
Olympiads in Informatics, 2011, Vol. 5, 3–11 3
© 2011 Vilnius University

Algorithmic Problem Solving and
Novel Associations

David GINAT
Tel-Aviv University, Science Education Department
Ramat Aviv, 699978 Tel-Aviv, Israel
e-mail: ginat@post.tau.ac.il

Abstract. We elaborate on the essential role of novel associations between recognized task patterns
and invoked algorithmic schemes, during algorithmic problem solving. We display three algorith-
mic tasks of different levels of difficulty, and characterize them by their required pattern-scheme
associations. We display diverse student solutions to the tasks, which reflect different levels of com-
petence; and suggest a series of considerations of which tutors should be aware upon selecting and
posing algorithmic challenges to students.

Key words: problem solving, patterns, algorithmic schemes.

1. Introduction

The domain of algorithmic problem solving involves tasks of different levels of diffi-
culty. The less challenging tasks involve straightforward analysis and familiar utiliza-
tions of algorithmic schemes (templates, or design patterns; Astrachan et al., 1998; Linn
and Clancy, 1992). The more challenging tasks require insightful observations and more
involved utilizations of such schemes. A primary objective of a tutor who poses more
challenging tasks is to examine whether problem solvers reach suitable observations,
and associate them with corresponding compositions of algorithmic schemes. The corre-
sponding compositions may derive from novel associations between observed task pat-
terns and the composed schemes.

For example, one basic, familiar scheme is that of Binary Search, which is commonly
employed on an ordered list of input values. Yet, it may be used in less familiar ways, such
as searching in a range of successive integer values (e.g., a sequence of guesses, in which
the answer for each guess is “got it”, “too low”, or “too high”). The less familiar ways may
be obvious to an experienced problem solver, but may require some novel associations
from an inexperienced one, who is only acquainted with Binary Search on a list.

In the design of challenging tasks, which are aimed for competitions of algorithmic
problem solving, a task designer would usually like to examine contestants’ original asso-
ciations, in less familiar or even novel ways. Such associations are essential components
of competition tasks. The objective of this paper is to elaborate on this notion through
some examples, and characterize differences between problem solvers who reach such
associations and problem solvers who do not.



4 D. Ginat

In the next section we display three tasks that require associations, which in our expe-
rience are less familiar to students. We usually pose these tasks during the beginning of
our second stage (top 40 students) of our Olympiad activities. The tasks are used for both
evaluating the students’ problem solving abilities and teaching them implicit elements
of problem solving. The students offer solutions that involve different levels of compe-
tence, which reflect various associations (or lack of associations) between observed task
patterns and employed algorithmic schemes. We display for each task its diverse student
solutions.

We conclude with a discussion section, in which we suggest a series of considerations
that arise from the displayed tasks and the student solutions. Tutors’ awareness of these
considerations may assist teaching and learning in general, and the design, selection, and
characterization of challenging tasks in particular.

2. Novel Associations in Algorithmic Tasks

In what follows, we present three algorithmic tasks, of different levels of difficulty, which
require novel associations. In the solution of each task, one has to recognize patterns on
which to capitalize, invoke a suitable algorithmic scheme, and employ it in a rather less fa-
miliar way. The difficulty of each task stems from the task’s hidden patterns and the novel
associations required for invoking and employing the suitable algorithmic schemes. The
more difficult it is to recognize the patterns and yield the associations, the harder the task.

The first task involves a simple pattern and simple scheme utilization. The second
involves a hidden pattern and a sub-component of a familiar (though slightly subtler)
scheme. The third task also involves a hidden pattern and a feature of a familiar scheme,
but the feature is an implicit characteristic of the scheme, rather than an explicit sub-
component. Each task is presented in a separate subsection. After the presentation of
each task, we first describe our experience with unsuitable allies that were followed by
some of the students, and then present the suitable solutions, obtained by other students,
which derive from novel associations.

2.1. Simple Patterns and Simple Schemes

The following task is known as the Longest Stuttering Subsequence Problem. One solu-
tion of the task is rather simple, and another is much more involved (Mirzaian, 1987b). We
aimed at the simple solution. Although simple, it still requires some association, which
in our experience is not straightforward to all problem solvers.

