
Olympiads in Informatics, 2012, Vol. 6, 53–68 53
© 2012 Vilnius University

Learning Algorithms with Unified
and Interactive Web-Based Visualization

Steven HALIM, Zi Chun KOH, Victor Bo Huai LOH, Felix HALIM
School of Computing, National University of Singapore
Computing 1, 13 Computing Drive, 117417, Singapore
e-mail: {dcssh, zichun, u0805026, felix.halim} @ nus.edu.sg

Abstract. We present a unified and interactive web-based visualization of various classical and
non-classical algorithms at
http://www.comp.nus.edu.sg/∼stevenha/visualization.
Our collection of algorithm visualizations has the following advantages over many other web-

based algorithm visualizations in the Internet – (1) it has visualizations of various non-classical
algorithms that currently cannot be found elsewhere in the Internet; (2) it is interactive; users (usu-
ally students) can enter their own input data to test the behavior of the algorithm; (3) it has a
consistent user interface across different algorithm visualizations that are currently available; (4)
it is built with HTML5 making it accessible on modern portable PCs including tablets and smart-
phones. User studies in two algorithm classes in NUS show that our visualizations is of immense
help to some students who prefer to learn visually.

Key words: unified, interactive, algorithm, visualization.

1. Introduction

To teach data structures and algorithms (henceforth referred to as algorithms) in a typical
Computer Science class, a professor/lecturer/instructor/teacher (henceforth referred to as
teacher) has to illustrate at least one (and preferably several) working example(s) on how
a particular algorithm works. The typical teaching methods employed are as follows:

1. The examples are pre-scripted in printed handouts, textbooks, or in PowerPoint
(or equivalent presentation software) slides with a collection of static pictures/
diagrams. A slightly better approach is to use a hardcoded presentation with ani-
mations that clearly demonstrates the steps of the algorithm. One drawback of this
approach is that it is possible for the teacher to advance the animation too quickly.
Also, it is difficult for the teacher to show another example that was not hardcoded
or to demonstrate spontaneous examples asked by the students; the teacher has to
either draw it directly on the PowerPoint slide manually (using the mouse or a
stylus pen) or to draw the example on the board by hand (method 2).

2. The teacher hand-draws the examples on the board. Unlike PowerPoint where the
teacher can advance to the next slide rapidly, this hand-drawing method allows the
students to assimilate the steps taken by the algorithm in proper “human (student)



54 S. Halim et al.

pace” as drawing successive steps of the algorithm may take some time. However,
the drawback is that such manual drawing can be very time consuming if not ex-
ecuted/prepared properly. It is also error-prone if the algorithm is complex or if
the teacher is in a rush. Students have to not only understand the algorithm but also
copy the teacher’s examples into their notes in order to review the illustrations later.
The conflicting task to internalize the algorithm and copy the examples manually
is exacerbated if the lesson is not recorded.

3. The teacher simply points the students to certain existing websites (usually created
by independent developers) with some algorithm animations. Some of these web-
sites are effective tools for teaching algorithms, as will be elaborated in Section 2
below. However, this method has drawbacks: most of these websites only support
a few classical algorithm visualizations. Thus, if the teacher refers to one website
for one algorithm and different website for another, the students may be confused
by the different conventions and styles employed. The diversity of the various user
interfaces adopted by these websites adds another layer of learning curve for the
student. Some students have certain inertia that reduces their will to visit many
different links. Also, this method cannot be used if the teacher is teaching a rare,
non-classical algorithm that nobody has visualized before.

In our opinion, a better way to teach algorithms is to give a combination of a well-
chosen and scripted example with animation (to introduce the concept for the first time)
combined with two-or-three more examples on student-supplied input data. There are
two conditions for this approach to be effective – the visualization of the spontaneous
examples must be animated in a manner that is consistent and bug-free, and it must be
done quickly and not take up too much time.

We made the decision to deliver our visualization on a web-based platform through
the browser so that algorithmic knowledge is accessible to a larger pool of audience
worldwide. Almost every devices nowadays – desktops, laptops, tablets, and even smart-
phones – have built-in web browser(s), e.g., Mozilla Firefox, Google Chrome, Safari1,
etc., that support HTML5 natively. There is thus no need to install any program or worry
about cross-platform issue.

