
Olympiads in Informatics, 2013, Vol. 7, 14–22 14
© 2013 Vilnius University

An Approach to Teaching Introductory-Level
Computer Programming

Michael DOLINSKY
Department of Mathematics, Gomel State University “Fr. Skaryna”
Sovetskaya str., 104, Gomel, 246019, Republic of Belarus
e-mail: dolinsky@gsu.by

Abstract. This article describes a methodology, proposed by the author, for teaching beginners to
computer programming from scratch. The methodology is dedicated to teaching groups of students
with various levels of knowledge and motivation. The technical base of the methodology is the
distance learning system “Distance Learning Belarus”, briefly DL, created by the author.

Key words: programming, programming languages, improving classroom teaching; authoring
tools and methods, interactive learning environments, intelligent tutoring systems.

1. Introduction

Teaching to program today is very hard and interesting task. This introduction is a brief
sketch of the recent effort of researchers to make the teaching process more effective.
The author thoroughly studied the publications of the journal “Computers & Educa-
tion” because it is in accordance of the theme as well all the papers of the journal be-
ing open access. The main directions presented in the research are: interactivity of the
classes; enhancing the learning performance using personalized diagnosis; designing an
adaptive web-based learning system; analyzing effects of different types of feedback in
a computer-based learning; different methods of examination; dynamic assessment; web-
based learning; discussion forums; combining cooperative learning methods; computer-
ized tool support for software engineering education; automatic evaluation; team work;
computer simulations; developing computer skills of young children.

Interesting ideas are proposed in the articles devoted to introductory-level com-
puter programming courses by Hawi (2010), Kordaki (2010), Mouraa and van Hattum-
Janssenb (2011). These works also pointed the main problem of introductory-level
classes: the various levels of motivation and skills of the students in one class.

The author of this article has, for many years, taught introductory-level computer pro-
gramming course at the Gomel State University “Fr. Skaryna”(Belarus). The paper sum-
marizes his experience and methodology developed by him for teaching programming
which could be interesting and useful for other teachers and researchers.

The technical base of the approach is the distance learning system DL available at the
address dl.gsu.by; Section 2 presents this software tool. The site has Russian and English



An Approach to Teaching Introductory-Level Computer Programming 15

version, but essential part of the training materials is only in Russian. Section 3 gives
a general overview of the training content. Sections 4 and 5 stress on the specificity of the
theoretical and practical classes, respectively. Section 6 describes the marking scheme
for students. Section 7 explains self-managed students work. Finally Section 8 contains
conclusions.

2. Distant Learning with DL

Our DL is based on modern Internet technologies (Fig. 1). Hence it can be used for dis-
tance learning, decreasing the importance of geographical close positions between stu-
dents and teachers or study materials, as well as excluding the necessity of participation
of students and teachers in the study process at the same time. Moreover, the DL is used
successfully to increase the quality of the education process in our own university.

The system distinguishes the following kinds of users: viewer, student, tutor, teacher,
author, and administrator. The permissions of the users are increasing from viewer to
administrator. Viewer is the only kind of DL user that could be unregistered. A viewer
can only see the published results of any active or archived course. A student has access
to the theoretical lessons and related tasks and can submit problem solutions to the system

Fig. 1. Start page of DL.



16 M. Dolinsky

Fig. 2. Typical page for problem solving.

(Fig. 2). Each submitted solution is automatically tested by DL. The results of testing are
collected in a course results table. A student can see her/his own test protocol. A tutor is
nominated by a course teacher and can do part of the teacher’s work when it is assigned
to them by the teacher. A teacher has access to all test protocols and solutions of their
students as well as to create a group of their own students. The author’s role is to create
new courses, as well as to upload/change/replace theoretical materials and task sets of
their courses. An administrator controls permissions and processes at DL.

DL allows usage of multimedia presentations not only of the theoretical materials
but also of the task tests. A good example for these possibilities is the course ”English
DEMO”. The tests for students in this course contain graphics, pictures, sound and video.

DL liberates the teacher from a considerable amount of work in organization and
control of study process. In addition, DL automatically displays the current results of the
study process, stimulating the students to work hard in order to ameliorate their published
announced results.

Currently, DL is used for teaching students of mathematical department of Gomel
State University in the following courses: ”Computers and programming” (for first-year
students), ”Computer foundations” (for third-year students), and ”Foundation of comput-
ers” (for fourth-year students).

In addition, DL is actively used for studying informatics by secondary school students
(from 1st to 11th degree) as well as for preparing them for competitions in informatics
and programming. For this purpose the following training and competitive courses are
recommended: ”ACM tasks”, ”Preparing for programming contests – Profy”, ”Preparing



An Approach to Teaching Introductory-Level Computer Programming 17

for programming contests – Beginner”, and ”Introduction in informatics”.
Annually, the Gomel town round and the regional round of the national olympiad

in informatics are using DL. In addition, from 1997 to 2006 Gomel Computer Science
Week (http://www.gsu.by/gcsw/) was using DL to provide the set of contests: in
Pascal/C programming for IBM PC; in solving chess problems; in solving mathematical
problems; in digital system design; in assembler programming for microcontrollers Intel
8051/8086, Motorola 68HC05/08, Atmel AVR, Texas Instruments TMS370, Microchip
PIC.

