
Olympiads in Informatics, 2011, Vol. 5, 58–70 58
© 2011 Vilnius University

Teaching the Concept of Online Algorithms

Dennis KOMM

Department of Computer Science
ETH Zurich, Switzerland
e-mail: dennis.komm@inf.ethz.ch

Abstract. The term algorithm is well-defined: It is the formal description of a strategy, which al-
ways has to produce a solution for a specific problem. It is probably the most basic concept of
computer science and accordingly both the creation and implementation of algorithms are among
the most important things students have to learn when dealing with the subject. The situation is
usually as follows. Given an input x for some problem P , we are interested in designing an algo-
rithm A that reads x, performs calculations depending on x and creates some output A(x) of some
predefined form. Conversely, in many practical applications, this model is actually not accurate.
Here, at one specific point in time, only parts of the input are known to the algorithm whereas
parts of the output are already needed. We call an algorithm handling such a situation an online
algorithm. Among the numerous examples for such situations are parts of any operating system, or
routing and scheduling problems.

To the best of our knowledge, teaching the concept of online scenarios and algorithms to sec-
ondary school students only received little attention in the past. However, our experiences show
that it catches the students’ attention when taught in a comprehensive and motivated way. In this
paper, we want to propose a strategy of how to introduce online algorithms by explaining the major
ideas to students and we further want to share our experiences.

Key words: teaching, secondary school, online algorithms, competitive analysis.

1. Introduction

We expect the reader to be familiar with the basic definitions and notations of online al-
gorithms and competitive analysis (introduced by Sleator and Tarjan (1985)). For further
reading, we point to the standard literature (Borodin and El-Yaniv, 1998; Hromkovič,
2006; Irani and Karlin, 1997; Sleator and Tarjan, 1985). The material is suited to be pre-
sented in a lesson using slides that takes approximately two hours.

Our main goal is to explain secondary school students the concept of online scenarios
and to make sure they understand that these situations frequently occur in the real world,
for instance, when users interact with an operating system. Our aim is to furthermore
use online scenarios as a framework to introduce the students to the following ideas,
techniques, and concepts.



Teaching the Concept of Online Algorithms 59

1. Worst-case analysis, that is, “an algorithm is only as good as it performs on the
hardest instances”.

2. This analysis can be performed by means of an imaginary adversary1 who tries to
harm the algorithm as much as possible.

3. Randomization is a powerful tool in algorithm design.
4. It is important get a good intutition of the problem at hand to be able to make

statements about it (to prove theorems).

In the presentation, we try to omit formal definitions and proofs whenever possible. Fur-
thermore, we want to keep the notation as simple and straightforward as we possibly can.
According to the amount of knowledge the students already possess, it might be a good
idea to go into more detail at some points.

Please note that all results presented here have already been known. Especially those
about job shop scheduling with unit length tasks, which we have chosen as a means to
communicate the basic concepts introduced above, are due to Hromkovič et al. (2009),
Hromkovič (2006, 2009).

2. A Sample Lesson

We now propose a concrete way of how to teach the concepts and ideas of online algo-
rithms. We gave a talk with this material to a group of Swiss secondary school students
and received very good feedback from both their teachers and the students themselves.

2.1. Introducing Online Problems

We first show the class something familiar by describing the principle of operation of
an algorithm. Even if they never thought about a formal definition, they agree that the
high-level scheme may be depicted as shown in Fig. 1. In our case, this is consistent
with what the students experienced in class until this point, no matter how advanced
their programming skills are. An algorithm A reads an input x, modifies it, and outputs
a solution A(x) afterwards. As a next step, we introduce a problem we want to solve by
means of such an algorithm. We do not even need to talk about computer programs at this
point, but only about an unambiguous and clear strategy a human can follow.

Fig. 1. The classical view of an algorithm.

1Here, we consider so-called oblivious adversaries.



60 D. Komm

Suppose we sit in front of a monitoring screen in a police central and want to route a
number of k police cars through a city. At any time point, an emergency call might come
in. Using GPS, we know the position of every car at this point and we are searching for a
policy to decide which police car to radio and send to the corresponding crime scene.