The choice of having interactive over static visualizations is for the students to gain
more in-depth understanding about the algorithm being visualized. We believe that the
students will have better understanding on how the algorithm works if they can enter the
input data themselves.

With the rapidly increasing proliferation of portable devices with Internet connectiv-
ity: laptops, tablets, and smartphones2, many students can access the web-based visual-
ization during the lesson and follow the teacher’s examples on their own devices. After
class, students can then play around with the visualization again at their own pace/time
to further reinforce their understanding of the algorithm’s behavior.

1Safari is the default browser built-in on iPhone and iPad. This is worth mentioning because one of the
features of our visualization is its accessibility on modern devices.

2As an illustration, during the fourth quarter of 2011, Apple sold 17.07 million iPhones (smartphone)
and 11.12 million iPads (tablet), www.apple.com/pr/library/2011/10/18Apple-Reports-
Fourth-Quarter-Results.html, last accessed: April 2012.



Learning Algorithms with Unified and Interactive Web-Based Visualization 55

On the pedagogy side, having such visualizations will reduce the number of questions
in quizzes and exams that simply test students’ knowledge of how the algorithm will
behave given certain input data. Such questions are now redundant as the students are
expected to know how the algorithm works by using the visualization. Thus, the teacher
can focus on testing on more advanced usages of the algorithms.

The choice of unified interface will also benefit the students. It is reasonable to expect
a typical Computer Science class having more than one algorithm covered in the syllabus.
By having a unified interface, students can expect similar look and feel when using dif-
ferent algorithm visualizations. Also, the students can just bookmark one webpage and
use it for the entire semester. It is better than having a collection of different websites
to visit. The student need not have to navigate through the lecture slides or handouts to
get to the URLs recommended by the teacher. Every extra inconvenience increases the
student’s inertia and can be a possible cause for the student to be lazier and not bother to
understand the algorithms properly.

This paper is organized as follows: In Section 2, we will detail and dissect the current
available web-based algorithm visualizations for the algorithms listed in “Competitive
Programming 2” (Halim and Halim, 2011). This competitive programming handbook
is written by the first and the last authors of this paper. A substantial number of algo-
rithms are discussed in that book, of which many do not have publicly available visualiza-
tions yet. At the same time, we also discuss the weaknesses of the existing visualizations
through the lens of the objectives that we want to achieve, namely: provide visualizations
for the non-classical algorithms, use unified interface, provide the ability to interactively
enter user (student)-supplied input data, and provide the ability to access the visualiza-
tion using modern web browsers particularly on smartphones. In Section 3, we discuss
the details of our visualization project. In Section 4, we report the initial feedbacks from
31 students in National University of Singapore (NUS) who used the first version of
the visualizations during semester 2 of academic year 2011/2012. In Section 5, we list
down our preliminary conclusions regarding the effect of this visualization project. We
conclude this paper by listing down our plans to continually improve this visualization
project in the near future.

2. Existing Web-Based Algorithm Visualization

In this section, we summarize the results of our analysis of various algorithm visualization
websites on the Internet as of April 2012. This report does not take into account algorithm
visualizations that are not publicly available in the Internet. The list of algorithms is
taken from “Competitive Programming 2” handbook (Halim and Halim, 2011). From
our analysis, we found that there is a huge imbalance on the number of visualizations
of classical – and usually easier – algorithms like sorting algorithms, binary search on a
sorted array etc., versus the non classical and rare (usually harder) algorithms like Binary
Indexed (Fenwick) Tree (Fenwick, 1994), finding Strongly Connected Components of a
directed graph (Tarjan, 1972), computing the Maximum Flow of a network (Edmonds
and Karp, 1972), etc.



56 S. Halim et al.

2.1. Standalone Visualizations

We split our results into two categories: Standalone and Unified visualizations. We cat-
egorize the existing web-based algorithm visualizations in Table 1 as standalone visu-
alizations because these websites only have a single to no more than three algorithm
animations inside, i.e., their developers do not create visualizations for other algorithms.
This causes an unnecessary learning curve when students have to learn different algo-
rithms and have to visit different visualization websites. In order to make Table 1 con-
cise, we only pick several representative visualizations per topic for the classic algorithm
visualizations.