Now we have more than 32000 registered users from 80 countries.

3. Content of Training

Here and in the following sections we will concentrate on the introductory-level com-
puter programming course that is studied by the first-year students in their first semester.
The main difficulty in such course is the enormous difference in the students’ level of
knowledge and skills. Studying informatics in a Belarus high schools is oriented mainly
to usage of computers, e.g., preparing documents with text and graphics editors, writing
e-mails and surfing in Internet. Only a few students achieve deep knowledge in computer
programming due to special lessons or individual work. The main studied programming
languages are Pascal and C++.

The learning technology in the author’s classes is based on weekly cycles. Each week
begins with a theoretical lesson, then some practical lessons follow and an examination
closes the week. The topics of the classes, arranged by months are given below:

September: Introduction to programming. Debugging. One-dimensional array (stan-
dard and non-standard algorithms).

October: Two-dimensional array. Geometry. Strings – elementary algorithms. Strings –
standard functions.

November: Strings – user defined functions and procedures. Sorting. Queue.
December: Recursion. Recurrence relations.
Most of the students are using Pascal because it is easier for novices, but the expe-

rienced students that know C++ can use it to solve the tasks. The main objective of
the course is not to teach the programming language syntax, but the fundamental knowl-
edge about basic algorithms and program development, testing, and debugging. Special
attention is paid to good structuring of programs that helps to understand easier what the
program is doing and how is doing it.

In the mentioned above topics the following concepts are considered:
Introduction to programming: data types (char, string, longint, real),

arithmetic operators (+, −, ∗, /, DIV, MOD).
Debugging: execution – line by line, to the cursor, to the end; open of watch window,

add variable to watch windows, windows control.
One-dimensional array: sum, count, maximal, minimal, operators for and while.
Two-dimensional array: rows, columns, diagonals. Algorithms for walking a two-

dimension array.



18 M. Dolinsky

Geometry: coordinates of a point, distance between two points, one-dimensional array
of the distances from point to set of points, two-dimensional array of distances between
all pairs of points of a set.

Strings: standard procedures and functions (copy, delete, insert, pos,
etc.), user defined procedures and functions.

Sorting: bubble sort, exchanging sort, counting sort.
Queue: problem of knights on a chessboard, filling fields.
Recursion, Recurrences: general knowledge and simple examples.

4. Theoretical Lessons

The quantity, as well as the quality, of the theoretical material for each topic is care-
fully selected. All necessary fundamental knowledge is presented in such way that it
can be acquired by the good students (about 1/3 of the group) within 15–30 minutes.
The remaining time of the lesson is used for working in small teams (2–3 students) on
comprehending the new knowledge and using it for solving specially chosen tasks with
ascending difficulty.

Theoretical classes are held in an auditorium, equipped with beamer, screen, mobile
notebook for the lecturer, wireless access to the university network, as well as power
supply for students laptops. Each student of the class has a computer in front of him.
These computers can be used by students as an alternative to the big screen, where the
lecturing material is projected. After the lecturing part of the theoretical lesson is finished,
students can browse the theoretical materials uploaded in the system and post questions
on the topic.

To stimulate students’ cognitive activity, from the beginning of the lecture (to be more
exact, from the break before the lecture) a team contest starts. The contest consists of set
of task on the topic with ascending difficulty. The students can discuss tasks in the teams.
They have to write programs that solve the problems and submit them for automatic
evaluation. During the contest the teacher’s screen displays the dynamically changing
table of the contest’s results. At the same time a special personal web-based learning
page is open for weak teams that help them understand the theory and to succeed in
solving some of the easier tasks of the contest. The tasks are chosen in such a way that no
team may solve all tasks (otherwise new tasks are added) and at the same time each team
can solve at least one problem (thanks to the help provided during the contest for solving
easiest tasks).

5. Practical Lessons

There are three types of practical lessons: learning lessons, common exams, and individ-
ual exams. For learning lessons students can choose one of the three possible levels of de-
creasing difficulty: individual tasks, learning tasks or preparing for learning tasks. During
the lessons of the last two types the system automatically provides to students problems



An Approach to Teaching Introductory-Level Computer Programming 19

Table 1

Numbers of main/all tasks by topics

Theme Number of main tasks Number of all tasks

Introduction to programming 28 4126

One dimension array 44 704

Two dimension array 19 430

Geometry 26 160

Strings 139 1552

Sorting 12 124

Queue 18 147

Recurrences 8 23

from a problems tree prepared for personalized instruction. “Preparing for learning” tree
contains the easiest problems in order to provide to beginners possibility to start up. The
tree is chosen instead of a sequence of tasks to provide learning more adaptive to a stu-
dent’s preparation level. Some students need more detailed explanations but for some
a less detailed explanation. If a student makes a mistake solving exercises, the system
automatically present them with the first one from the corresponding learning tree. Addi-
tionally there are the buttons “Don’t know” and “I understood” given to students for their
own navigation on the problems tree. All touched (by students) exercises get the color
(green if it solved and red otherwise), so students as well as teacher (for any student) can
analyze the learning path.

