
Olympiads in Informatics, 2012, Vol. 6, 115–132 115
© 2012 Vilnius University

Type of Questions – The Case of Computer Science

Noa RAGONIS
School of Education, Computer Science Department, Beit Berl College
Department of Education in Technology and Science
Technion – Israel Institute of Technology, Israel
e-mail: noarag@beitberl.ac.il

Abstract. In this paper, I explore and discuss the variety of types of questions that can be used
by computer science educators in different teaching situations and processes: in classroom lessons,
in the computer lab, as homework, or in tests. The use of various types of questions offers many
advantages, both for learners and for the teaching process. Twelve different types of question are
discussed. Each is presented by its classification title, a short description of the specific type of
question, a concrete example or an example pattern, and a short pedagogical discussion that in-
cludes remarks on cognitive aspects. Three general types of questions are presented and discussed:
combination questions, narrative questions, and closed questions. These types of questions relate to
”programming-like” assignments since they are the most common subject encountered in the teach-
ing of computer science (Java is used as the implementation language). However, as discussed here
in brief, most of the question types are also suitable for most other contents in the teaching of
computer science.

Key words: computer and information science education, algorithms, human factors, types of
questions, cognition in computer science, problem solving.

1. Introduction

One of the traditional problem-solving scenarios in computer science starts with the pre-
sentation of an open problem described as a ”story”, continues with its analysis and plan-
ning of its solution, and ends with the presentation of a solution as an algorithm in either
pseudo-code or in a specific programming language. It is important, however, that com-
puter science educators be aware of the fact that there are many additional types of ques-
tions, each of which requires a variety of thinking processes that enable to use a wider
spectrum of cognitive skills.

Questions types within the computer science (CS) discipline appear in textbooks and
on teaching websites, and are less frequently discussed in the contents of question pat-
terns used to broaden the spectrum of CS educators’ teaching tools. This paper aims to
present a collection of CS question types as a tool for CS educators in preparing teaching
artifacts to be used in different teaching situations and processes: classroom lessons, the
computer lab, homework, or tests. The focus is on pedagogical issues intended to expand
the educators’ perspective with respect to question design. CS educators at all teaching
levels, middle schools, high schools and universities, can find this presentation helpful

116 N. Ragonis

when planning their teaching process. The presentation of the question types and pattern
versions includes recommendations on the use of the questions while teaching.

Three main pedagogical targets can be achieved by integrating different types of ques-
tions in the teaching of computer science: (1) they illuminate different aspects of the
learned content; (2) they require students to use different cognitive skills; and (3) they
enable educators to vary the teaching tools they use. The design of questions that require
different cognitive skills is significant, first, in order to present each individual cognitive
skill and illuminate different aspects of the learned content; second, since different stu-
dents express their knowledge differently and it is important to give each of them the
opportunity to articulate that knowledge; and third, to develop and enrich the cognitive
skills of all students. Furthermore, the use of combinations of different question types
throughout the teaching process helps maintain the students’ interest, attention, and cu-
riosity.

The examples or example patterns used here to demonstrate each of the question types
relate to ”programming-like” assignments, since they are the most common subject en-
countered in the teaching of CS. Yet, most of the question types can be assimilating into
any CS content, as will be discussed in Section 6 below, in the context of Automata
Theory, for example.

2. Background

Most of the discussion on questions and cognition within the teaching process of CS
relates to problem-solving strategies and illuminates strategies such as stepwise refine-
ment (e.g., Batory, et al., 2004; Vasconcelos, 2007), algorithmic patterns (e.g., Muller,
et al., 2007; Ginat 2009), roles of variables (e.g., Sajaniemi 2005; Sorva, et al., 2007),
or tracing strategies (e.g., Venables, et al., 2009). Other discussions relate to strategies
adopted by experts versus novices (e.g., Brand-Gruwel, et al., 2005], and other aspects
like misleading problem-solving passes such as the design-by-keyword syndrome (Gi-
nat, 2003). I believe that using different types of questions consistently throughout the
teaching process enhances learners’ skills and abilities with respect to problem-solving
processes, since they investigate different analysis tools and expand their ability to exam-
ine a problem from multiple points of views.

Another relatively broad discussion in the context of questions in the CS domain is
about the evaluation of student artifacts and the progression of learning (e.g., Chamillard
and Braun, 2000; Byckling and Sajaniemi, 2006), as well as automatic assessing systems
(e.g., Spacco et al., 2006; English and Rosenthal, 2009). In this paper, I will not address
assessment aspects but rather the thought processes that arise when students actively solve
different types of problems.