Table 1

Standalone visualizations (all URLs are correct as of April 2012)

Topic Representative visualization examples N H O

Various linear
data structures

apbrwww5.apsu.edu/myersb2/
linked_list_animation.htm

H O

www.u-www.cosc.canterbury.ac.nz/mukundan/
dsal/StackAppl.html

H O

Various sorting
algorithms

www.cs.auckland.ac.nz/∼jmor159/PLDS210/
Java/q_sort/tqs_new.html

H O

www.cse.iitk.ac.in/users/dsrkg/cs210/
applets/sortingII/mergeSort/mergeSort.html

O

www.cs.oswego.edu/∼mohammad/classes/
csc241/samples/sort/Sort2-E.html

H O

Bitmask or bit
manipulation

(see Section 4.1) N

Basic BST
(Table)

aleph0.clarku.edu/ ∼ achou/cs102/
examples/bst_animation/BST-Example.html

O

www.cs.jhu.edu/∼ goodrich/dsa/trees/
btree.html

O

www.csc.liv.ac.uk/∼ ullrich/COMP102/
applets/bstree/

O

Balanced BST
(AVL)

webdiis.unizar.es/asignaturas/EDA/
AVLTree/avltree.html

O

www.site.uottawa.ca/∼ stan/csi2514/applets/
avl/BT.html

O

www.cs.jhu.edu/∼ goodrich/dsa/trees/
avltree.html

O

Heap (priority nova.umuc.edu/∼ jarc/idsv/lesson2.html O

queue) www.cs.auckland.ac.nz/∼ jmor159/PLDS210/
heaps.html

O

To be continued



Learning Algorithms with Unified and Interactive Web-Based Visualization 57

Continuation of Table 1

Topic Representative visualization examples N H O

Graph DS (Adj
matrix or list)

(part of nova.umuc.edu/∼ jarc/idsv/)
(see Section 4.4)

N

Union find research.cs.vt.edu/AVresearch/UF/ O
disjoint sets www.cs.unm.edu/∼ rlpm/499/uf.html O

Segment tree (in our future works) N

Binary indexed
(Fenwick) tree

(see Section 4.3) N

n-queens recur-
sive backtracking

www.animatedrecursion.com/advanced/
the_eight_queens_problem.html

H O

yuval.bar-or.org/index.php?item=9 H O

Classic dynamic
programming

(in our future works) N

Graph traversal:
BFS/DFS+

www.cs.sunysb.edu/∼ skiena/combinatorica
/animations/search.html

H

www.rci.rutgers.edu/∼ cfs/472_html/
AI_SEARCH/SearchAnimations.html

H

Finding cut
vertices, bridges,
SCCs

(see Section 4.5) N

MST (Prim’s) www.unf.edu/∼ wkloster/foundations/
PrimApplet/PrimApplet.htm

H O

students.ceid.upatras.gr/∼ papagel/
project/prim.htm

H O

MST (Kruskal’s) www.unf.edu/∼ wkloster/foundations/
KruskalApplet/KruskalApplet.htm

H O

students.ceid.upatras.gr/∼ papagel/project/
kruskal.htm

H O

SSSP (Bellman
Ford’s)

(see Section 4.7) N

SSSP (Dijkstra’s) www.unf.edu/∼ wkloster/foundations/
DijkstraApplet/DijkstraApplet.htm

H O

www.dgp.toronto.edu/∼ jstewart/270/9798s/
Laffra/DijkstraApplet.html

O

APSP (Floyd
Warshall’s)

www.pms.ifi.lmu.de/lehre/compgeometry/
Gosper/shortest_path/shortest_path.html

H O

Network flow
(Edmonds
Karp’s)

felix-halim.net/research/maxflow/index.php
www.eecs.wsu.edu/∼cook/aa/lectures/
applets/ek/MaxFlowHome.html