Longest Stuttering Subsequence. Given a string A, of length n, and a string B, of
length m, where m � n; output an integer k, which indicates the largest stuttering
of B in A. We say that B is stuttered in A j times, if A contains j (not necessarily
adjacent) appearances of the 1st symbol of B, followed by j appearances of the 2nd
symbol of B, . . . followed by j appearances of the last symbol of B.
For example, if A is 002332256233263 and B is 23, then the longest stuttering of B
in A is 3. If B is 236, then the longest stuttering is 1.



Algorithmic Problem Solving and Novel Associations 5

It is clear that the output cannot exceed the value of n/m. In our experience, students
approached this task in three different ways. They all noticed the stuttering characteristics
that, “if there is no stuttering of size k, then there is no stuttering of size larger than k”.
But, they associated this observation with very different schemes.

One approach was based on backtracking, and involved very little capitalization on
the task characteristics. The programs of these students were composed of two stages:
their first stage calculated the number of appearances of each symbol of B in A, and
determined an upper bound for the output (which may be smaller than n/m). Then, they
scanned A, up to that bound, with the 1st symbol of B, followed by the 2nd symbol of B,
and so on. If the scan reached a point were this bound could not be met by one of these
symbols, then the program backtracked to an earlier symbol in A, and retried the scan
with a smaller stuttering bound. Unfortunately, this “operational” approach is inefficient,
and its implementation is error-prone.

The second approach was better related to the simple stuttering characteristic mention
above, and involved linear search for the largest stuttering value. These students’ algo-
rithm started either from 1, or (descended) from n/m. For every considered stuttering
size, j, they checked its validity. Correct, but still inefficient.

The students of the third approach capitalized elegantly on the stuttering characteristic
and associated the above recognized pattern with the scheme of Binary Search. Their
solution obtained the largest stuttering value much more efficiently. They noticed that
Binary Search on k, the stuttering metric, is relevant here, even though their familiarity
with Binary Search mostly involved its application on an ordered list of arbitrary values.
They demonstrate some novel associations.

The time complexity of the latter computation is O(n log(n/m)). The more involved
solution of this task (Mirzaian, 1987b) is based on the halving method, employed in the
domain of VLSI (Mirzaian, 1987a), which was beyond the scope of our training. Its time
complexity is O(n).

In retrospect, we may notice that the students who followed the first approach, of
backtracking, expressed an “operational” (“how to do”) perspective, with no underlying
pattern. The students who followed the second approach did relate to the simple task pat-
tern, but did not associate it with the most suitable algorithmic scheme. Such association
was demonstrated only by the students of the third approach.

2.2. Hidden Patterns and Scheme Sub-Components

The second task that we display is more involved. It is related to the notions of list or-
dering and list inversions (Ginat and Garcia, 2005). Like the previous task, here too, we
experienced several solution approaches, based of different levels of insight and associa-
tions.

Widest Inversion. Given a list of N distinct integers, output the width of the widest
inversion; that is, the distance between the two unordered elements that are furthest
from one another (e.g., for the input 2 5 1 9 4 7 the output will be 3 – the distance
between 5 and 4.)



6 D. Ginat

Students approached this task in four different ways. One way was based on the ex-
haustive computation of directly finding for each element e the furthest element to its right
that is smaller than e. The other three solution approaches were more efficient, though not
always correct.

Students felt that there is an efficient solution to this task, and some attempted a greedy
solution. This solution was not based on any recognized pattern, but rather on a variant
of a sub-component of Quick Sort, in which two pointers are “run” concurrently from the
two ends of the list. One pointer is set to the left-end of the list and the other – to the right-
end. They are advanced concurrently “inwards”, one step at a time, until an inversion is
found, or until they meet; then, these pointers are advanced separately “outwards”, and
the output is the widest inversion found in this process.

This two-stage scan – first “inwards” and then “outwards” – yields the correct result
for the input 2 5 1 9 4 3. But, does it yield the correct output for all inputs? Not quite.
The input: 7 2 4 17 6 5 13 10 18 19 falsifies this scheme, as the “inwards” scan stops
when the pointers are at <17,13>, and the folowing “outwards” scan yield the inversion
<17,10> as the widest inversion. Yet, this is not the widest inversion (the widest inversion
is <7,5>). Some students who realized examples that falsify this approach tried to patch
their solutions with some “local patches”, which did not really improve the situation.

The third approach we observed was based on relevant insight. Some students noticed
that it may be beneficial to look at location differences instead of value differences, as
the widest inversion is tied to the largest location difference between unordered elements.
Thus, if we know the location of the lowest element in the original list, and the location
of the second-lowest in the original list, and so on, then the task may actually be reduced
to a task of finding the “largest drop” among these locations.