Cognition is the process of thought. Cognitive skills are basic mental abilities we all
use to think, to study and to learn. Cognitive processes can be analyzed from different per-
spectives within different contexts. In psychology or philosophy, for example, the concept
of cognition is closely related to abstract concepts such as mind, reasoning, perception,

Type of Questions – The Case of Computer Science 117

intelligence, learning, and many others that describe the mind’s capabilities. The field
of cognition focuses on the study of specific mental processes, such as comprehension,
inference, decision-making, planning, and learning. Specifically, with respect to CS, we
are familiar with the advanced cognitive skills of abstraction, generalization, concretiza-
tion and meta-reasoning. As mentioned above, it is important to develop the learners’
cognitive skills. The use of a variety of question types is one way to achieve this goal.
The literature on CS education reveals only a restricted offering of research work related
to the cognition aspects of different types of questions. Some research has been done
with the intention of adapting Bloom’s Taxonomy to the domain of CS. Bloom’s Taxon-
omy was first described in 1956 as a hierarchical model of the cognitive domain (Bloom
et al., 1956), followed by several significant changes made by Anderson et al. (2001).
Thompson et al. (2008) reviewed the work done throughout the past decade so as to ap-
ply Bloom’s taxonomy to CS course design, evaluation, and assessment, and to provide an
interpretation of the taxonomy that can be applied to introductory programming exams.
This interpretation focused on the cognitive skills involved in addressing several types of
questions, whereas Jones et al. (2009) focused explicitly on written examinations. These
researchers determined the difficulty level of each question in an examination paper based
on the criteria of keyword/s found in the question, and presented a cross-analysis across
student performance, cognitive skill requirements, and module learning outcomes. Dif-
ferent kinds of studies, that combined computer science questions and cognition, relate
to different automata systems aimed at question-answering processes. Pomerantz (2002),
for example, evaluated four taxonomies of question types to determine the expressive-
ness of each for questions received by digital reference services. He offered a faceted
classification scheme that can be used as a basis for automating parts of a reference
question-answering process. The work of Yang et al. (2008) is another example of au-
tomated question-generating systems. This research introduced a method of designing
a test question database management system based on the three-tier B/S structure, ana-
lyzing the features of the test question database structure, and expatiating the grouping
algorithmic calculation, focusing on the main control parameters of knowledge points
and question-type data. The research results indicate that the application of the system
not only improves the work efficiency of teachers, but also positively boosts the teach-
ing reform. Those results support my point of view that emphasizing different types of
questions improves the learning-teaching process.

The main aim of the current paper is to broaden CS educators’ tools for designing
different types of questions. The presentation of each question type focuses on possible
ways of using them in teaching processes. Emphasize is on pedagogical approaches and
the discussion involves informal cognition considerations.

3. Presentation Structure of Question Types

This paper focuses on question patterns and presents twelve types of questions. I suggest
several fundamental types and describe several variations for each. Clearly, additional

118 N. Ragonis

types of questions, as well as combination of different types of questions, exist and can
be developed and used according to need.

Each type of question is presented in the following structure: a title that reflects the
classification of the question type; a short description of the specific type of question; a
concrete example or general pattern that demonstrates the said type of question; different
variations of the question type; and a short pedagogical and cognitive discussion about
the said type of question. Since my purpose here is to present a variety of questions in
the context of computer science education, most of the examples will be quite simple to
solve. For each type of question, it is clearly possible to develop a range of questions on
different complexity levels, from both the algorithmic and the cognitive points of view. In
addition, within each type of question, additional variations may be presented that require
different cognitive skills.

After presenting the twelve question types (Section 4), three global aspects of question
types are presented (Section 5), and the assimilation of the different types of questions
into different CS contents is discussed (Section 6).

Following are several remarks about the actual use of this collection of questions in
the computer science class:

• There is no specific rule for the presentation order of the twelve questions types.
• No specific rule or guidelines can be formulated with respect to the order in which

the different types of questions should be used. Each CS educator should select
the appropriate type of question and its complexity level according to the specific
characteristics of the learners in the specific class.

• The suggested types of questions sometimes overlap each other and cannot be sep-
arated completely from one another. This point is further addressed when relevant.

• A question can combine several types of questions in its different sub-paragraphs,
as illustrated by an example given in the sub-section entitled ”Combining several
types of questions” in Section 5.

• Questions can literally be divided into two types: Pure algorithmic tasks and story-
based algorithmic tasks (narrative). This perspective will be discussed in Section 5.

4. Types of Questions

Type 1: Developing a Solution

Description. A development question presents an open problem for which students
are required to develop a solution in the form of a verbal algorithm, pseudo-code, or by
using a specific programming language.

Example. Write a method that accepts an integer n as input and returns the number
of (integer) divisors of n.

Variations. A development question can address (a) a sequence of instructions; (b) a
single method (as in the above example); (c) a whole program; or (d) a method with a
specific efficiency (in the above example this can be O(

√
n) .

Type of Questions – The Case of Computer Science 119

Discussion. This type of questions invites different solutions. In some cases, the dif-
ferences are not meaningful; in others, the different solutions represent different algo-
rithmic approaches. Variation (d) is not entirely an open question since a significant con-
straint must be met – the requested efficiency. In this case, students cannot just choose a
solution to solve the problem and therefore, it is considered to be more difficult than the
other variations and requires wider considerations.

Type 2: Developing a Solution that Uses a Given Module

Description. In this case, the development question relates to a predefined module.
The student must present a solution to a given problem while considering and using a
given module. Documentation of the module is included in the question and the student
must use it in the developed solution.

Example. Write a method that accepts an integer value n as input and returns
the integer between 1 and n with the largest number of divisors. Use the method
numberOfDividers(n), which accepts an integer value n as input and returns the num-
ber of its divisors.