H O

Algorithms on
DAG

(in our future works, e.g., topological sort,
shortest/longest path, counting paths)

N

Algorithms on
tree

(in our future works, e.g., shortest/longest path,
all pairs shortest paths, Lowest Common Ancestor)

N

Algorithms on
bipartite graph

www-b2.is.tokushima-u.ac.jp/∼ ikeda/
suuri/main/index.shtml

H O

To be continued



58 S. Halim et al.

Continuation of Table 1

Topic Representative visualization examples N H O

String matching cgjennings.ca/fjs/index.html O

Suffix tree illya-keeplearning.blogspot.com/2009/06/
suffix-trees-java-applet.html

O

Suffix array felix-halim.net/pg/suffix-array

Algorithms on
polygon

(see Section 4.9) N

Convex hull
(Graham’s scan,

www.cs.princeton.edu/courses/archive/
spr10/cos226/demo/ah/GrahamScan.html

H O

Andrew’s, Jarvis
March)

nms.lcs.mit.edu/∼ aklmiu/6.838/
convexhull/

O

www.cs.unc.edu/∼snoeyink/demos/ch
/Jarvis.html

O

In the same table, we also highlight three possible potential issues of these standalone
visualizations with respect to our objectives listed in Section 1 using the following codes:

1. N (not available): This algorithm is the rare one where Internet searches using
relevant keywords do not yield public web-based visualization for it yet.

2. H (hardcoded, not interactive): This algorithm visualization is hardcoded (espe-
cially the ones that are just animated GIF), i.e., users cannot use their own input
data to see how the algorithm being visualized will behave on the new input data.

3. O (old technology): This (older) algorithm visualization is using older technology
(e.g., Flash, Java Applet) that is not truly portable as it cannot be accessed via
modern smartphones (e.g., iPhones) or tablets (e.g., iPads).

2.2. Unified Visualizations

Other than the standalone visualizations listed in Table 1, we also found the following
unified visualizations that offer more than three visualizations in their website:

1. algoviz.org is basically a portal that contains links to various algorithm visu-
alization websites. In the future, our visualization project will also be listed there.
However, as of April 2012, some of our algorithm visualizations in Section 3 (e.g.,
Fenwick Tree, Tarjan’s SCC, etc.) are not yet available there.

2. www.ansatt.hig.no/frodeh/algmet/animate.html is another por-
tal that compiles URLs to other visualization websites (similar nature with
algoviz.org).

3. nova.umuc.edu/∼jarc/idsv/ has visualizations for binary trees, several
graph representation and algorithms, and sorting.

4. www.csse.monash.edu.au/∼dwa/Animations/index.html has sev-
eral visualizations similar nova.umuc.edu/∼jarc/idsv/.



Learning Algorithms with Unified and Interactive Web-Based Visualization 59

5. research.cs.vt.edu/AVresearch/ has several algorithm visualizations
developed between 2003 and 2009.

6. www.cs.usfca.edu/∼galles/visualization/Algorithms.html
is the closest unified visualization project that is the most similar with the ideas
presented in this paper. It also built with HTML5. We highlight some of the differ-
ences between our visualization and this project in Section 3.

3. Our Unified and Interactive Web-Based Algorithm Visualization

These are the algorithm visualizations that we have built as of April 2012. Our focus at the
early stages of this visualization project is to provide visualizations of the non-classical
algorithms rather than the more classical ones. We also highlight the differences and the
extra features that we have incorporated for the algorithms that have been visualized by
some other programmers and can be found publicly on Internet.

3.1. Bitmask/Bit Manipulation/Bit String/Lightweight Small Set of Boolean

Bit manipulation (bitmask) of integer values is usually a tricky subject for new Com-
puter Science students. Therefore, having a bug-free visualization on bitmask like the one
shown below will help both the teachers in showing various examples and the students in
understanding the concept. For example, 42 | (1 « 2) = 46. This text-based visualization
(see Fig. 1) will instantly show the necessary bit manipulations. We currently cannot find
similar visualization in the Internet.