Actually, this problem is the well-known k-server problem in disguise (Borodin and
El-Yaniv, 1998), introduced by Manasse et al. (1990). To simplify the discussion, we
assume that the police men are busy for a while after arriving at the crime scene and that
we, therefore, are not allowed to move the same car twice. It is obvious to the students
that this is a problem of practical relevance. Next, we do not talk about any problems that
might appear in this scenario, but just propose a sample instance as shown in Fig. 2. There
are three police cars stationed at the depicted positions. At 12 o’clock, an emergency call
comes in. The crime spot is located between the positions of car 1 and car 2. It does not
really seem to matter at this point which of the two cars we send. We therefore decide
to take car 2. However, ten minutes later, car 2 arrives at the crime scene, but just one
minute after that, a second crime is reported and it is located at the old position of car 2.

We can now clearly state that it would have been a better strategy to send car 1 instead
of car 2 and we address the key point of online computation by directly asking the students
why we made a bad decision. The answer is both trivial and important: “Because we did
not know this before.”

By introducing the problem of online scenarios in the above way, it is immediately
clear that the restriction of not knowing the whole input in advance is actually very nat-
ural. We then point out that algorithm engineers have to deal with this problem in many
applications. Some examples are

• operating systems (e. g., the well-studied paging problem; Borodin and El-Yaniv,
1998),

• routing problems (as shown in the example), and
• scheduling problems (which will be discussed in the following).

Before we introduce the problem we deal with in the main part of the lesson, we need to
supply the basic tools and models we need in what follows. Therefore, the first question
we ask is

How do we measure how good an online algorithm performs?

Fig. 2. An instance of the above problem to demonstrate the issues that come up when only knowing parts of
the input.



Teaching the Concept of Online Algorithms 61

By cost (A(x)), we denote the costs of algorithm A on an input x. For the above
problem, these costs are, e. g., the overall distance the cars have to drive (or, formulated
differently, the overall time they need to arrive at a crime scene). Suppose that, at the end
of the day, we browse through the log files of all emergency calls that appeared today. We
now have the knowledge to compute a solution that is optimal with respect to the above
measure. The costs of this solution are denoted by Opt (x). Compared to this solution,
many of our decisions might have been bad, but we simply did not have another chance.
We immediately had to send a police car when an emergency call came in. To evaluate
our online strategy A on the input x, we want to look at the ratio

cost (A(x))
Opt (x)

,

and call this the competitive ratio of A on x. Furthermore, if we can guarantee that, for
any possible instance x, we have

cost (A(x))
Opt (x)

� d,

for some fixed d, we call A d-competitive. If the students already know the concept of
approximation (offline) algorithms, they will surely recognize the analogy, but this is not
important for understanding the concept in general. We now try to establish some intuition
for competitive analysis in an informal way. The following question may be posed as an
exercise to the students.

As we have already seen, the above problem seems to be somewhat hard for online algo-
rithms, but how bad can it really be?

A possible idea to give an answer to this question is shown in Fig. 3. Suppose the
police cars are positioned in a circle. We label them clockwise from 1 to k starting at
the car on top. The first request (emergency call) is exactly between the two cars 1 and
2. Suppose we again choose to send car 2. After that, the next request appears and it is
located just at car 2’s starting point. The nearest car is car 3, but right after we told the
corresponding driver to move there, another crime is committed at the starting point of
this car. The requests continue in this fashion until the kth request is made at the starting
point of car k (Fig. 3a). On the other hand, if we would have known the sequence of re-
quests in advance, we would have moved car 1 instead of 2 at the beginning. Afterwards,
no other movement would have been necessary (Fig. 3b).

Summing up, until this point, we have shown that the classical definition of algorithms
as shown in Fig. 1 is not accurate for online scenarios due to our inability to predict
the future. However, it is crucial to note that the basic properties of algorithms (which
separate them from arbitrary programs) are not violated: Online algorithms halt on any
finite input (which might be a prefix of a potentially infinite instance) and they create an
output of some well-defined form.



62 D. Komm

Fig. 3. A hard instance for the above problem. For the ease of presentation, police cars are marked by grey
circles, requests are marked by black daggers.

2.2. Worst-Case Analysis by Means of an Adversary

As a next step, we want to elaborate the above idea of constructing worst-case input in-
stances to talk about an online algorithm’s performance. To do this, we ask the following
question.

How do we know that an online algorithm A does not have a specific performance, i. e., is
not able to achieve a certain competitive ratio?

Observe that, in the above informal definition of competitiveness, we clearly stated
that an online algorithm has to have a competitive ratio of at most d on all possible in-
stances to be called d-competitive. We had good experiences with explaining the students
the following analogy.