We exemplify the latter idea, of transforming the point of view into a “location dif-
ferences” task, with the list 7 2 4 17 6 5 13 10 18 19 above. We create a list of element
locations. The locations-list for the above list is: 2 3 6 5 1 8 7 4 9 10. (the location of 2 is
2, the location of 4 is 3, the location of 5 is 6, . . . the location of 19 is 10). Notice that the
latter list is a permutation of the integers 1. . .10. We now have to calculate the “largest
drop” in this permutation; that is, the maximal difference between two values such that
the first among them is larger than the second. The largest drop is obtained from 6 and 1;
and this indeed yields the widest inversion <7,5>.

The above insightful point of view may be tied to two algorithmic schemes – sorting
(for creating the locations-list) and calculating the “largest drop”. The former is of time
complexity O(N log N), and the latter – O(N). Thus, the observation of the pattern of an
equivalent task, of location differences, yielded a rather efficient solution of O(N log N).

Yet, one can still do better. Some students noticed the pattern that only some of the
integers in the original list may be candidates for the left-end or the right-end of the
widest inversion. For example, in the above list (7 . . . 19), the 2 cannot be the left-end
of the widest inversion, since 7 is larger and is on its left. By the same reasoning, none
of the integers 4, 6, 5, 13, and 10 are candidates for the left-end of the widest inversion.
Similarly, the 13 cannot be the right-end of the widest inversion, as 10, which is smaller,
is to its right. None of the integers 6, 17, and 7 are candidates for the right-end of the
widest inversion as well.



Algorithmic Problem Solving and Novel Associations 7

Upon examining the candidates for the left-end and the right-end of the widest inver-
sion, students noticed another pattern: the list of the left-end candidates and the list of the
right-end candidates are increasing from left to right. The list of the left-end candidates
is: 7 17 18 19. The list of the right-end candidates is: 2 4 5 10 18 19. (Notice that the
same integer may appear in both lists.)

At this point, students who recognized the above two patterns associated their obser-
vations with the sub-component of Merge Sort in which two lists are merged into one,
by scanning both lists concurrently. Thus, given the two increasing lists (of the left-end
candidates and the right-end candidates), we may scan both lists concurrently from left
to right, with two pointers, while finding for each left-end candidate its farthest right-end
match. (After the pointer on the left-ends list will be advanced to the next candidate, the
pointer on the right-ends list will be advanced as far as possible from its current location.)

The above solution may be implemented in O(N) time, as both the construction of
the lists of the left-end/right-end candidates, and the concurrent scanning, in a Merge Sort
manner are of O(N).

All in all, we may notice that the students who offered the first two solutions did
not recognize any pattern on which to capitalize. Those in the second group turned to
the “operational” Quick Sort idea, of “running” two pointers “inwards” from the two list
ends, but this idea was not based on any relevant observation (and actually yielded an
erroneous solution). The students of the latter two solutions did observe relevant patterns,
before devising their solutions, and capitalized on these patterns. Some of them associated
the original task with another task, which can be solved rather efficiently; and others
noticed two insightful patterns and associated their observations with a sub-component
of the familiar Merge Sort algorithm.

2.3. Hidden Patterns and Implicit Scheme Characteristics

The two previous tasks involved sequences. Their solutions involved explicit algorithmic
schemes or sub-schemes. The task displayed in this section involves graphs. It is also
related to a familiar algorithmic scheme, but the link between the task’s relevant pattern
and this familiar scheme is not as explicit as it was in the previous two tasks. Here, it is
implicit.

Non-Modulo-3 Cycle. Given an undirected graph of N nodes, where the degree of
each node is at least 3, output the following: if the graph includes a cycle of length
that is not a multiple of 3, then output such cycle; otherwise output “no such cycle”.

Students approached this task in two different ways. Both ways were based on the
very familiar scheme of DFS (Depth First Search; Manber, 1989). But, there was a big
difference between the two ways – one way was based on a most relevant pattern of this
scheme, and the other was not.

The vast majority of the students did not recognize any pattern that derives from the
task specifications. Being familiar with the notion of recognizing cycles in a graph by
back-edges of the DFS, they invoked DFS, in which every cycle discovered by a back



8 D. Ginat

Fig. 1. Three cycles with two back edges.

edge was checked. If a “non-modulo-3” cycle was found, then it was displayed; other-
wise, their algorithm notified that there is no such cycle in the graph.