3.2. Binary Heap Data Structure (Priority Queue)

Binary Heap is a classical data structure commonly used to implement priority queue.
There are (many) other similar visualizations in the Internet. The only strong point of
having this visualization (Fig. 2) in our project is the similar unified look-and-feel as
with the other visualizations in our project.

Fig. 1. Bitmask visualization.



60 S. Halim et al.

Fig. 2. Binary heap visualization.

Fig. 3. Binary indexed (Fenwick) tree visualization.

3.3. Binary Indexed Tree (BIT) or Also Known as Fenwick Tree

BIT was invented by Fenwick (1994). This data structure is used to efficiently compute
dynamic range sum queries (RSQ/cumulative frequency table). It has interesting usages in
programming competitions. This data structure is included in the International Olympiad
in Informatics (IOI) syllabus (Forišek, 2009), making it one of the studied data structure
for IOI (high school) students. BIT operations can be cryptic for new users. For example,
RSQ(1, 6) is a summation of RSQ(1, 4) + RSQ(5, 6) because integer 6 (“110” in binary)
becomes integer 4 (“100” in binary) if we strip off its least significant one. If we continue
another step, integer 4 becomes integer 0 (“000” in binary) and we stop here. This process
is clearly shown and animated in Fig. 3. There is no existing BIT visualization that we
can find on the Internet before ours.

3.4. Graph Data Structure

Graph visualizations are abundant in the Internet. However, almost every such visualiza-
tions uses hardcoded input graphs which limit its usage. We speculate that this is because
it is hard to provide the input data for a graph and graph layout is another big subject
by its own. Our visualization allows users to draw their own graph (Fig. 4). By having
the users draw the graph themselves, we eliminate the need of using sophisticated graph



Learning Algorithms with Unified and Interactive Web-Based Visualization 61

Fig. 4. Graph data structure visualization.

layout algorithm to layout the graph. Users can add/delete new vertex, add edges between
vertices while simultaneously specify its direction and weight, and the visualization will
be automatically updated with the correct Adjacency Matrix, Adjacency List, and Edge
List representation of the user’s input graph. As an additional feature, we also check if
the graph is a tree, is a bipartite graph, or is a complete graph.

3.5. Graph Traversal: Depth-First Search and Breadth-First Search

In this visualization, users can draw their own graph as above and run one of two classi-
cal graph traversal algorithms (DFS or BFS). Many other graph traversal visualizations
just stop at this point. However, we have incorporated extra features as these DFS and
BFS algorithm can yield extra information about the graph structure. For DFS on undi-
rected graph, we also compute vertices/edges that are classified as articulation points (cut
vertices)/bridges. For DFS on directed graph, we also compute its Strongly Connected
Components (SCCs) using Tarjan’s (1972) algorithm as shown in the static figure blow
(Fig. 5). Visualizations of these two DFS variants are currently not found elsewhere on
the Internet. For BFS on unweighted graph, we also compute the shortest paths from
starting vertex.



62 S. Halim et al.

Fig. 5. Graph traversal visualization (showing the execution of Tarjan’s SCC/DFS algorithm).

Fig. 6. MST visualization (showing the result of Kruskal’s on input graph with all edge weights negated).

3.6. Minimum Spanning Tree (MST): Prim’s and Kruskal’s

There are several MST algorithm (Prim’s and Kruskal’s) visualizations on the Internet.
The main strength of this visualization is that the users can draw their own graph (similar
user interface as with the other visualizations above) and see how the classical Prim’s
or Kruskal’s algorithm works on that graph. We added an extra feature of finding the
Maximum Spanning Tree by simply negating all the edge weights (Fig. 6).

3.7. Single Source Shortest Paths (SSSP): Dijkstra’s and Bellman Ford’s

There are many other SSSP algorithm (especially Dijkstra’s) visualizations on the In-
ternet, although we have not managed to find the less frequently used Bellman Ford’s
algorithm visualization yet. This visualization maintains the same look and feel with the
other visualizations in this project. It also inherits the same strength: Students can draw



Learning Algorithms with Unified and Interactive Web-Based Visualization 63

Fig. 7. SSSP visualization (showing intermediate Dijsktra’s algorithm execution with source = vertex 1).