Suppose I claim to have built a robot that beats every human player in tennis. Of course,
you do not believe me, but I insist on it. I am convinced that my robot is better than anyone
who challenges him. To disprove the claim, you might ask every single inhabitant of earth
to play a match against the robot and you are positive that, eventually, someone will be
found who wins. However, with almost seven billion people living on earth, it might take
quite a while until someone is found who does not lose. What could you do to speed things
up?

It does not take very long until the first student proposes: “We just let your robot play
against Roger Federer.” This is just the answer we expected2. We want to do the exact
same thing with our algorithm A. We think of the best adversary there might possibly
be. If he always has a strategy that makes A perform bad with respect to some mea-
surement (that is, if he is able to construct a hard input instance where A can provably
never be d-competitive), it directly follows that A is never better in general (is clearly
not d-competitive), because we simply cannot guarantee that this input never appears in
practice no matter how unlikely it is.

Accordingly, we introduce the adversary ADV that has the following properties:

• ADV knows A and

2Surely, there are equivalent or even better examples, but this one suits Switzerland.



Teaching the Concept of Online Algorithms 63

• thus is able to predict any of its steps;
• ADV tries to make A perform as bad as possible.

Observe that we have actually requested the students to act as ADV for the police car
problem when they were asked to construct an instance as shown in Fig. 3.

2.3. Job Shop Scheduling with 2 Unit Length Tasks

We are now ready to describe the problem we want to investigate in the following. The
ideas how to present the material are taken from the book “Algorithmic Adventures” by
Hromkovič (2009). Here, we want to use the things we have taught until this point to
show how randomization helps to deal with the shortcomings of online computation. To
this end, it is sufficient to informally define the problem as follows.

Suppose we are dealing with a factory that consists of m distinct machines, each of which is
designed to perform a single distinct assignment, such that all machines are different from
each other. Moreover, there are two so-called jobs Job1 and Job2 that each consist of m
different tasks. Each of these tasks needs exactly one machine and the (i+1)th task may not
start to be processed before task i is finished. As long as Job1 and Job2 request different
machines at the same time, the work can be parallelized. However, if they request the same
machine, one of the two has to be delayed. Our aim is to construct an online algorithm that
minimizes these delays.

If we label the machines from 1 to m, an example input is

Job1 = (1, 2, 3, 4, 5, 6, 7, 8),

Job2 = (3, 1, 2, 4, 6, 5, 8, 7),

which means that Job2 first requests to perform a task on machine 3, after it is finished,
it wants to perform a task on machine 1, and so on. To simplify the problem, we suppose
that each task exactly needs one time unit (thus talking about unit length tasks). It is
important to state that each job needs each machine exactly once, and therefore, the above
sequences are permutations of the numbers from 1 to m.

A feasible solution S to this instance is

Schedule (Job1) = (1, 2, 3, 4, 5, 6, /, 7, 8, /, /),

Schedule (Job2) = (3, 1, 2, /, 4, /, 6, 5, /, 8, 7),

which means that the first three tasks of both jobs are served greedily (in parallel), but
after that, both jobs request machine 4. Job2 is delayed while Job1 is served. In the next
time step, Job1 performs its fifth task on machine 5 and Job2 performs its fourth task on
machine 4 which is now free. This schedule induces a delay of 3.

In an online scenario, as we consider it, for each job, the (j + 1)th request is only
known after the jth task is finished, i. e., while we have not processed task j, we have no
idea which machine task j + 1 wants to use.



64 D. Komm

2.4. A Graphical Representation

This section covers an important lesson. Before we are able to describe results about the
problem in a coherent way, we want to introduce a more comprehensible presentation of
input instances to get a grip of the problem as shown in Fig. 4.

This description was introduced by Brucker (1988) and it is frequently used in the
literature (Hromkovič et al., 2009; Hromkovič, 2006; Hromkovič, 2009). Consider a 2-
dimensional grid of size m × m. We label the x-axis with the numbers from 1 to m

in the order given by Job1 . We do the same thing with the y-axis and Job2 . Every
cell that has the same number on both axis is marked by a grey square and we refer to
these cells as obstacles. A feasible solution is a path through this grid from the upper
left corner to the bottom right corner. Whenever two tasks can be performed in parallel,
a diagonal step may be made (of course, it is also allowed to make a horizontal or a
vertical step). However, if the path arrives at the upper left corner of a grey square, one
job has to be delayed, and we say the path hits an obstacle. In this case, only a horizontal
step (Job2 is delayed) or a vertical step (Job1 is delayed) is possible (we have to bypass
the obstacle). Figure 4b shows the path that represents the solution S. Let us denote the
number of horizontal [vertical, diagonal] steps of any strategy by h [v , d ]. We can make
the following observations.

