
Olympiads in Informatics, 2010, Vol. 4, 76–86 76
 2010 Institute of Mathematics and Informatics, Vilnius

Testing of Programs with Random Generated Test
Cases ∗

Krassimir MANEV
Department of Mathematics and Informatics, Sofia University
J. Bourchier blvd. 5, 1164 Sofia, Bulgaria
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences
G. Bontchev str. 8, 1113 Sofia, Bulgaria
e-mail: manev@fmi.uni-sofia.bg

Biserka YOVCHEVA, Milko YANKOV, Peter PETROV
Department of Mathematics and Informatics, Shumen University
Universitetska str. 115, 9712 Shumen, Bulgaria
e-mail: bissy_y@yahoo.com, m.yankov@f5bg.net, peshoto_bg@yahoo.com

Abstract. Testing of computer programs is an essential part of the evaluation process of a program-
ming contest. It is a mix of functional and non functional testing and a specific case of the “black
box” testing well known from the domain of Software engineering. The paper discusses one of the
possible forms of creating test cases for a program that implement an unknown algorithm – the ran-
dom generation of test cases – and the problems that could arise when random generated test cases
are used for evaluation of programs submitted by participants in programming contests. Rooted
trees were chosen for the start of the research because of their simplicity. More deep problems and
more interesting results could be expected for general graphs and other combinatorial objects.

Key words: program testing, functional and non functional testing, “black box” testing, graphs,
rooted trees, random generation, height, width and branching statistics of rooted trees

1. Introduction

In the late 70s’ of the past century the intuitive debugging of computer programs was
replaced by more systematic, mathematically reasoned and well planned, software test-
ing (Mayers, 1979). With the development of the software industry and the growing of
the number of proposed on the market software products testing of software became
one of the essential stages of the software products’ life cycle. Nowadays significant
amount of the resources of the software developers are dedicated to testing of products
under development. Something more, as a result of the efforts of many programmers
and researchers Software testing became a scientific domain – sub-domain of Software
engineering (Kaner et al., 1999) – and corresponding discipline was included in the uni-
versities’ curricula. One of the approaches of Software testing is the random generation
of test cases.

*This work was partly supported by the Foundation “America for Bulgaria” and the Scientific Research
Fund of Sofia University under the contract No. 247/2010.

infol v.2007/06/15 Prn:12/04/2010; 10:15 F:INFOL055.tex; VTEX/RRR p. 2

2 K. Manev et al.

Evaluation of the programs, submitted by the contestants during programming con-
tests, is a specific kind of software testing. Random generation of test cases is a part of
evaluation of competitive programs too. It was assumed for long years that the authors of
the tasks have the best knowledge of the formulated by themselves problems and that they
are able to prepare the best test cases. Some examples of Bulgarian national programming
contests, and even from international contests, suggest that the author sometime underes-
timate the careful preparation of test cases.

During an IOI (about 10 years ago) a task on a graph G(V, E) with a weight function
c: V → N on the vertices was proposed. Some other function f : V → N has to be
calculated and a vertex v to be found such that f(v) = max f(vi), vi ∈ V . Being in
shortage of time one of Bulgarian contestants submitted as a solution a program that
prints the vertex w, such that c(w) = max c(vi), vi ∈ V , and obtained enormously big
amount of points. We could guess that some of the test cases were random generated.

Some years ago were popular optimization tasks (reduced versions of which are
NP-complete), with “relative” evaluation. The programs that give a result nearest to
the searched optimum received 100% of the points and the other programs received an
amount of points proportional to the distance between their result and the best one. We
proposed such task in one of Bulgarian national contests. After the grading we decided
to change the random generated test cases with other random generated and the results of
the contestants changed dramatically.

Examples show that, even inevitable, the random generation of test cases is full of
risks. Random generation of test cases is one of the first approaches used for so called
automated test data generation (Bird and Munoz, 1983; Duran and Ntafos, 1984) which is
still in use in software industry. The advantages and negatives of the approach are widely
discussed from the point of view of Software engineering. Here we will discuss some
negatives of the approach when it is used for evaluation of solutions of the participants in
programming contests.

The discussion is based on the example of rooted trees. Tasks on graph structures are
among the most used for competitions in programming (Manev, 2008) and generating
of test cases for such tasks is not trivial. Trees and rooted trees are simplest kind of
graph structures and it is natural to start discussion with them. Because rooted trees have
such interesting for random generating characteristics as height, width and branching,
which are not intrinsic for not rooted trees, we prefer to start with the former for our
considerations.