Fig. 8. Max flow visualization (showing the result of Edmond Karp’s, source vertex 2, sink vertex 1).

their own graph. We also provide the SSSP spanning tree for students to easily visualize
the shortest path information.

3.8. Maximum Flow on a Network: Edmonds Karp’s

Visualization for computing maximum flow on a network is rare. Our visualization
(Fig. 8) maintains the same look and feel and graph drawing capability with the other
visualizations in this project. In the near future (Section 5), we will add various network
flow modeling and variants to enhance the strengths of this visualization.

3.9. Algorithm on Polygon: IsConvex, ConvexHull

There are several algorithm visualizations for finding the Convex Hull of a set of points in
the Internet. However, there are mostly standalone visualizations. Our visualization sup-



64 S. Halim et al.

Fig. 9. Intermediate computations of IsConvex() routine (top) and Graham’s scan algorithm (below).

ports three Convex Hull algorithms: Graham’s Scan (Graham, 1972) as shown in Fig 9.
bottom, Jarvis’s March (Gift Wrapping) algorithm (Jarvis, 1973), and Andrew’s Mono-
tone Chain algorithm (Andrew, 1979). With this feature, users can compare the behavior
of these three algorithms on the same set of points.

Additionally, we can do several other things with a polygon, like an algorithm to test
whether it is convex or concave (Fig. 9, top), computing the area and perimeter of an
arbitrary polygon, checking if a point is inside or outside the given convex or concave
polygon, or cutting a polygon with a straight line. Some of these features have already
been implemented whereas the rest will be added in the near future (Section 5).

4. Students’ Feedbacks

The visualizations in Section 3 were used for the first time in two modules offered in
semester 2 (January–April 2012) at National University of Singapore:

1. CS3233 – Competitive Programming (24 students), taught by the first author. Visu-
alizations used: bitmask, bit, representation, dfsbfs, mst, sssp, maxflow, and poly-
gon/convexhull.

2. CS2020 – Data Structures and Algorithms Accelerated (42 students), taught by a
colleague of the first author. Visualizations used: heap, representation, dfsbfs, mst,
sssp.



Learning Algorithms with Unified and Interactive Web-Based Visualization 65

To measure the subjective quality of these visualizations, we present the following
survey to the students from these two classes. The survey was conducted in March 2012.
At that time, all visualizations listed above have been shown to respective students. All
24 (100%) of CS3233 responded as these visualizations were used extensively in the first
author’s class. However, only 7 (16.7%) of CS2020 students responded as the visual-
izations were not used extensively in this module. We separate the results of these two
student groups into two columns below. However, the general responses from the two
groups are rather similar.

4.1. Multiple Choice Questions (MCQ)

Table 2

MCQ results

Multiple Choice Questions CS3233 (24 responses) CS2020 (7 responses)

1. Does the visualization help you un-
derstand the algorithm taught bet-
ter?

Yes (13/54.1%)
No (0/0.0%)
Neutral (11/45.8%)

Yes (5/71.4%)
No (0/0.0%)
Neutral (2/28.5%)

2. When do you use the visualization?
(select all that applicable to you)

In class (8/33.3%)
After class (4/16.6%)
Before test (14/58.3%)
Others (6/25.0%)

In class (1/14.2%)
After class (0/0.0%)
Before test (5/71.4%)
Others (3/42.9%)

3. How do you access the visualiza-
tion? (select all that applicable to
you)

Desktops (14/58.3%)
Laptops (14/58.3%)
Tablets (3/12.5%)
Smartphones (5/20.8%)

Desktops (4/57.1%)
Laptops (6/85.7%)
Tablets (0/0.0%)
Smartphones (1/14.2%)

Several selected abridged reasons for question 1:

• Yes: Intuitive as I am a visual person; The visualizations help clarify concepts; I
can play with various input values/scenarios; Useful to get initial feeling of how
the algorithm works; I used to draw all these manually by myself.

• Neutral: Already understand the algorithm from the lecture/text book/reading the
source code directly; Already know/master the algorithm beforehand; I prefer anal-
ysis (and proofs) rather than visualization to convince me that the algorithm works;
Visualization bugs (in the version shown during the class) affect my understanding
of the algorithm.