O1 There always is exactly one obstacle in every row and every column.
O2 For any feasible solution, we have v = h .
O3 Also, for such a path, d + v = d + h = m.
O4 Obviously, at least m steps have to be made in total.
O5 Finally, the costs of every feasible solution are d + h + v = m + h = m + v .

It is immediate that we aim at designing an online algorithm A that calculates a path of
minimal length, i. e., makes as few non-diagonal steps as possible.

2.5. An Adversary that Creates Hard Input Instances

Using the above graphical representation, we now want to show how an adversary can
create a bad input instance for any online algorithm.

Fig. 4. A graphical representation.



Teaching the Concept of Online Algorithms 65

There exists an adversary ADV that, by putting obstacles onto the grid in a clever way,
can make sure that every second step of a path any online algorithm calculates, is not a
diagonal one.

The idea of the proof is as simple as it gets. We do not prove it formally, but only show
the students ADV ’s strategy on an example which is straightforward to generalize. It is
important to emphasize that, for a formal proof, we are not allowed to fix the algorithm
in any way, but we would have to consider all algorithms. The following strategy might
be presented on the blackboard (Fig. 5a). At first, ADV puts an obstacle to the the upper
left cell by making both jobs request machine 1 at the start.

Note that the only restriction ADV has to obey in the following is given by Obser-
vation O1, that is, ADV is allowed to merely place one obstacle in every row and every
column of the grid (otherwise, one job would request the same machine twice, which is
forbidden by the problem definition). ADV ’s strategy is as follows: Whenever A per-
forms a diagonal step, the corresponding path enters a cell for which no task of both
Job1 and Job2 has been assigned yet. ADV may then just place an obstacle by saying
that both jobs now ask for the same machine with the smallest index that has not been
used until this point. The next step of A must be either horizontal or vertical. By Ob-
servation O1, A may then perform a diagonal step thus enabling ADV to place another
obstacle by the above strategy. If the path arrives at the right or bottom border of the grid,
ADV may place the remaining obstacles in an arbitrary fashion.

Since there are at least m steps in total (Observation O4) and every second of them
is not diagonal, it follows that there at least m/2 non-diagonal steps in the sum. Con-
sequently, using Observation O2, the solution makes at least m/4 horizontal and m/4
vertical steps. The costs of this solution are therefore, by Observation O5, at least

cost (A(x)) � m +
m

4
.

Hromkovič et al. even proved a stronger claim (Hromkovič et al., 2009). However, for
our needs the above bound is fine and we omit the proof for the sake of not getting too
formal.

Fig. 5. An example of how ADV can make sure that every second step of any path computed by A is not
diagonal, and three strategies from D .



66 D. Komm

So far, we have shown a lower bound on the costs of any online algorithm. But this is
not sufficient to argue that the competitive ratio of any such algorithm is bad. It remains
to show that there also always exists an optimal (offline) solution that has lower costs.
To this end, we introduce the following set of strategies. For every i ∈ {1, . . . ,

√
m}, the

strategy Di makes i horizontal steps at the beginning. Afterwards, it makes a diagonal
step whenever possible. If it hits an obstacle, it bypasses it by making a horizontal step
immediately followed by a vertical step. Eventually, Di hits the right border. It then makes
i vertical steps to reach the lower right corner. Analogously, for i ∈ { −

√
m, . . . , −1},

the strategy Di makes i vertical steps at the beginning and i horizontal steps at the end,
acting as above in between. Moreover, the strategy D0 does not make any non-diagonal
steps at the beginning or at the end unless it hits an obstacle. We now set

D = {Di | i ∈ { −
√

m, . . . , 0, . . . ,
√

m}}.

Obviously, we are dealing with 2
√

m + 1 strategies in total, sample strategies are shown
in Fig. 5b. In the following, for the ease of presentation, we assume that

√
m is a natural

number3. We are now interested in answering the following question.

What can we claim about the smallest costs from the set of these solutions?