In Section 2 some notions from Software testing theory are given and the objectives of
testing competitive programs are stressed. The necessary definitions from the Theory of
graph structures are given in Section 3 as well as an example of a task on a rooted tree and
some negatives following from not correct random generated test cases. All experiments
in this and following sections were made with the standard function rand()GNU C/C++
programming environment. Section 4 is defining two experiments aimed to estimated
the ability of rand()to generate random rooted trees. Some results of the experiments are
summarized and commented in Section 5. Section 6 contains ideas for future research.

infol v.2007/06/15 Prn:12/04/2010; 10:15 F:INFOL055.tex; VTEX/RRR p. 3

Testing of Programs with Random Generated Test Cases 3

2. Testing of Programs – Some Notions and Objectives

In general, two major sub-domains are considered in the theory and the practice of soft-
ware testing – functional and non functional testing. We will use the following notation
and assumptions for functional testing of a program module.

...ach program module M is designed and implemented in a way to satisfy some
functional specification F : D → R, where D is the set of possible inputs and R – a set
containing possible results (outputs). The set D is called domain of F .

Because M is implementing F , it could be considered as a function M : D → R

too. We have to stress that the function M usually is a partial (not total), i.e., there are
elements in D for which M is not defined on δ ∈ D – i.e., starting on an input δ, M

crashes or enter an infinite loop. The set DM ⊆ D of all elements δ ∈ D at which M(δ)
is defined is called a domain of M . We will suppose that R is large enough and when M

stops it gives always a result ρ from R.
The ideal goal (the super goal) of the functional testing is to prove the functional

correctness of M toward F , i.e., for given F and M to check whether DM = D, and if it
is true, to check whether M(δ) = F (δ), for each δ ∈ D. It is obvious that achieving the
super goal of the functional testing in general case is very difficult and rather impossible.
First, because it is impossible to find the domain DM in general case – Stop-problem is
undecidable for usual computational models. And second, because the size of D is usually
very large.

In practice we take a reasonably small DT ⊆ D called test set or test data. Elements
of DT , called test cases, have to be chosen in such way that if M(τ) = F (τ) for each
τ ∈ DT we could consider M (more or less) functional correct toward F . It is obvious
that with such testing we are not able to check at all first condition of the functional
testing – DM = DF – because of the possibility that M crashes or enters an infinite loop
for some τ ∈ DT . For the purpose additional efforts are necessary, as mentioned below.

The other form of testing, called non functional, is also interesting. Different qualities
of the program module could be a goal of such testing when a commercial programming
product is tested – usability, reliability (when the module provide some service), etc.
One quality of specific interest for evaluation of programming contests is the CPU time
elapsed by the program. For checking this quality, together with the test set DT , a time
limit constant L is chosen. The execution of the program on the test case is stopped if the
elapsed time goes over L and the program is considered not correct for the corresponding
test case.

Testing with time limit has a double purpose. First, it compensate the principle impos-
sibility to obtain DM (τ) in case when M crashes or enters in an infinite loop working on
τ . But more important, especially for programming contests evaluation, is the possibility
to estimate in such way the CPU time of the algorithm used (for definition of the notion
time complexity see, for example, Cormen et al., 2001). That is why the test set has to
contain test cases of different input size, including very large test cases and the time limit
to be chosen in such way that the possible algorithms of different time complexity to be
identified. Random generation is the natural way for construction of the large tests.

infol v.2007/06/15 Prn:12/04/2010; 10:15 F:INFOL055.tex; VTEX/RRR p. 4

4 K. Manev et al.

We will finish discussion of the notions of the domain with another classification of
the testing approaches. Two different cases could be defined depending of whether the
source code of the module is used in the testing process or not. If the source code could
be used for generation of the test set then the testing is called transparent box testing. If
the source code could not be used – the testing is called black box testing.

During the evaluation of programming contest the codes of the tested programs are
available. But by different reasons the usage of transparent box testing is not possible.
The main of these reasons is that with the methods of transparent box testing different (by
the number and the content of the test cases) test sets will be generated for the different
programs (depending of the programs themselves), which is not acceptable for evaluation
of programming contests. That is why in programming contests the black box testing
was always used.

