
Olympiads in Informatics, 2012, Vol. 6, 21–30 21
© 2012 Vilnius University

FCL-STL, a Generics-Based Template Library
for FreePascal

Vladimír BOŽA, Michal FORIŠEK
Comenius University, Bratislava, Slovakia
e-mail: {usama,misof}@ksp.sk

Abstract. We present the design and usage of a new set of FreePascal units we created. These
units aim to be the counterpart of the Standard Template Library in C++. The library is already
included in the development branch of FreePascal (v. 2.7.1), and it should be a part of the stable
branch (v. 2.6.?) at some point in future. Available data structures include vectors, sets, maps (both
ordered and unordered) and more.

For many tasks used in past programming competitions there were C++ solutions that were
significantly easier to implement than any Pascal solution. Problem setters usually needed to ensure
that a reasonable Pascal solution exists. This library, once available, will mitigate the difference
between the powers of these two languages.

Key words: FreePascal, templates, generic programming, algorithm library, STL.

1. Overview

In this section we give an overview of topics related to this paper. First, we discuss generic
programming, in particular its use when creating algorithm and data structure libraries.
Next, we explore the connection between such libraries and programming contests. At
the end of this section we give an outline of the rest of the paper.

Generic Programming

In recent years the global trend in programming is towards library reuse. Modern pro-
gramming languages such as Python come equipped with an extensive set of libraries
that cover all the common needs of programmers.

One particular area contains the basic data structures and algorithms. From our point
of view, this area is special and really stands out among the others. More precisely, the one
thing that makes the data structure/algorithm libraries special is the need for a generic ap-
proach. For most other libraries the input domain is clearly defined. E.g., the regex library
processes strings, the datetime library works with timestamps, the OS library provides a
platform-independent API to access the directory structure. The situation is different with
algorithms and data structures: everybody needs to store, access and sort records, but the
content of those records and their correct comparison differ between programs. The li-
braries that provide data structures and algorithms have to be prepared to deal with this
issue.



22 V. Boža, M. Forišek

Modern programming languages deal with this issue by introducing generic program-
ming (Musser and Stepanov, 1988). The basic syntactic elements of generic program-
ming are usually called templates. A template essentially allows the programmer to use
metavariables that represent unknown types. This language construct allows the library
authors to write generic functions that can later be instantiated by a library user to work
with any suitable data type(s). For instance, the following is a simple templated version
of a swap function in C++:

template<typename T>
void swap(T &a, T &b) { T c; c=a; a=b; b=c; }

Note how the template metavariable T plays the role of an unknown type. Once you
replace T by a particular type (e.g., int), you will get a valid C++ function that swaps
the elements of that type.

The benefit of generic programming both for library authors and for library users is
obvious. First of all, it prevents unnecessary duplication of code. E.g., there is just one
sorting metafunction, instead of thousands (“a sort for lists of ints”, “a sort for arrays of
strings”, etc.). This directly reduces bloat – the resulting library is physically smaller –
and makes testing much simpler.

Finally, this approach is more versatile than traditional libraries in that it can be used
even for data types not explicitly known to the library author. The users can define their
own data types and process them using the same functions provided by the library.

Algorithm Libraries in Programming Languages; Their Use in Contests

Most of the modern programming languages come with extensive algorithm and data
structure libraries. To name a few:

C++: The Standard Template Library (STL) has all the basic data structures and algo-
rithms. (Many additional ones, e.g. including graph algorithms, are included in the
Boost libraries (Boost C++ Libraries). Note that Boost is not allowed in most pro-
gramming contests.)

Java: All basic data structures are in the Collections package.

Python: Some data structures (array-lists, dictionaries) are built-in, others are provided
in the “Data Types” and “Numeric and Mathematical Modules” parts of the Python
Standard Library.

On the contrary, no such library was available for FreePascal until now. Some data
structures, but with no consistent interface and without generic programming, were avail-
able in the component library (AVL_Tree: an AVL tree containing pointers; contnrs:
lists, stacks and queues of pointers or objects).

At programming contests this provided a clear disadvantage to contestants who use
Pascal. For instance, this is the case at the International Olympiad in Informatics (IOI)
where for many years the allowed programming languages are only Pascal and C/C++.
The lack of a standard library for FreePascal has directly influenced the choice of past



FCL-STL, a Generics-Based Template Library for FreePascal 23

competition tasks. For instance, tasks solvable using balanced binary trees were used in
the competition only if there was an alternate solution in Pascal without balanced trees,
but with the same asymptotic time complexity. (E.g., solutions that use various interval
trees fall into this category.) In addition to leveling the playing field, this library should
broaden the spectrum of suitable competition tasks for the IOI.