Variations. A development question that relates to a given module can be presented,
among other ways, in one of the following forms: (a) write an instruction that invokes a
given method; (b) write a method that uses a given method (like in the given example);
(c) write a method that uses a given module a specified number of times; or (d) write a
method that uses several different given methods.

Discussion. The fact that students must relate to a given module influences the devel-
opment process of the solution. For example, in the case of a given method the student
must match the developed method to a specific sub-task that the given method imple-
ments. This type of questions is considered more difficult than Type 1 questions because
students must satisfy a constraint – the use of the given sub-task. The given module should
not be a method but rather it can be, for example, a specified data structure (like Linked
list) or class.

Type 3: Tracing a Given Solution

Description. A given code is presented and the students are asked to follow the code
execution.

Example pattern. Present a tracing table that follows the execution of a given method.
The table should include a column for each variable and for the code output.

Variations. A tracing question can involve following, for example on: (a) a complete
program; (b) a single method; (c) a recursive method; or (d) the creation of objects. In
addition, the following instructions can be used in each of the above variations: (1) follow
the code execution with a given specific input; (2) follow the code execution with the
student choosing the input; (3) follow the code execution with different specified inputs
that are selected so as to guide the student to reveal what the given code does; (4) find
different sets of inputs so that each set represents a different sequence by which the code
is executed; or (5) find a set of inputs that yields a specific output.

120 N. Ragonis

Discussion. Variations 1–3 of the instructions can be considered to be closed ques-
tions. The student is required to trace a given code with a specified (given or self-chosen)
input, and there is only one correct solution. Instructions (4) and (5) require the students to
involve additional, deeper considerations and to examine the presented code more closely.
It is not sufficient to understand different instructions; rather, it requires code analysis –
what is the purpose of the code and how is it achieved. Clearly, more advance cognitive
skills are needed in order to address these instructions in a meaningful manner.

Type 4: Code Execution Analysis

Description. A given code is presented and the student is asked to analyze some as-
pects of the code execution. This kind of questions is more complicated than tracing a
given code since it requires the student to analyze code execution.

Example pattern. The following code includes a loop. Examine the code and answer
the following questions:

(i) For what values of x and y will the loop not be executed at all?
(ii) For what values of x and y will the loop be executed exactly once?

(iii) For what values of x and y will the loop never end?

Discussion. This type of questions requires the student to understand the given code
as a whole. Therefore, a higher level of thinking is needed in order to solve such ques-
tions than that needed to solve a tracing question. ”Code execution analysis” questions
relate mainly to two cognitive skills: (1) understanding programming structures; and (2)
understanding the logic of a given code. Note that instructions (4) or (5) presented in the
discussion of Type 3 questions – Tracing a given solution – can also be viewed as code
execution analysis tasks.

Type 5: Finding the Purpose of a Given Solution

Description. A given code or algorithm to an unknown problem is presented and the
student is asked to state the purpose of the solution – to determine what problem it solves.

Example pattern. Examine the given method and find the target of the method, that
is, what is the problem that the method solves?

Variations. A ”Finding the purpose of a given solution” question can relate to either:
(a) a sequence of instructions; (b) a single method (like in the above example pattern); (c)
a full program; or (d) a class of objects.

Discussion. Solving this type of questions requires a set of cognitive skills. In addi-
tion to an understanding of the code execution and the ability to trace it, a unique un-
derstanding and a unique skill, are required. These questions are considered harder than
developing a solution for the same problem that the code solves. One reason for this is
the need to comprehend someone else’s way of thinking. To help students and guide them
in solving this type of question, questions can contain scaffolding sub-questions. For ex-
ample, a question can include several ”Trace a given solution” sub-questions in the form
of the instructions presented in the discussion of Type 3 questions, aimed at guiding the
students to discover what the purpose of the code is.

Type of Questions – The Case of Computer Science 121

Type 6: Examining the Correctness of a Given Solution

Description. A given problem and its solution are presented. The student is asked to
determine whether the given solution is a correct solution to solve the given problem.

Example. The following method was written by a student as a solution for the fol-
lowing problem: Write a method that accepts an array of integers as input and returns
true if all of the array’s values are identical or false if they are not. Is the method cor-
rect?

public static boolean equalsValues (int[] arr) {
for (int i = 0; i <arr.length; i = i + 2) {

if (arr[i] != arr[i + 1])
return false;

}
return true;

}

Variations. This type of question can be presented for different types of tasks: (a) state
whether a given solution to a given problem is correct (as in the above example); (b) check
whether a given solution is correct and explain your answer; (c) if the given solution is
incorrect, give an example of an input that demonstrates its incorrectness; (d) if the given
solution is incorrect, give an example of an input that will lead to a correct output, which
could then lead to the conclusion that the given solution is correct; (e) if the given solution
is incorrect, correct the solution by implementing the minimal required changes (without
the ”minimal” restriction, students may present a totally different solution); or (f) the
given solution may contain more than one mistake, and the question may or may not state
that explicitly.