3. Testing with Random Generated Rooted Trees

Here we will give only the necessary for the rest of the paper definitions, concerning
rooted trees. For the other used notions see, for example (Manev, 2008). By the classic
definition, the graph T (V, E) is a tree if it is connected and has no cycles. For the pur-
poses of algorithmics the notion rooted tree is more helpful. One of the possible inductive
definitions of rooted tree is:

DEFINITION. (i) The graph T ({r}, ∅) is a rooted tree. r is a root and a leaf of T ; (ii) Let
T (V, E) be a rooted tree with root r and leaves L = {v1, v2, . . . , vk }, v ∈ V and w �∈ V ;
(iii) Then T ′ (V ′ = V ∪ {w}, E′ = E ∪ {(v, w)}) is also a rooted tree. r is a root of T ′

and leaves of T ′ are (L − {v}) ∪ {w}.

By the Definition rooted trees are undirected graphs but an implicit orientation on the
edges of the rooted tree exists. Following Definition we will say that v is a parent of w

and that w is a child of v. Obviously each rooted tree is a tree and each tree could be
rebuild as rooted when we choose one of the vertices for a root.

For each vertex v of the tree T (V, E), rooted in the vertex r, we define the height h(v)
of v as the length of the path from r to v and the height h(T) of T , h(T) = max{h(v)|
v ∈ V }. For each vertex v of the rooted tree T (V, E) we define the branching b(v) of v

as the number of children of v and the branching b(T) of T , b(T) = max{b(v)|v ∈
V }. Let we define the ith level of the rooted tree T (V, E), i = 0, 1, . . . , n − 1 as
Li = {v|v ∈ V, h(v) = i}, were n = |V |. Then the width w(T) of T is defined as
w(T) = maxi=0,1,...,n−1{ |Li| }.

One of the simplest ways to represent the tree T (V, E) with V = {1, 2, . . . , n}, rooted
in the vertex r, is the list of parents – a vector (p1, p2, . . . , pn), where pi is the parent of
i �= r and pr = 0. The list of parents could be implemented in an array p[] of integers
and is very convenient when it is necessary to build a rooted tree.

Suppose that for a programming contest the following task is prepared:

infol v.2007/06/15 Prn:12/04/2010; 10:15 F:INFOL055.tex; VTEX/RRR p. 5

Testing of Programs with Random Generated Test Cases 5

Task. A rooted tree T with n vertices, labeled fro 1 to n, is given with its list of
parents, 3 � n � 1000. Let the root of the tree be the vertex labeled with 1. Write a
program to find a vertex of T with maximal height.

Following Definition we built a very simple generator of random rooted trees without
any additional conditions on the structure of the generated objects. The essential part of
the source is given below:

...
int n\textbf{,} p[MAXN], i;
p[1] = 0; p[2] = 1; // vertex 1 is the root
for(i = 3; i <= n; i++)

p[i] = rand() % (i - 1) + 1;
...

For evaluation of contestants’ program we decide to make 100 tests – of 10, 20, . . . ,

1000 vertices, respectively and for each test to assign 1 point. What will happen if a
contestant has submitted a program, which for each test case print n – the maximal label
of a vertex? We generated 100000 random test sets with 100 test cases each. The average
result of the contestant is 5.29 points which is too much for the invested efforts. But
even worst is that among the 100000 random generated there is a test set for which the
contestant will obtain 16 points.

The obvious defect of the used generator is that the vertex with label n is always a leaf
of the tree and the chance to be a leaf with a maximal height is big enough. To eliminate
such defect we could append at the end:

for(i = 2; i <= n; i++)
p[i] = perm(p[i]);

where the function perm() calculate some random permutation of the numbers 2, 3, . . . , n.
And then to eliminate the test cases in which the vertex n is a leaf with maximal height.
In such way the trivial program, which print he value of n will not obtain points. For
the experiments described below we are using this ameliorated version of our simple
generator.

4. Experiments on the Randomness of Generated Rooted Trees

In the following our goal is to check the “randomness” of the obtained by our generator
rooted trees. For the purpose let us first stress that the upper bound 1000 for the parameter
n is too small. Quite reasonable rooted trees could have 100000 vertices because the input
data for such rooted tree will be less than 700 KB and reading such input will not increase
dramatically the time necessary for execution of the chosen algorithm. Something more,
suppose that the author have in mind two different algorithms – a naïve one of time
complexity O(n log n) and sophisticated one of time complexity O(n). With a black box
testing it will be difficult to identify which of the algorithms is used by the contestant if

infol v.2007/06/15 Prn:12/04/2010; 10:15 F:INFOL055.tex; VTEX/RRR p. 6

6 K. Manev et al.

the maximal number of the vertices is about 10000, for example. Especially in the case
when the second algorithm has relatively big multiplicative constant. The identification
of the used algorithm when the rooted tree is with 100000 vertices is trivial.