Because of the automatic delivery of problems to the students we succeed in achieving
adaptive and individual teaching of students, independent of the teaching of the others.
For each topic we have uploaded in the system small number of main tasks which are
compulsory for solving by each student and large number of additional tasks (see Table 1)
organized in tree structures. Trees of tasks are visualized when student cannot solve the
main task or some of the additional tasks.

Additional tasks could be very different by form and content. The main task always
demands student send the text of a program (in Pascal or C/C++) that solves the given
task (Fig. 2). But the additional problems are dedicated to teach the student how to write
the corresponding program if they cannot do it themself. The first type of such tasks
demands the student submit an output for given task input. The goal of such an exercise is
to provide the student with understanding what the program must do. Then the student has
to do exercises for choosing right algorithm, constructing a program with given program
lines (Fig. 3), typing the program with help from the system (Fig. 4), filling the gaps in
a program (Fig. 5), etc.

Note, that exercise in Fig. 4 gives to student essential help, highlighting by red color
mistaken letters, and by green color right letters.

Every week one of the practical lessons is dedicated to a group exam. It includes
20–30 tasks (common for all students) with various difficulties. Because the problems
are common, students have good opportunity to discuss their solutions after the class.



20 M. Dolinsky

Fig. 3. Constructing the program from lines.

Fig. 4. Typing the program with help.

Something more, for most difficult tasks special educational materials are prepared that
become available after the exam.

To combat cheating during the exams by students (where they send solutions to col-
leagues or receive solutions from them) there are individual exams. Such exams includes
10 tasks on topics taught during the semester. Each student gets their own personal set of
tasks, chosen from the problem bank randomly. Another important feature of individual
exam – it cannot be done from student’s notebook but only from a stationary computer of
the university class and in special account that has read/write permissions only on a spe-
cial empty folder in the local computer. Each student can repeat the individual exam until
they gets the needed mark.



An Approach to Teaching Introductory-Level Computer Programming 21

Fig. 5. Filling the gaps.

6. Evaluation

Evaluation of the course is built to achieve the following objectives:

• to encourage students to attend each theoretical and practical class;
• to encourage students to work hard each minute of each class;
• to make each student’s mark as objective as possible.

The final score is the minimum from the score of individual exam and the average
score earned during the semester. The average score is accumulated from marks from
theoretic examinations, practical examinations, solving learning problems, solving in-
dividual problems, bonuses and attending classes. Bonuses are assigned by teachers to
encourage students’ conscientious learning and cognitive activity. For example, bonuses
earned by a team during theoretical classes are proportional to the number of solved tasks.
Skipping classes reduces the average score.

7. Self-Managed Students Work

All theoretical and practical classes are performed on the base of the web-based e-
learning system dl.gsu.by. Beside the other functionality it gives students good oppor-
tunities for independent work. In particular, students can work off the skipped classes by
solving individual problems, problems from learning or preparing for learning sets. Es-
sential help in the independent students work is provided by the forum, where everybody
can post their own questions and get answer from other students or the teacher. In ad-
dition, the solutions of all individual problems are described in the special topic in the
forum. Links to these solution descriptions are systemized by the teacher, so it becomes
an additional bridge for passing from solving relatively easy learning problems to solving
more difficult individual problems.



22 M. Dolinsky

8. Conclusion

This paper describes the author’s methodology of teaching introductory level program-
ming course. The methodology is oriented to teaching groups of students with various
levels of motivation and preparation. An excellent technical base of the course is the
web-based teaching/learning system DL (dl.gsu.by), created with the supervision of the
author. Applying the described teaching methodology provided essential shift up in the
quality of teaching and especially in the teaching of the less prepared and motivated stu-
dents. At the same time, all other students, including the most prepared and motivated,
were also satisfied with such an approach for studying. Their opinion can be found in
the forum of the site, where all students are encouraging to answer the questions “What
you like (or dislike, or propose to change) in theoretical lessons, practical lessons and
evaluation system?”

References

Hawi, N. (2010). Causal attributions of success and failure made by undergraduate students in an introductory-
level computer programming course. Computers & Education, 54(4), 1127–1136.

Kordaki, M. (2010). A drawing and multi-representational computer environment for beginners’ learning of
programming using C: design and pilot formative evaluation. Computers & Education, 54(1), 69–87.

Mouraa, I.C., van Hattum-Janssenb, N. (2011). Teaching a CS introductory course: an active approach. Com-
puters & Education, 56(2), 475–483.

M. Dolinsky is a lecturer in Gomel State University “Fr. Skaryna”
from 1993. Since 1999 he is leading developer of the educational site
of the University dl.gsu.by. Since 1997 he is heading preparation
of the scholars in Gomel to participate in programming contests and
Olympiad in informatics. He was a deputy leader of the team of Belarus
for IOI’2006, IOI’2007, IOI’2008 and IOI’2009. His PhD is devoted to

the tools for digital system design. His current research is in teaching computer science
and mathematics from early age.