Discussion. In order to solve this type of question, students should apply logic al-
gorithmic thinking skills. Here, as in Type 5 questions, students must analyze a solution
that may not correspond with their own way of thinking had they been asked to suggest a
solution. However, since the purpose of the solution is given, these tasks are considered
to be easier than Type 5 questions.

In the given example, the two minimal required corrections are: (i) change the in-
crement of variable i to 1 (instead of 2); and (ii) change the range of variable i to i <

arr.length −1. Correction (i) is based on a logical consideration of the solution, while
correction (ii) involves addressing the array index, which is a more technical considera-
tion.

Additional variations of correctness questions may address syntactic mistakes. Such
questions should be posed while introducing new instructions or structures. I do not rec-
ommend, however, using them at more advanced stages since they do not reflect an un-
derstanding of the algorithmic problem, and the compiler in fact directs the debugging of
such mistakes.

122 N. Ragonis

Type 7: Completing a Given Solution

Description. A given problem and an incomplete solution of it are presented; some
of the solution instructions are missing. The students are asked to complete the missing
instructions so that the solution actually will solve the problem.

Example. The following method was written by a student as a solution for the fol-
lowing problem: Write a method that accepts an array of integers as input and returns the
number of array elements that are greater than their two neighbors (the previous element
and the subsequent element in the array).

public static int numberOfBiggers (int[] arr) {
______________ ;
for (int i =_____ ; i<_____ ; i + +) {

if (____________)
___________ ;

}
return _________ ;

}

Variations. A ”Completing a given solution” question can vary in the extent to which
instructions are missing. The number of missing instructions should be decided on, taking
into consideration the effect on the question’s difficulty and complexity. For example, if
the objective is to focus on the use of a Boolean flag, the missing instructions should
only be those that relate to the flag; or, if the loop limits are the target, the limits should
be missing and perhaps the increase in the loop control variable as well. The extent of
missing instructions is quite significant in the above example.

Discussion. This type of question also requires students to understand the logic of
the given solution. Question difficulty is determined according to the students’ level and
stage of learning although for each subject there is a relatively simple completion of a
given solution for which the logic of the solution is straightforward and not so difficult to
understand. Still, other, more challenging questions exist and instructors should be aware
of this potential complexity. For example, asking students to complete instructions for a
given bubble sort algorithm with missing meaningful instructions without introducing the
rational of this sorting approach, is considered a difficult question.

In general, the missing instructions can relate to one or more aspects of the algorithm
and the instructor should consider whether to focus on one or more aspects. In the above
example, the missing instructions involve three aspects of the algorithm: the counter con-
trol (initializing, increasing, and returning); the range of the loop (the first and the last
array elements should not be accessed in the loop because they do not have two neigh-
bors); and the specific condition to be checked.

Type 8: Instruction Manipulations

Description. A problem and its solution are given. Students are asked to address dif-
ferent manipulations performed on the solution.

Type of Questions – The Case of Computer Science 123

Example. The following method is a version of a selection sort solution.
public static void selectionSort (int[] arr) {

int p, temp;
(1) for (int i = 0; i < arr.length −1; i + +) {
(2) p = i;
(3) for (int j = i + 1; j <arr.length; j + +) {

if (arr[j] < arr[p])
p = j;

}
(4) if (p! = i) {

temp = arr[i];
arr[i] = arr[p];
arr[p] = temp;

}
}
}

Answer the following questions and explain your answers:

(i) Will the algorithm correctness be affected if the instruction in line (2) is removed
and the instruction in line (3) is replaced by the following instruction:

(3) for (int j = i; j <arr.length; j + +) {
(ii) Will the algorithm correctness be affected if the instruction in line (4) is removed

and the contents of the two array elements are exchanged anyway?
(iii) Will the algorithm correctness be affected if the entire body of the loop (1) (lines

2–4) is replaced by the following instructions?
for (int j = i + 1; j <arr.length; j + +) {

if (arr[j] < arr[i]) {
temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;

}
}

Variations. A ”Manipulation of instructions” question can involve: (a) adding instruc-
tions; (b) removing instructions; (c) changing instructions; or (d) replacing instructions.
The question can address the target of a specific code or the tracing of the changed code,
or it can examine differences between outputs.

Discussion. Questions that manipulate an existing solution enable students to focus
on the more meaningful aspects of the algorithm. Course instructors can then lead a dis-
cussion of such manipulations in order to clarify the essence of a given solution, as well
as other computer science topics. For instance, a discussion about a change made to in-
structions can also highlight the concept of generalization. Students can be instructed to
make a slight change to a given method so as to generalize the original method and solve
a broader task. For example, a method that sorts array can be changed slightly so that it

124 N. Ragonis

sorts a section of the array between two given indexes. After the change, the method is
more general and can sort different sections of an array, as well as the entire array (with
the indexes 0 and the array length −1).

Type 9: Efficiency Estimation

Description. Students are required to estimate the efficiency of a given solution.
Example pattern. Estimate the efficiency of a given method in terms of Big-O nota-

tion. Explain your analysis.
Variations. This type of questions can be presented on different levels of cognitive

complexity: (a) an example pattern that enables an early discussion on efficiency is: Focus
on the loop in a given method, how many times is it executed? The following variations
are more complicated: (b) estimate the efficiency of a specific method (as in the example
pattern); (c) estimate the efficiency of a method that invokes another method, taking into
account the efficiency of the invoked method; (d) compare the efficiency of different
methods that solves the same task; (e) estimate the efficiency of a recursive method; or
(f) develop a solution with a required specific efficiency.