Recall that we call the number of horizontal steps (h) the delay of a solution. Our idea
is to first calculate the average delay. Let Obsi denote the number of obstacles strategy
Di hits on its way through the grid. We conclude that

Delay of strategy Di = h = i + Obsi,

because Di makes exactly one horizontal move for every obstacle it hits. We sum the
costs for all strategies and get

Total delay =

√
m∑

i=−
√

m

(
i + Obsi

)
=

√
m∑

i=−
√

m

i +

√
m∑

i=−
√

m

Obsi.

Observe that we know that there are, in total, exactly m obstacles in the grid for any
instance (Observation O1). It follows that the sum of all obstacles that are hit cannot be
larger than m.

Total delay �
√

m∑
i=−

√
m

i + m = 2 ·

√
m∑

i=1

i + m

= 2
√

m (
√

m + 1)
2

+ m =
√

m(
√

m + 1) + m

=
√

m (
√

m + 1) +
√

m ·
√

m =
√

m (2
√

m + 1).

3The following proof works without this restriction, but we think that it is easier to follow this way.



Teaching the Concept of Online Algorithms 67

If we now divide this number by the number of all strategies, we get

Average delay �
√

m (2
√

m + 1)
2

√
m + 1

=
√

m.

By Observation O5, it follows that the average costs are at most m +
√

m. Therefore,
there has to exist a single strategy that has costs of at most m +

√
m.

Let us sum up what we have just learned. We showed the existence of an adversary that
can make sure that any solution computed by any online algorithm has costs of at least
m + m/4. On the other hand, we also know that there always exists a solution that has
costs of at most m +

√
m. What does this mean for the competitive ratio of any online

algorithm A for the problem job shop scheduling with 2 unit length tasks?

To answer this question, we simply plug these two values into the formula for com-
petitiveness. There exists an instance x such that, for any online algorithm A, we have

cost (A(x))
Opt (x)

� m + m/4
m +

√
m

=
5
4

(
m

m +
√

m

)
=

5
4

(
1

1 + 1√
m

)
.

As computer scientists, we are interested in how this function behaves with respect to an
increasing input m. This means that we ask

What does this expression converge to as m grows?

Obviously, it converges to 5/4 and we may therefore state that there exist inputs on
which the solution computed by A is almost 25% worse than the optimal solution.

2.6. Using Randomization Increases Performance

We now search for a way that overcomes the above drawback and introduce the concept of
randomized algorithms which are allowed to base some of their computations on random
decisions. To be precise and formally correct, in the following, we would have to talk
about the expected competitive ratio of the investigated randomized online algorithm. As
a matter of fact, it is known that it tends to 1 with m tending to infinity (Hromkovič et al.,
2009), but we do not want to introduce the formal definitions of random variables and
expected values which are needed for the proof. Therefore, we use a different approach
as suggested by Hromkovič (2009).

Let us first get back to the model of ADV .

• ADV knows A,
• but he does not know A’s random decisions in advance
• therefore, ADV has to cope with a lot of “different” algorithms at once.

Indeed, if ADV knows the source code of A, it does not really help him to know that there
exists a code block which shows some instructions that merely say “Choose one out of d

possible strategies, each with the same probability”. Which one will actually be chosen
will only be known at runtime. Therefore, this is consistent with our intuition about the
adversary.



68 D. Komm

If an algorithm A is not allowed to use randomness and we show the existence of an
adversary that is able to construct a bad input instance as we have shown in the previous
section, A will always perform bad on this input. But actually, the property that makes
this input “hard to deal with” might be very natural and thus appear frequently in practical
applications. For randomized algorithms, we want to make statements of the form “the
algorithm only performs bad on x with a very low probability”, but in most of the cases
its costs are low. Only very rarely, its costs are high for some fixed x and therefore, x is
not “bad” in the above sense.

We now consider the randomized algorithm R that has the following strategy.

R chooses one out of the strategies from D and follows it. Here, any possible strategy gets
chosen with the same probability.

Since there are exactly 2
√

m + 1 strategies in total to choose from, we have

Probability to choose strategy Di =
1

2
√

m + 1
,

for every i ∈ { −
√

m, . . . , 0, . . . ,
√

m}. For our next step, we need the following obser-
vation.

Let d be the average value of n natural numbers. Then at least half of these numbers have
a value less than 2d.