It is worth mentioning that none of the 31 respondents chose “No, the visualization
does not help me understand more about the algorithm”. The presence of these visualiza-
tions can thus be seen as a complementary pedagogical tool that will help a certain group
of students immensely and will not have a negative effect on the other group of students.

From the second MCQ, we can see that some of the students indeed follow the dis-
cussions of the algorithm during the lesson. The most common usage pattern however
is before tests/exams. This suggests that the primary usage of the visualizations is for
self-learning and revision.



66 S. Halim et al.

From the third MCQ, we can see that some students use their smartphones and/or
tablets to access this visualization. While the number is still low at this point of time as
not all respondents own these devices, we believe it will go up in the near future.

4.2. Open Ended Essay Questions

We also ask the students several open ended questions. We first ask them to list down
the positive and negative aspects of having such algorithm visualizations. Some of the
representative feedbacks are listed in Table 3.

We also ask them about their opinion on having a unified website that hosts not just
the nine visualizations as listed in Section 3, but much more in the near future. Selected
responses are listed below:

• Positive: It will be beneficial not only for this course (CS3233) but also other al-
gorithm courses in NUS or other universities.

• Positive: A unified interface will be excellent. When students visualizing a certain
algorithm in their mind or on paper, it is usually the same steps as shown in the
visualizations.

• Neutral: To have them is a good idea. But if it does not come true, then it is not a
big problem either.

• Negative: I personally prefer tracing algorithm by hand as it is easy to manipulate
and help me remember the algorithm better, but I am sure there are others who
prefer to have this tool.

5. Preliminary Conclusions, Future Works, and Acknowledgements

In this paper, we have presented a set of nine algorithm visualizations. They have a consis-
tent look and feel, and are built using the same HTML5 canvas and Javascript code-base,

Table 3

Positive and negative aspects of having algorithm visualizations

Positive aspects Negative aspects

The visualization always gives correct an-
swer (after bug fixes).

Visualization bugs during the early rollout affect un-
derstanding.

Simple interface that is easy enough to use. Some features are not user friendly yet (it still lacks
proper documentation).

Ability to create usage scenarios on my own:
Enter my own input values, draw my own
graph, draw my own polygon.

It needs more than just nine algorithm visualizations
as the first author teaches more algorithms in his
CS3233 class.

Help me understand the algorithm better. The presence of such visualizations may cause us not
to practice on our own.

Faster than drawing by hand. The steps shown need to be coupled with the highlight
of algorithm (pseudo)codes.



Learning Algorithms with Unified and Interactive Web-Based Visualization 67

and allows for interactivity with its users. More than half of the first 31 students who use
these visualizations reported enhancement of their learning process whereas the other
half reported neutral impact.

This visualization project is still an ongoing project. At the moment, this visualization
project is hosted at: www.comp.nus.edu.sg/∼stevenha/visualization.
The URL may change in the future but the following keywords should help re-locating
this visualization project: “algorithm”, “visualization”, “competitive programming”,
“SoC”, “NUS”, and the author names.

In the near future, we have these plans:

1. Improve the features of existing visualizations: Add Directed MST (Arborescence)
problem solvable with Chu-Liu/Edmonds’ algorithm (Chu and Liu, 1965; Ed-
monds, 1967), add various network flow modeling and variants (e.g., bipartite
matching, min cost max flow, etc.), add several algorithm on polygons.

2. Add more classical algorithm visualizations to strengthen the library of algo-
rithm visualizations that we currently have, e.g., algorithms on DAG (e.g., short-
est/longest paths, counting paths), tree (e.g., Lowest Common Ancestor, etc.).

3. Add more non-classical algorithm visualizations that currently cannot be found
elsewhere on the Internet, e.g., Segment Tree, Edmonds’ matching (Blossom
Shrinking) algorithm (Edmonds, 1965), Hopcroft Karp’s bipartite matching algo-
rithm (Hopcroft and Karp, 1973), Suffix Array and its Suffix Tree representation
(Manber and Myers, 1991), etc.