Discussion. Questions that require students to relate to efficiency can be integrated
quite early on in the teaching and learning processes. Instructors should not wait till they
teach complicated algorithms in order to teach the concept of efficiency. Questions, such
as that presented in variation (a), demonstrates the basic idea of the efficiency concept,
which, in general, is considered to be abstract and difficult to understand.

Note that variation (f) is actually a development question (Type 1) with an efficiency
restriction that requires a combination of cognitive skills. Students should not be satisfied
with finding an algorithmic idea that solves the given problem; rather, they should esti-
mate its efficiency and if it does not satisfy the restriction mentioned in the question, they
should seek a different solution.

Type 10: Question Design

Description. Students are asked to design a question on their own.
Example 1. Design a question that checks the understanding of the sort-merge algo-

rithm.
Students’ answers to this question (which are questions) can be based, for example,

on tracing regular and/or extreme cases.
Example 2. Design a question whose solution requires the use of a method that finds

the most frequent value in an array.
An example of such a question is: Write a method that for each of a school’s 10th

grade classes, accepts student grades on a computer science test as input and returns the
frequent grade in each class.

Variations. A design question can relate, among other things, to: (a) clauses in a given
question. Students are asked to compose additional clauses for a given question that, in
their opinion, help clarify some extreme case; (b) a question whose solution requires the
use of a given method (see above Example 2); (c) a question that checks the understanding

Type of Questions – The Case of Computer Science 125

of a specific concept or algorithmic idea (see above Example 1); or (d) an entire test or
worksheet that examines a specific learning unit.

Discussion. This type of question changes the learners’ point of view. In addition
to the experience gained by examining a question from an instructor’s point of view, it
encourages the students to think about the learning concepts. It leads learners to reflect
on what was learnt, the main involved concepts, the sub-contents of the concepts, and
furthermore, to think about checking their own understanding. In addition, the design of
questions is a kind of active learning that encourages creativity.

Type 11: Programming Style Questions

Description. Students are asked to examine the programming style of different solu-
tions proposed for the same task.

Example pattern. Look at the different, correct solutions for a given problem. Ex-
amine the solutions and state, in your opinion, which is the best solution. Explain your
choice.

Variations. The different solutions given for the problem should differ in one aspect
only, according to the instructor’s decision, such as: (a) different kinds of loops; (b) the
need to use an array for the solution; or (c) different algorithmic approaches (for exam-
ple: giving two correct solutions to a problem and asking the students which of them is
”nicer” and why). If the instructor decides to integrate several aspects into the question,
the different aspects can be presented explicitly in the question and the students can be
asked to address the solutions according to each aspect. Alternatively, the students can be
asked, first to address the different aspects and then discuss the solutions themselves.

Discussion. This type of question enables to discuss various aspects of programming
styles, while comparing different solutions. The different aspects can be for example:
modularity, complexity, programming style, readability, or memory uses. Such a discus-
sion can increase the abstraction level of student thinking.

Type 12: Transforming a Solution from One Representation to Another

Description. A problem and its solution are presented to the students in a specific
syntax or paradigm, and the students must transform the solution into a different syntax
or paradigm.

Example pattern 1. The given loop is implemented using a while loop structure.
Transform the loop so that it is implemented by a for loop structure.

Example pattern 2. The given method is implemented using a while loop structure.
Transform the method into a recursive method that achieves the same target.

Example pattern 3. The following method sorts an array of integers according to
the imperative approach implemented in Java. Transform the method so as to reflect the
functional approach and implement it in Scheme.

Variations. The different representations can be: (a) between programming paradigms
(as in Example pattern 3); (b) within the same programming paradigm but between pro-
gramming languages; (c) within the same programming language but between structures

126 N. Ragonis

(as in Example pattern 2 or, for example, the transformation from a nested if statement
to a switch-case statement); or (d) within the same programming language but between
different algorithmic approaches (as in Example pattern 2).

Discussion. The focus of this kind of question should be placed on qualitative aspects
rather than syntactical aspects, where qualitative aspects mean, for example, problem
analysis according to two different programming paradigms or the transformation of an
imperative solution into a recursion solution in the same programming language. Such
tasks require abstract thinking processes.

Similar to the ”programming style questions” (Type 11), qualitative transformation
questions enable to concentrate on core computer science concepts. Such questions lead
students to explore different ways of thinking in problem-solving situations. Since this
kind of question demands a high level of abstraction, it is not necessary suitable for all
students. Obviously, transformations between two programming paradigms can be carried
out only after the two said programming paradigms have been learned.

It is my opinion that transformations that involve only syntactic issues, for example,
from pseudo-code to any formal language, do not involve problem-solving skills. Such
tasks may be required in order to practice ways of writing, but they do not involve mean-
ingful CS concepts.