In the IOI Syllabus (Verhoeff et al., 2006; Verhoeff et al., 2012) most algorithms and
data structures from standard libraries have the status “not for task description”, meaning
that such concepts should not be discussed in the task statements but using them may be
necessary to solve some of the competition tasks. Here we see a direction in which the
Syllabus ought to be improved in the future: At the moment, there is no clean distinc-
tion between understanding such data structures, using their library implementation and
implementing them from scratch. The general consensus is that the first two are surely
necessary; further discussion about requiring their implementation would be helpful.

About FCL-STL

The core of the FCL-STL FreePascal library was implemented in 2010 and 2011 by
Vladimír Boža as a part of his Bachelor Thesis at Comenius University, Slovakia
(Boža, 2011). The supervisor of this Thesis was Michal Forišek. At the moment, the
library is available in the FreePascal development snapshot (Free Pascal team, 2012) in
fpc/packages/fcl-stl/.

Outline of the Paper

Sections 2 and 3 list the algorithms and data structures currently implemented in FCL-
STL. In Section 4 we provide a comprehensive table that compares the main features to
C++ STL. In Section 5 we present data from practical benchmarks of FCL-STL.

2. Library Contents – Algorithms

In this section we list and briefly describe algorithms implemented as a part of the FCL-
STL FreePascal library. If unclear about the semantics of a particular algorithm, please
refer to (Cormen et al., 2009) or an equivalent algorithm textbook. The same applies to
the next section.

Sort

Sort is a generic array sort function. Internally the implementation uses IntroSort
(Musser, 1997) – which is basically a QuickSort with a fallback to HeapSort in order
to achieve a guaranteed O(n log n) worst case time complexity.

Random Shuffle

RandomShuffle randomly shuffles the elements in an array. The time complexity is
worst case O(n), and the random distribution is uniform assuming a uniform internal
random function.



24 V. Boža, M. Forišek

Next Permutation

NextPermutation rearranges the elements in an array to obtain the next permutation
in lexicographic order and returns true. The only exception: if the input is an array
with elements in descending order, the array is reversed (to obtain the lexicographically
smallest permutation) and NextPermutation returns false.

The time complexity of a single call is O(n). More precisely, the time complexity of a
single call is linear in the number of necessary changes. Hence a full cycle iterating over
all permutations of a given n-element array runs in O(n!).

3. Library Contents – Data Structures

Vector

TVector is an array that can be resized at the end efficiently (doubling storage size
when necessary). Most important operations:

• indexing using [] in O(1);
• PushBack in amortized O(1).

Stack

TStack is a traditional stack data structure. Most important operations:1

• Push in amortized O(1);
• Top and Pop in O(1).

Queue

TQueue is a traditional queue data structure. Most important operations:
• Push in amortized O(1);
• Front and Pop in O(1).

Deque

TDeque is a deque (usually pronounced [deck], also called a double-ended queue) – a
self-resizing array that supports indexing and fast element addition/removal at both ends.
Most important operations:

• PushFront and PushBack in amortized O(1);
• indexing using [] in O(1);
• PopFront and PopBack in O(1).

1The implementations of TStack, TQueue and TDeque all use TVectors for internal data storage,
hence the amortized complexity bounds on insertions. Although there are possible implementations of stacks
and queues with guaranteed constant time complexity, this is the industry standard in other languages. For most
uses in practice the amortized time complexity does not matter, and in the remaining cases the stacks/queues
can easily be implemented as linked lists.



FCL-STL, a Generics-Based Template Library for FreePascal 25

Priority Queue

TPriorityQueue is a priority queue that allows insertion of ordered elements and
fast extraction of the maximal element. Internally the priority queue is implemented as a
binary heap. Most important operations:

• Push in amortized O(log n);
• Top in O(1);
• Pop in O(log n).

Ordered Sets and Maps

TSet is an ordered container of unique elements. TMap is an ordered associative array.
Internally, sets are implemented using left-leaning red-black trees (Sedgewick, 2008),
and maps are implemented as sets of pairs (key,value).

Most important operations:
• Insert, Find, Delete in worst-case O(log n);
• Min, Max in worst-case O(log n);
• FindLess[Equal], FindGreater[Equal] in worst-case O(log n);
• iteration over all elements in worst-case O(n);
• maps: indexing using [] in worst-case O(log n).