4. Improve the user interface to make the visualizations more user-friendly (especially
by adding source code highlights side by side with the visualization, adding the
‘step backwards’ feature) and add proper documentations.

5. Provide more pedagogical usage scenarios of the visualizations like having pop-
quizzes on what will be the next step shown in the visualization, etc.

6. Make the visualization extensible to external developers by exposing our APIs.

We hope that our visualization project will be adopted by various Computer Science
departments of various Universities worldwide.

The authors acknowledge Centre for Development, Teaching, and Learning at Na-
tional University of Singapore (CDTL, NUS) for providing the initial funding for this
visualization project.

References

Andrew, A.M. (1979). Another efficient algorithm for convex hulls in two dimensions. Information Processing
Letters, 9, 216–219.

Chu, Y.J., Liu, T.H. (1965). On the shortest arborescence of a directed graph. Science Sinica, 14, 1396–1400.
Edmonds, J. (1965). Paths, trees, and flowers. Canadian Journal of Mathematics, 17, 449–467.
Edmonds, J. (1967). Optimum Branchings, Journal of Research of the National Bureau of Standards, 71B,

233–240.
Edmonds, J., Karp, R.M. (1972). Theoretical improvements in algorithmic efficiency for network flow prob-

lems. Journal of the ACM, 19(2), 248–264.
Fenwick, P.M. (1994). A new data structure for cumulative frequency tables. Software: Practice and Experience,

24(3), 327–336.



68 S. Halim et al.

Forišek. M. (2009). IOI Syllabus. http://people.ksp.sk/∼misof/ioi-syllabus/. Last accessed
11 April 2012.

Graham, R.L. (1972). An efficient algorithm for determining the convex hull of a finite planar set. Information
Processing Letters, 1, 132–133.

Halim, S., Halim, F. (2011). Competitive Programming 2: This increases the lower bound of programming
contests. Again. http://www.lulu.com.

Hopcroft, J.E., Karp, R.M. (1973). An n5/2 algorithm for maximum matchings in bipartite graphs. SIAM
Journal on Computing, 2(4), 225–231.

Jarvis, R.A. (1973). On the identification of the convex hull of a finite set of points in the plane. Information
Processing Letters, 2, 18–21.

Manber, U., Myers, G. (1991). Suffix arrays: a new method for on-line string searches. SIAM Journal on Com-
puting, 22(5), 935–948.

Tarjan, R.E. (1972). Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1(2), 146–
160.

S. Halim is a lecturer in SoC, NUS. He teaches several programming
courses, ranging from basic programming methodology, intermediate
data structures and algorithms, and up to the “Competitive Program-
ming” module. He is the coach of both NUS ACM ICPC teams and
Singapore IOI team. So far, he and other trainers @ NUS have suc-
cessfully groomed two ACM ICPC World Finalist teams (2009–2010;

2012) as well as two gold, four silver, and six bronze IOI medalists (2009–2011).

Z.C. Koh is a second year computer science undergraduate at the
National University of Singapore School of Computing. He has rep-
resented Singapore in the IOI in 2005–2007 and is now training for
the ACM ICPC World Finals 2012. Zi Chun is passionate about soft-
ware, design, and coffee. He is also interested in the pedagogy of
computer science education. You can find out more about him at

http://zichun.i-xo.net/.

V.B.H. Loh is an undergraduate in Faculty of Science, National Uni-
versity of Singapore. His interest lies in data structures and algorithms
and mathematics (such as algebraic geometry and number theory). He
likes to spend his free time solving challenging problems and is an avid
GeoCacher.

F. Halim is a PhD student in SoC, NUS. He was IOI 2002 contestant
(representing Indonesia). His ICPC teams (at that time, Bina Nusantara
University) took part in ACM ICPC Manila Regional 2003–2004–2005
and obtained rank 10th, 6th, and 10th respectively. Then, in his final
year, his team finally won ACM ICPC Kaohsiung Regional 2006 and
thus became ACM ICPC World Finalist Tokyo 2007. Today, he actively

joins TopCoder Single Round Matches and his highest rating is a yellow coder.