Unfortunately, this hasty, “operational” design is incorrect, as there are graph cycles
that may not be examined. We illustrate it with the Fig. 1. If an edge “goes back” from
node v to node t, and another edge “goes back” from node u, which is a descendant of v

in the DFS tree, to a node s, which is on the tree path from t to v; then the algorithm will
not examine the cycle: u − s − −t − v − −u. (We use “−” to denote a single edge, and
“− −” to denote a path of one or more edges.)

Thus, the algorithm may notify “no such cycle” when there is actually such cycle.
Some students noticed this difficulty, and tried to patch a correction, by starting a separate
DFS from every one of the graph nodes. However, their patches, which still involved no
capitalization on the task characteristics, were also erroneous.

In order to solve the task correctly (and efficiently) one has to recognize a pattern
that arises from the task description. In the previous two tasks that we presented, the
recognized patterns did not derive from a particular algorithmic scheme that one would
have considered for solving the task. Here, it is different. The relevant pattern derives
from an implicit characteristic of the algorithmic scheme, DFS, which one would consider
for the solution.

During DFS, the computation reaches a node which is the end of a branch; i.e., a node
v from which the computation “returns up” in the DFS tree. A tree-edge leads to this
node. Since the degree of this node, v, is at least 3, there are (at least) two back edges
“going back” from this node to two nodes, u and w, in the DFS tree. These two back
edges yield three cycles: 1. v − w − −v; 2. v − u − −v, and 3. v − u − −w − v, as may
be seen in the Fig. 2.

It is easy to show that at least one of these cycles must be of a length that is not a
multiple of 3. The output will be that cycle (and once it is found, the DFS will halt).

Fig. 2. Three cycles with two back edges from an end of a DFS branch.



Algorithmic Problem Solving and Novel Associations 9

Very few students noticed this pattern. Those who did recognize it managed to asso-
ciate the task specification with the above implicit characteristic of DFS. These students
demonstrated a novel association that combined an “assertional” perspective, of pattern
recognition, with the natural “operational” view of DFS. Unfortunately, the majority of
the students failed to do so, and only applied a limited, “operational” perspective of DFS.

3. Discussion

We presented different algorithmic tasks that require various kinds of novel associations
in algorithmic problem solving. We displayed student solutions to these tasks, and re-
vealed strong correlation between problem solving competence and the recognition and
capitalization on novel associations. The required novel associations and the diverse stu-
dent solutions illuminate a series of considerations of which tutors should be aware in
designing and posing algorithmic challenges to students. We list and describe them be-
low.

• Operational and assertional perspectives. These two perspectives encapsulate
two different viewpoints of an algorithmic solution. The former focuses on “how”
should a computation be performed, and what are the algorithmic schemes that
describe the computation operations. The latter focuses on “what” are the char-
acteristics underlying the computation. Both perspectives are essential. While the
operational perspective is natural, the assertional perspective involves hidden pat-
terns, which may not be easy to unfold. Problem solvers should be aware of both
perspectives, and particularly seek characteristics on which to capitalize, and as-
sertions that capture solution behaviours (Disjkstra et al., 1989). Yet, our findings
reveal that students do not always demonstrate the latter. The more competent stu-
dents are well aware of seeking characteristics on which to capitalize, while the
less competent ones do not seek, or only partly seek them.

• Hastiness. The less competent students do not recognize sufficient task character-
istics. This phenomenon may derive from lower competence in unfolding hidden
patterns; but may also due to the undesired problem solving discipline of hastily
“jumping” to the composition of an algorithm, without conducting a suitable, thor-
ough task analysis. This could be seen with the less competent students in all our
examples – “jumping” into backtracking in the first task; “jumping” into the er-
roneous (Quick Sort based), greedy solution in the second task; and not seeking
any DFS characteristic in the third task. The particular occurrence of hasty greedy
solutions is described further in Ginat (2003).

• Lack of rigor. In algorithmic problem solving it is often the case that the problem
solver is not asked for any assertional argument regarding the correctness of her/his
solution. This may increase the possibility of erroneous solutions. Such an occur-
rence is particularly evident when students seek efficient solutions, which they are
unable to argue as correct. A typical example is displayed in our findings, of the
Quick Sort based solution to the second task.