5. Global Aspects of Question Types

In this section, I present three additional approaches to questions. The first involves com-
bining several types of questions, the second refers to story questions, and the third to
closed questions. The three approaches can be applied to most of the twelve question
types presented above.

Combining Several Types of Questions

Despite the attempt to uniquely classify computer science questions in the above list
of question categories, in most cases questions are a combination of several types, as
the following example illustrates (while others may not be classifiable by the presented
collection at all).

Example. The target of Methods A and B presented in Fig. 1 is to determine whether
or not an integer n is a prime number.

Following is a list of questions that can be asked separately or in any combination
according to the pedagogical purposes of the instructor.

(i) Check the correctness of the solutions. Do they solve the problem?
Type6: correctness.

(ii) What is the purpose of each method? (in case the problem is not indicated).
Type5: find the purpose.

(iii) Trace each method given n = 19.
Type3: trace.

Type of Questions – The Case of Computer Science 127

//Version A
public static boolean prime (int n) {

for (int i = 2; i < n; i + +) {
if (n%i == 0)

return false;
}
return true;

}
// Version B

public static boolean prime (int n) {
if (n%2 == 0)

return false;
for (int i = 3; i < n; i = i + 2) {

if (n % i == 0)
return false;

}
return true;

}

Fig. 1. Combining several types of questions.

(iv) For each method, determine how many times the loop is executed for n = 19.
Type4: code execution analysis.

(v) Find a value of n for which the loop in Version B is executed 10 times. Is there only
one answer?
Type4: code execution analysis.

(vi) What is the efficiency of each of the two methods?
Type9: efficiency.

(vii) Is the solution still correct if you change the upper loop limit in Version B to n/2
instead of n? If it is, what is the method efficiency after the change?
Type8: manipulation; Type6: correctness; Type9: efficiency.

(viii) Is the solution still correct if you change the loop limit in Version B to
√

n instead
of n? If it is, what is the method efficiency after the change?
Type8: manipulation; Type6: correctness; Type9: efficiency.

Story Questions

Questions can literally be divided into two types: pure-algorithmic tasks and narrative-
algorithmic tasks. Pure-algorithmic tasks are problems that directly and explicitly ad-
dress program structures and program variables, and present the task in that context.
Narrative-algorithmic tasks are problems that do not directly address either the required
program structures or the required program variables; the problem to be solved is em-
bedded in a story and in order to solve it, learners must recognize both what is given and

128 N. Ragonis

Table 1

Tasks presented as pure-questions and as narrative-questions

Task Pure question Narrative question

Find the maximum of
a list of numbers.

Write a method that accepts a list
of integers as input and returns the
maximum value of the list.

During a sports day, each of the 30 students
in 5 classes participated in two competitions,
the high jump and the long jump. Write a
program that inputs, for each class, each stu-
dent’s two results, and outputs the best high
jump result and the best long jump result for
each class.

Check whether a
given array is sorted.

Write a Boolean method that ac-
cepts an array as a parameter and
returns a Boolean value if the array
is up-sorted.

A teacher wishes to encourage her or his stu-
dents, and so gives them special certificates
if their test scores improve. Write a method
that accepts the list of each student’s grades
as input and determines whether he or she
deserves a certificate of recognition.

Exchange characters
with their successive
characters according
to the Unicode table.

Write a method that accepts an ar-
ray of characters as a parameter and
changes the array so each character
is replaced by its successive charac-
ter according to the Unicode table.

A message that is to be sent between finan-
cial partners must be encoded. The message
includes words, spaces, and periods. Write a
method that accepts a string with a message
as a parameter, and returns a coded message
in which each letter is replaced by its succes-
sive letter according to the ABC. The letter Z
is to be replaced by the letter A. Spaces and
periods remain unchanged.

what the target of the problem is. Specifically, learners should decide which elements are
relevant to solving the problem and which are irrelevant. Most of the examples presented
in the list of question types are pure examples in which the task is presented directly.
Table 1 presents several tasks as both pure-questions and as narrative-questions.

It is important that CS educators are aware of the differences between the problem-
solving skills required to solve pure-questions as opposed to narrative-questions. A pure-
algorithm question directs the learner to the core of the task; in narrative question, on the
other hand, students must reveal the task and determine what the specific assignments
are. Since in the real world, most problems are based on narratives, solving this type of
questions is an important skill that computer science students should acquire. Still, these
questions are usually more complicated.

When teaching new computer science content, I recommend that several stages be
followed in which questions of the two types are addressed. First, present a story that
embeds the new learned topic so that the class grasps the essence and target of the new
topic, which will enhance their programming tool arsenal. Second, focus for a while on
pure-questions to enable a gradual knowledge construction process of the new tool or
structure in the context of programming. Finally, integrate narrative questions into the
subsequent stages of the teaching process.

Type of Questions – The Case of Computer Science 129

Closed Questions

The common concept of closed questions refers to questions that present a list of possible
answers of which the learner is expected to choose and mark one. The most frequently
encountered types of closed questions are multiple choice questions and true/false ques-
tions. In fact, what really is ”closed” are the answers, not the questions. The twelve ques-
tion types presented above could be discussed in terms of questions: (a) that can be pre-
sented naturally only as open questions, where learners must present their own answers;
or (b) that can be presented naturally as either open questions or closed questions, where
the learners must choose and mark an answer from a set of given answers.

