentive to learn programming and, for example, to recruit
more potential candidates for the IOI. It also helps teachers that are not comfortable with
computer science and have to propose related activities in their schools.

Future work about ILPADS includes putting the components of the different stages
altogether into one unique website. Also, developing an ILPADS activity takes a lot of
time and new activities are already being designed. One future activity is about the “Guess
Who?” game and another one is about the 15-puzzle (or Gem Puzzle) game. In addition
to the design of new activities, work has to be done to ease the practical realisation of the
two last stages that can be automated a lot, by developing an ILPADS activity creator.
Last but not least, the approach has to be tested and evaluated as described above in the
paper. More generally speaking, for a given activity, much attention has to be paid during
the design so as not to restrict and limit the learners algorithmic abilities. Perspectives
include a deeper study of how to assess whether a given ILPADS activity is well designed
or not, that is, to evaluate its quality.

References

Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change. Psychological Review, 84(2),
191–215.

Bell, T., Alexander, J., Freeman, I., Grimley, M. (2009). Computer science unplugged: school students doing
real computing without computers. Journal of Applied Computing and Information, 13(1), 20–29.

Biermann, H., Cole, R. (1999). Comic Strips for Algorithm Visualization. Technical report.
Burton, B. (2010). Encouraging algorithmic thinking without a computer. Olympiads in Informatics, 4, 3–14.
Combéfis, S., Le Clément de Saint-Marcq, V. (2012). Teaching programming and algorithm design with pythia,

a web-based learning platform. Olympiads in Informatics, 6, 31–43.
Combéfis, S., Leroy, D. (2011). Belgian olympiads in informatics: the story of launching a national contest.

Olympiads in Informatics, 5, 131–139.
Cuny, J., Snyder, L., Wing, J. (2010). Demystifying computational thinking for non-computer scientists. Work

in progress.
Dewey, J. (1938). Experience and Education. New York, The Macmillan Publishing Company.
Futschek, G. (2006). Algorithmic thinking: the key for understanding computer science. In: Proceedings of

the 2nd International Conference on Informatics in Secondary Schools: Evolution and Perspectives (ISSEP
2006), 159–168.

Futschek, G., Dagiene, V. (2009). A contest on informatics and computer fluency attracts school students to
learn basic technology concepts. In: Proceedings of the 9th World Conference on Computers in Education
(WCCE 2009).

Futschek, G., Moschitz, J. (2010). Developing algorithmic thinking by inventing and playing algorithms. In:
Proceedings of the 2010 Constructionist Approaches to Creative Learning, Thinking and Education: Lessons
for the 21st Century (Constructionism 2010).



Growing Algorithmic Thinking Through Interactive Problems 13

Futschek, G., Moschitz, J. (2011). Learning algorithmic thinking with tangible objects eases transition to com-
puter programming. In: Proceedings of the 5th International Conference on Informatics in Schools: Situa-
tion, Evolution and Perspectives (ISSEP 2011), 155–164.

Hiron, M., Février, L. (2012). A self-paced learning platform to teach programming and algorithms. Olympiads
in Informatics, 6, 69–85.

Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B., Resnick, M. (2004). Scratch: a sneak preview. In:
Proceedings of the 2nd International Conference on Creating, Connecting, and Collaborating through Com-
puting. Kyoto, Japan, 104–109.

Milková, E. (2012). Development of algorithmic thinking and imagination: base of programming skills. In:
Proceedings of the 16th WSEAS International Conference on Computers.

Rodger, S. (1996). Integrating animations in courses. In: Proceedings of the 1st Conference on Integrating
Technology into Computer Science Education ItiCSE 1996, 72–74.

Smith, M. (2012). HTML: The Markup Language (an HTML Language Reference),
http://www.w3.org/TR/html-markup/

Urbančič, J., Trampuš, M. (2012). Putka – a web application in support of computer programming education.
Olympiads in Informatics, 6, 205–211.

Wing, J. (2006). Computational thinking. Communication of the ACM, 49(3), 33–35.

S. Combéfis is a PhD Student at the Université catholique de Louvain
in Belgium and works as a teaching assistant for the Computer Sci-
ence Engineering Department. He is also following an advanced mas-
ter in pedagogy in higher education. In 2010, he founded, with Damien
Leroy, the Belgian Olympiads in Informatics (be-OI). He is now part
of the coordinating committee that is in charge of managing everything

which is related to the national contest. In 2012, he founded the CSITEd non-profit or-
ganisation which aims at promoting computer science in secondary schools and which is
in charge of organising the Bebras contest in Belgium.

V. Van den Schrieck obtained her PhD in engineering in December
2010 from the Université catholique de Louvain. She is now profes-
sor in college and provides networking training. She has always been
interested into computer science education and recently joined the vol-
unteers who are working on projects for the CSITEd non-profit organi-
sation with as a goal to promote computer science in secondary schools.

A. Nootens is studying computer science at Université catholique de
Louvain. He is now a first year bachelor student. He has worked and is
interested in web development. In particular he has a growing interest
in HTML5 and related technologies such as the canvas. Being freshly
graduated from the secondary school, he brings a fresh view about how
computer science is perceived there and is interested in developing

activities that may be used by secondary school teachers. He is also volunteering for the
CSITEd non-profit organisation, and is in particular working on the ILPADS project.