Unordered Sets and Maps

THashSet is an unordered container of unique elements. THashMap is an unordered
associative array. Internally, unordered sets and maps are implemented as self-resizing
hash tables, with collisions resolved by chaining.

Most important operations (assuming a good hash function is used):
• Insert, Contains, Delete in expected O(1);
• iteration over all elements in worst-case O(n);
• maps: indexing using [] in expected O(1).

(At the moment there are no pre-written hash functions, the programmer has to pro-
vide one when using a data structure with a hash table. Default hash functions for basic
types are a possible addition in the future.)

4. Comparison of Contents to C++ STL

Table 1 summarizes the correspondences between FPC-STL and the Standard Template
Library for C++. We also highlighted some algorithms and data structures that are avail-
able in C++, but are not a part of FCL-STL yet.



26 V. Boža, M. Forišek

Table 1

Correspondence between FCL-STL and its C++ counterpart

FreePascal FCL-STL C++ STL equivalent

Sort sort

RandomShuffle random_shuffle

NextPermutation next_permutation

-- stable_sort, nth_element

TVector vector

TStack, TQueue stack, queue

TDeque deque

TPriorityQueue priority_queue

TSet, Tmap set, map

THashSet, THashMap unordered_set, unordered_map

-- list

-- bitset

-- (unordered) multiset

5. Performance Tests

We made several benchmarks to test the efficiency of our implementation and to compare
it to the implementation of STL in C++. The benchmarks were of two different types,
focusing on two different topics:

• benchmarks measuring the efficiency of individual library components;
• benchmarks focusing on solving entire tasks from programming contests.

Together, the chosen benchmarks cover all relevant parts of FCL-STL. Some details on
the benchmarking environment:

• AMD Athlon(tm) II X4 640 Processor (single core used), 4 GB RAM;
• Linux version 3.2.0-24-generic (Ubuntu/Linaro 4.6.3-1ubuntu5);
• gcc/g++ version 4.6.3, switches -std=gnu++0x, -O2;
• fpc version 2.4.4-3.1 with FCL-STL, switch -O2;
• All measured times are processor times (i.e., time actually spent running the

application and executing its system calls);
• Each test was executed 10 times. The main plotted values are averages. All plots

also have error bars showing the minimum and maximum, but as the
measurements are pretty accurate, the error bars are usually invisible.

Benchmark #1: Push Back, Shuffle and Sort

In this benchmark the program creates an empty vector, inserts values 0 through n − 1
(using the push back method), randomly shuffles the vector and then sorts it. Obviously,



FCL-STL, a Generics-Based Template Library for FreePascal 27

Fig. 1. Vectors and sorting. Fig. 2. Sets and iterators.

Fig. 3. The task “poet”. Fig. 4. The task “asphalt”.

most running time is spent in sorting the random permutation. The Pascal implementation
is shown in the Appendix. Results of this benchmark for various n are plotted in Fig. 1.

Benchmark #2: Sets

In this benchmark the program creates an empty vector and pushes back n random values,
each between 0 and n − 1, inclusive. Then all of these values are inserted into a set
(effectively sorting them and discarding duplicates). Finally, the set is traversed using
an iterator and the sorted values are copied into a new vector. This benchmark tests the
efficiency of sets. The Pascal implementation is shown in the Appendix. Results of this
benchmark for various n are plotted in Fig. 2.

Benchmark #3: Task “Poet”

For this benchmark we used the task “poet” (Slovak OI, national round 2011). We want
make a poem of n couplets (two-line stanzas). For each of the n couplets we are given
multiple options. We need to pick the couplets in such a way that for each i, line 2 of
couplet i rhymes with line 1 of couplet i + 1. Also, the last line of the poem must rhyme
with the first line, making the rhymes cyclic.

The solution is to search the state space: for each possible ending of the first line of
the poem, inductively construct sets of all possible endings of last lines for couplets 1



28 V. Boža, M. Forišek

through n. To store these sets, our implementations use unordered associative arrays (i.e.,
hash sets). Results are plotted in Fig. 3.

Benchmark #4: Task “Asphalt”

For this benchmark we used the task “asphalt” (Slovak OI, national round 2011). The
goal is to find a shortest path in a 2D landscape by building roads, bridges and tunnels.
The solution is a modified version of Dijkstra’s shortest paths algorithm, using a priority
queue to achieve a better time complexity. The data structures used are: a priority queue,
vectors (and vectors of vectors), and stacks. Results are plotted in Fig. 4.