In what follows, the 12 types of questions is divided into groups with relation to the
option to be presented as closed questions or not.

• Types of questions that can be presented as closed questions
The types of questions that can be presented naturally as closed questions are:
Type3 – Tracing a given solution; Type4 – Code execution analysis; Type5 – Find-
ing the purpose of a given solution; Type6 – Examining the correctness of a given
solution; and Type9 – Efficiency estimation.
Example. A closed question of Type6 can give a list of methods that aim to solve
the same task. The learner is asked to indicate for each such method whether or not
it is correct.

• Types of questions that can not be presented as closed questions
The types of questions that can not be presented naturally as closed questions are:
Type1 – Developing a solution; Type2 – Developing a solution that uses a given
module; Type10 – Question design; Type12 – Transforming a solution from one
representation to another.
These types of questions obviously require that the learner develops a solution that
satisfies the instructions.

• Types of questions that can not be presented naturally as closed questions
The remaining types of questions can be presented as closed questions but this is
not their natural form: Type7 – Completing a given solution; Type8 – Instruction
manipulations; Type11 – Programming style questions.
Example. A closed question of Type7 can give a list of optional instructions to be
added to a given code that solves a given task in a specific place. Students are asked
to indicate which of them is suitable to be added.

6. Applying the Different Question Types to Different CS Contents

As stated above, the question types presented in this paper relate to programming-like
questions; still, most of these types can be implemented on other CS contents as well.
Table 2 displays specific variations of the twelve question types as could be implemented,
for instance, in the field of Automata Theory.

130 N. Ragonis

Table 2

Question types and representative examples in automata theory

Type of question Example pattern

Type 1: Developing a solution Design a finite automaton A that recognizes regular language L.

Type 2: Developing a solution that
uses a given module

Given finite automaton A1 that recognizes language L1 and finite au-
tomaton A2 that recognizes language L2, design a finite automaton that
recognizes the language L1 ∪ L2.

Type 3: Tracing a given solution Given a pushdown automaton P and the word w, show the sequence of
states that P goes through when processing w.

Type 4: Code execution analysis Given a finite automaton A, find:
– a word whose processing will terminate in an acceptable (final)

state;
– a word whose processing will terminate in an unacceptable (not

final) state;
– a word whose processing will terminate in the trap state.

Type 5: Finding the purpose of a
given solution

Given a Turing machine T, determine what language it processes.

Type 6: Examining the correctness
of a given solution

Does Turing machine T recognize language L?

Type 7: Completing a given solu-
tion

Complete the pushdown automaton P so it recognizes language L.

Type 8: Manipulating instructions Given a Turing machine T , what language does the machine recognize
if the path from state q1 to state q2 is replaced by the following given
path?

Type 9: Estimating ”efficiency” Given a finite automaton A that recognizes language L, find a different
finite automaton that recognizes the same language with fewer states.

Type 10: Designing a question Design a question that requires the presentation of a BNF grammar for
an irregular language.

Type 11: ”Programming” style
questions

Given three different pushdown automatons that recognize language L,
examine the automatons and state which of them, in your opinion, is
more ”qualified”.

Type 12: Transforming a solution
from one representation to another

Given a Turing machine T , present a BNF grammar that expands the
same language.

7. Summary

This paper explores and discusses variety of types of questions that can be used by com-
puter science educators in different teaching situations. The paper illuminates the impor-
tant role computer science educators have in introducing their students to different types
of questions that can be used alongside learning-teaching processes. The exploration of
different types of questions and their variations deepens students’ understanding of the
learnt computer science concepts and help them acquire a variety of cognitive skills. It
also provides different learners with the opportunity to express their knowledge, which is

Type of Questions – The Case of Computer Science 131

elicited by different sorts of questions, and to refine their understanding of complex con-
cepts. Furthermore, the use of a variety of question types provides intellectual challenges
and maintains learners’ concentration, interest, and motivation.

Further work can be done to analyze the types of questions identified according to
known taxonomies.

Acknowledgments. Many thanks to Prof. Orit Hazzan and Dr. Tami Lapidot, my col-
leagues at the Technion – Israel Institute of Technology, for their helpful review and for
encouraging me to publish this work.

References

Anderson, L.W., Krathwohl, D.R., Airasian, P.W., Cruikshank, K.A., Mayer, R.E., Pintrich, P.R., Raths, J.,
WITTROCK, M.C. (Eds.) (2001). A Taxonomy for Learning and Teaching and Assessing: A Revision of
Bloom’s Taxonomy of Educational Objectives. Addison Wesley Longman.

Batory, D., Sarvela, J.N., Rauschmayer, A. (2004). Scaling step-wise refinement. IEEE Transactions on Soft-
ware Engineering, 30(6), 355–371.

Bloom, B.S., Engelhart, M.D., Furst, E.J., Hill, W.H., Krathwohl, D.R. (1956). Taxonomy of Educational Ob-
jectives Handbook 1: Cognitive Domain. London, Longman Group Ltd.