Informally, we can just draw the number line from 0 to 2d on the blackboard. Even if
n/2 − 1 numbers out of the n numbers have a value of 0 (are as small as possible), not all
remaining numbers can have a value of 2d or d is not the average (Fig. 6). Alternatively:
to formally prove the claim, the students must understand the concept of an indirect proof.
In this case, towards contradiction, suppose the claim is not true and at least n/2 + 1
numbers have a value of at least 2d. It follows that

d �
(n

2 + 1) · 2d + (n
2 − 1) · 0

n
=

2dn
2 + 2d + 0

n

=
dn

n
+

2d

n
= d +

2d

n
> d,

Fig. 6. An example to prove the claim. We can pair every element of value 0 with an element of value 2d.
Obviously, their average is d, but at the end, there will be at least one element left with a value of 2d. Therefore,
the average of all numbers cannot be d. Clearly, if we increase any of the values, the claim gets only more
obvious.



Teaching the Concept of Online Algorithms 69

which is a contradiction in itself. It is important to see that this statement can be general-
ized in a straightforward way.

Again, let d be the average value of n natural numbers. Then at least a (1 − 1
c
)th of these

numbers have a value of less than c · d for any natural number c.

The corresponding proof follows from the fact that

d �
(n

c + 1) · cd + (1 − n
c − 1) · 0

n
=

cdn
c + cd + 0

n

=
dn

n
+

cd

n
= d +

cd

n
> d.

In the previous section, we have already seen that the average delay of the strategies in
D is at most

√
m. Applying the observation above, we get that, e. g.,

at most half of the solutions have a delay greater than 2
√

m and at most a tenth has has a
delay greater than 10

√
m.

Furthermore, we know that any solution has costs of at least m (Observation O4).
Therefore, at least a 9/10th of the strategies have a competitive ratio of at most

m + 10
√

m

m
= 1 +

10√
m

,

which tends to 1 with an increasing m. This means that the competitive ratio of R tends
to 1 with probability at least 9/10.

The competitive ratio of R is compared to the one of A in Fig. 7. Actually, we can

Fig. 7. Comparison of both competitive ratios, where the solid line shows the competitive ratio of R and the
dashed line shows the ratio of A.



70 D. Komm

make the same statement for any probability that is constant with respect to m. Thus, we
can also claim that the competitive ratio of R tends to 1 with probability 999/1000. The
only difference is that in this case the constant of the upper bound is 1000 instead of 10.

3. Conclusion

In this paper, we proposed a concrete way how to teach secondary school students the
basic concepts of online computation, worst-case analysis via an imaginary adversary,
and the power of randomization. To do so in a comprehensible way, we omitted formal
definitions and proofs whenever possible. We started with an easy example and slowly
increased the technical difficulties by trying to involve the audience as much as possible.

At the end, we showed a rather deep result which is new to the majority of secondary
school students, although it seems straightforward to us as computer scientists: Allowing
an algorithm to make random decisions helps it to deal with an unknown future.

References

Borodin, A., El-Yaniv, R. (1998). Online Computation and Competitive Analysis. Cambridge University Press,
New York.

Brucker, P. (1988). An efficient algorithm for the job-shop problem with two jobs. Computing, 40(4), 353–359.
Hromkovič, J. (2006). Design and Analysis of Randomized Algorithms: Introduction to Design Paradigms.

Springer-Verlag.
Hromkovič, J. (2009). Algorithmic Adventures. Springer-Verlag.
Hromkovič, J., Mömke, T., Steinhöfel, K., Widmayer, P. (2007). Job shop scheduling with unit length tasks:

bounds and algorithms. Algorithmic Operations Research, 2(1), 1–14.
Irani, S., Karlin, A.R. (1997). On Online Computation. In: Approximation Algorithms for NP -Hard Problems,

PWS Publishing Company, 521–564.
Manasse, M.S., McGeoch, L.A., Sleator, D.D. (1990). Competitive algorithms for server problems. Journal of

Algorithms, 11(2), 208–230.
Sleator, D.D., Tarjan, R.E. (1985). Amortized efficiency of list update and paging rules. Communications of

the ACM, 28(2), 202–208.

D. Komm (1982), PhD student at the chair of Information Technol-
ogy and Education, Department of Computer Science at ETH Zurich,
studied computer science at RWTH Aachen University. His research in-
terests focus on algorithmics and the advice complexity of online prob-
lems.