6. Conclusions

The FCL-STL library aims to become a standard algorithm and data structure library for
FreePascal. It is worth noting that nowadays this is as far as a Pascal library can go. There
is no standard for modern Pascal, and different compilers (e.g., Delphi) choose their own
syntax for all language extensions such as generics.

The benchmarks quite consistently show that the Pascal implementations tend to be
slower than their C++ counterparts approximately by a factor of 2. In our opinion, this
makes the library usable enough for many practical uses, including programming con-
tests.

The main plan for the near future is to have this library included into a stable FreeP-
ascal release.

To conclude this paper, the authors would like to thank two anonymous referees for
their helpful comments and remarks.

References

Boost C++ Libraries. Available online at http://www.boost.org/.
Boža, V. (2011). Knižnica štandardných algoritmov pre kompilátor FreePascal. Comenius Univer-

sity Bratislava, Bachelor thesis, Comenius University Bratislava, Slovak. Available online at
http://oldwww.dcs.fmph.uniba.sk/bakalarky/obhajene/getfile.php/
boza11306397896881.pdf?id=159&fid=315&type=application%2Fpdf.

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C. (2009). Introduction to Algorithms, 3rd edn., The MIT
Press.

Free Pascal team. (2012). Free Pascal 2.7.x Daily Source Snapshot of Development Tree. Available online at
ftp://ftp.freepascal.org/pub/fpc/snapshot/trunk/source/fpc.zip.

Musser, D.R. (1997). Introspective sorting and selection algorithms. Software Practice and Experience, 27,
983–993.

Musser, D.R., Stepanov, A.A. (1988). Generic programming. In: Symbolic and Algebraic Computation: Inter-
national Symposium ISSAC, 13–25.

Sedgewick, R. (2008). Left-leaning red-black trees. Workshop on Analysis of Algorithms, Maresias, Brazil.
Available online at http://www.cs.princeton.edu/ rs/talks/LLRB/RedBlack.pdf.

Verhoeff, T. Horváth, G., Diks, K., Cormack, G. (2006). A proposal for an IOI syllabus. Teaching Mathematics
and Computer Science, 4(1), 193–216.

Verhoeff, T., Horváth, G., Diks, K., Cormack, G., Forišek, M. (2012). IOI Syllabus. Available online at
http://ksp.sk/ misof/ioi-syllabus/.



FCL-STL, a Generics-Based Template Library for FreePascal 29

Appendix

Usage Examples

Below we show a few Pascal source codes that use the FCL-STL library. The first source
code is the code used for benchmark #1: random shuffling and then sorting a vector.

uses gvector, garrayutils, gutil;

type iLess = specialize TLess<longint>;
iVector = specialize TVector<longint>;
iOrdUtils = specialize TOrderingArrayUtils<iVector, longint, iLess>;
iUtils = specialize TArrayUtils<iVector, longint>;

var V : iVector;
n, i : longint;

begin
read(n);
V := iVector.Create;
for i := 0 to n-1 do V.PushBack(i);
iUtils.RandomShuffle(V,n);
iOrdUtils.Sort(V,n);

end.

The second example is benchmark #2: sets and set iterators.

uses gvector, gset, gutil;

type iLess = specialize TLess<longint>;
iVector = specialize TVector<longint>;
iSet = specialize TSet<longint,iLess>;

var V : iVector;
S : iSet;
N, i : longint;
it : iSet.TIterator;

begin
read(N);
V := iVector.Create();
for i:=1 to N do V.PushBack(random(N));
S := iSet.Create();
for i:=0 to N-1 do S.Insert(V[i]);
V.Clear();
it := S.Min();
repeat V.PushBack( it.GetData() ); until not it.Next();

end.



30 V. Boža, M. Forišek

V. Boža is a master’s degree student at the Comenius University in
Slovakia. He has multiple medals from IOIs and IPhOs and now he
is an active organizer of various national and international program-
ming contests. In the last two years he also worked as an intern in
Google Zurich. His master’s thesis is in the area of cryptography.

M. Forišek is an assistant professor at the Comenius University in Slo-
vakia. Since 2006 he serves as an elected member of the International
Scientific Committee (ISC) of the IOI. He is also the head organizer
of the Internet Problem Solving Contest (IPSC). His research inter-
ests include theoretical computer science (hard problems, computabil-
ity, complexity) and computer science education.