Brand-Gruwel, S., Wopereis, I., Vermetten, Y. (2005). Information problem solving by experts and novices:
analysis of a complex cognitive skill. Computers in Human Behavior, 21(3), 487–508.

Byckling, P., Sajaniemi, J. (2006). A role-based analysis model for the evaluation of novices’ programming
knowledge development. In: Proceedings of the Second International Workshop on Computing Education
Research (ICER’06), Canterbury, United Kingdom, 85–96.

Chamillard, A.T., Braun, K.A. (2000). Evaluating programming ability in an introductory computer science
course. In: Proceedings of the Thirty-First SIGCSE Technical Symposium on Computer Science Education
(SIGCSE ’00), Austin, Texas, United States, 212–216.

English, J., Rosenthal, T. (2009). Evaluating students’ programs using automated assessment: a case study.
In: Proceedings of the 14th Annual ACM SIGCSE Conference on Innovation and Technology in Computer
Science Education (ITiCSE ’09), Paris, France, 371–371.

Ginat, D. (2003). The novice programmers’ syndrome of design-by-keyword. In: Proceedings of the 8th Annual
ACM SIGCSE Conference on Innovation and Technology in Computer Science Education (ITiCSE ’03),
Thessaloniki, Greece, 154–157.

Ginat, D. (2009). Interleaved pattern composition and scaffolded learning. In: Proceedings of the 14th Annual
ACM SIGCSE Conference on Innovation and Technology in Computer Science Education (ITiCSE ’09),
Paris, France, 109–113.

Jones, K.O., Harland, J., Reid, J.M., Bartlett, R. (2009). Relationship between examination questions and
Bloom’s taxonomy. In: Proceedings of the 39th IEEE International Conference on Frontiers in Education
Conference, San Antonio, Texas, USA, IEEE Press, Piscataway, NJ, 1314–1319.

Muller, O., Ginat, D., Haberman, B. (2007). Pattern-oriented instruction and its influence on problem decom-
position and solution construction. ACM SIGCSE Bulletin, 39(3), 151–155.

Pomerantz, J. (2002). Question types in digital reference: an evaluation of question taxonomies. In: Proceedings
of the 2nd ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL ’02), Portland, Oregon, USA, ACM,
New York, NY, 404–404.

Sajaniemi, J. (2005). Roles of variables and learning to program. In: Jimoyiannis, A. (Ed.), Proceedings of the
3rd Panhellenic Conference ”Didactics of Informatics”, , University of Peloponnese, Korinthos, Greece.
Available at: http://cs.joensuu.fi/∼saja/var_roles/abstracts/didinf05.pdf
[Last access at March 29, 2012].

Spacco, J., Hovemeyer, D., Pugh, W., Emad, F., Hollingsworth, J.K., Padua-Perez, N., (2006). Experiences with
marmoset: designing and using an advanced submission and testing system for programming courses. In:
Proceedings of the 11th Annual SIGCSE Conference on Innovation and Technology in Computer Science
Education (ITICSE ’06), Bologna, Italy, ACM, New York, NY, 13–17.

132 N. Ragonis

Sorva, J., Karavirta V., Korhonen, A. (2007). Roles of variables in teaching. Journal of Information Technology
Education, 6, 407–423.

Thompson, E., Luxton-Reilly, A., Whalley, J., HU, M., Robbins, P., (2008). Bloom’s taxonomy for CS as-
sessment. In: Proc. Tenth Australasian Computing Education Conference (ACE 2008), Wollongong, NSW,
Australia. CRPIT, 78. In: Simon and Hamilton, M. (Eds.), ACS, 155–162.

Vasconcelos, J. (2007). Basic strategy for algorithmic problem solving. Retrieved from:
http://www.cs.jhu.edu/∼jorgev/cs106/ProblemSolving.html [Last access at June 2,
2010].

Venables, A., Tan, G., Lister, R., (2009). A closer look at tracing, explaining and code writing skills in the
novice programmer. In: Proceedings of the Fifth International Workshop on Computing Education Research
Workshop (ICER ’09), Berkeley, CA, USA, ACM, New York, NY, 117–128.

Yng, A., Wu, J., Wang, L. (2008). Research and design of test question database management system based on
the three-tier structure. WTOS, 7(12), 1473–1483.

N. Ragonis is the chair of the Curriculum Committee and academic
advisor, School of Education, Beit Berl College. She is a lecturer in the
Department of Computer Science, and served for ten years as the head
of the Department. Teaches courses related to computer science (e.g.,
OOP, graph theory, computational models), to the didactics of computer
science and to information technologies such teaching and learning in

online environments and query learning with spreadsheets. She is also adjacent senior
lecturer, Department of Education in Technology and Science, Technion – Israel Insti-
tute of Technology. Her activities in the past twenty years concerns: educational research
mainly focused on cognitive aspects of teaching and learning of computer science and
integrating tutoring activities in teachers education; in-service teachers training; develop-
ment of high school text books as well as teachers guides; and serve as a member of the
management staff of ”Machsava” (Thought), the Israeli National Center for High School
Computer Science Teachers, Technion – Israel Institute of Technology and Weizmann
Institute of Science.