10 D. Ginat

• Limited flexibility with familiar algorithmic schemes. One of the key ele-
ments in algorithmic problem solving is flexible utilization of familiar algorith-
mic scheme. The natural way to employ familiar schemes is by using them in a
way that is similar to the way(s) seen so far. But, sometimes the suitable way is
not analogous to previous experiences. The tasks in the three examples of this pa-
per illustrate this phenomenon. The first task required a less familiar utilization of
Binary Search; the second involved a variant of a sub-component of Merge Sort;
and the third task required an insightful observation and a corresponding flexible
utilization of DFS. The distinction between more competent and less competent
students is related to their demonstration (or no demonstration) of flexible utiliza-
tion of familiar schemes.

• Limited resources and heuristics. Challenging algorithmic tasks may require
problem solving resources and heuristics that are not always explicitly under-
lined to learners. The second task in this paper involved such elements. The el-
egant solution to this task involved the notion of “candidates”. This notion appears
in algorithmic tasks, such as the Celebrity and the Majority Problems (Manber,
1989), but it is not made explicit as a useful tool for algorithmic problem solvers.
So is the relevance of location characteristics rather than value characteristics in
list-processing tasks. This was the case in the relatively efficient solution to the
second task, which was transformed to a “location differences” task. One exam-
ple of such an occurrence appears in the elegant solution to the game task of
IOI ’96, of collecting numbers from the left-end and the right end of a given list
(http://olympiads.win.tue.nl/ioi/ioi96/contest/ioi96g.html). The heuristic of reduc-
ing a given task into another task is explicitly demonstrated in advanced CS topics
(e.g., NP-complete), mostly as a proof means. However, it may also be useful in
algorithmic problem solving, as occurred here in the relatively efficient solution to
the second task.

• Absent novel associations. Novel associations are related to all the above consid-
erations. Upon algorithmic problem solving, a problem solver should apply both
operational and assertional perspectives; employ careful task analysis; seek rele-
vant, rigorous patterns on which capitalize; flexibly tie them to the task at hand,
using explicit and implicit resources; and create novel associations that yield the
suitable elegant solution. Less competent and more competent students differ by
their employment of little, some, or much of the above, as could be seen in our
findings.

The three tasks presented in the previous section yielded diverse student solutions,
which were related to all the considerations described above. We referred in the paper
to all these considerations, but primarily focused on the latter one, of novel associations
between task patterns and familiar algorithmic schemes. We examined it through different
levels of difficulty, and characterized these levels with the three titles of the sub-sections
of the previous section. We believe that such characterization may be of benefit for task
designers, in describing characteristics of challenges posed to students. Yet, there may
be additional facets of characterization. The facet presented here may serve as an initial



Algorithmic Problem Solving and Novel Associations 11

facilitator for further ones, which may yield additional core characteristics of challenging
algorithmic tasks.

References

Astrachan, O., Berry, G., Cox, L., Mitchener, G. (1998). Design patterns: an essential component of CS curric-
ula. In: Proc. of the 29th SIGCSE Technical Symposium on CS Education, ACM, 153–160.

Dijkstra, E.W. et al. (2003). A debate on teaching computing science. Communications of the ACM, 32, 1397–
1414.

Ginat, D. (2003). The greedy trap and learning from mistakes. In: Proc. of the 34th SIGCSE Technical Sympo-
sium on CS Education, ACM, 11–15.

Ginat, D., Garcia, D. (2005). Ordering patterns and list inversions. (Online) Journal of Computer Science Edu-
cation, ISTE SIG Publications.

Linn, M.C., Clancy, M.J. (1992). The case for case studies of programming problems. Communications of the
ACM, 35(3), 121–132.

Manber, U. (1989). Introduction to Algorithms: A Creative Approach. Addison-Wesley.
Mirzaian, A. (1987). River routing in VLSI. Journal of Computer and System Sciences, 34(1), 43–54.
Mirzaian, A. (1987). A halving technique for the longest stuttering sequence problem. Information Processing

Letters, 26, 71–75.

D. Ginat – heads the Israel IOI project since 1997. He is the head of
the Computer Science Group in the Science Education Department at
Tel-Aviv University. His PhD is in the computer science domains of
distributed algorithms and amortized analysis. His current research is
in computer science and mathematics education, focusing on cognitive
aspects of algorithmic thinking.


	INFOL081