In order to obtain relatively reliable test set, i.e., a test set that is able to convince us
in the functional correctness of the tested program we have to answer some important
questions that arise on this stage:

• How many tests cases are necessary?
• Which will be the size of the rooted tree in each test case?
• Is it necessary to incorporate some specific structure in the generated rooted trees?

In Bulgarian national contest each task is evaluated with 100 points. That is why the
practice is the number of test cases in the test set to be some divisor of 100 grater then or
equal 10 – 10, 20, 25, 50 or 100 – and for each test case, which successfully passed the
testing 10, 5, 4, 2 or 1 point to be assigned, respectively. It is obvious that such practice is
not related at all with the specific task and the expected algorithms. Two major negatives
trivially follow from such approach. First, it is quite possible that the chosen number of
test cases is not enough even for an average confidence in the correctness of the tested
algorithm and its implementation. And second, it is possible that all generated in such
way test cases to be, in some sense, equivalent and to happen that the test set punish some
kinds of mistakes and tolerate other kinds.

Having in mind the last reason some authors are limiting themselves to generating
by hand only test cases with a small number of vertices in order to incorporate in them
some structure corresponding to the particularities of the task. Such practice is also un-
acceptable because it could lead to receiving huge amount of points for trivial (as time
complexity) and even wrong solutions. The only way to escape it is the automatic gene-
ration of the “big” test cases.

There are two ways of generating test case with a program. First of them is the ran-
dom generation of many test cases with one program having as a single parameter the
size of the generated object. The second is to create a specific program for each test case
that is incorporating some structure in the generating object or to use many parameters in
the generator, in order to escape equivalent test cases. The second possibility is obviously
consuming much more of the author’s time and is rarely used. Because of frequent using
of random generation of test cases a question arises: how reliable are the test cases gen-
erated randomly without incorporating any structure elements in the generated objects
or tuning of various parameters?

Below we are describing some experiments with small random generated rooted trees
in order to observe some trends and to establish some directions for future research of the
problems.

For generating of full set of rooted trees with n vertices, without excluding the iso-
morphic cases, a very simple program was built too. It generates all subsets of n−1 edges
and eliminates each of the subsets that forms disconnected graph or graph with a cycle.
The obtained trees are transformed to rooted trees choosing for a root the vertex 1.

infol v.2007/06/15 Prn:12/04/2010; 10:15 F:INFOL055.tex; VTEX/RRR p. 7

Testing of Programs with Random Generated Test Cases 7

Two kinds of experiments were organized in order to obtain some statistics about the
randomly generated rooted trees. The main characteristics mentioned above – the height,
the branching, and the width of the rooted trees – were observed.

The goal of the first experiment was to check the ability of the standard function
rand()to build really random rooted trees. For the purpose, first, all RT (n) rooted trees
with at most 8 vertices were generated, without eliminating the isomorphic cases (we
postpone eliminating of the isomorphic cases for the moment). For each generated rooted
tree with n vertices the three characteristics were calculated and the corresponding distri-
butions (h1, . . . , hn−1), (b1, . . . , bn−1) and (w1, . . . , wn−1) were obtained, where hi, bi

and wi are the number of rooted trees of n vertices with height, branching and width
equal to i, respectively.

Then the same number RT (n) of random rooted trees with n vertices was gener-
ated and the corresponding distributions (H1, . . . , Hn−1), (B1, . . . , Bn−1) and (W1, . . . ,

Wn−1) were compared with the distributions (h1, . . . , hn−1), (b1, . . . , bn−1) and (w1, . . . ,

wn−1). Our preliminary expectations were that the function rand(), dedicated to generate
random numbers in a given linear interval, will not be able to generate really random
rooted trees – objects that have nonlinear structure. The obtained results are given in the
next section.

The goal of the second experiment was to check is it possible with a small number of
random generated rooted trees to obtain statistics for the observed parameters which are
close enough to the statistics of the full set.

For the second experiment only the rooted trees of 7 vertices was used. Random sub-
sets of 20, 30, 40 and 50 such trees were generated. For each subset the relative dis-
tribution (in %) of the observed characteristics was calculated and compared with the
corresponding, also relative, distribution for the full set. Our preliminary expectations
were that small subsets of random generated rooted trees will not be able to “cover” sta-
tistically the full set. The obtained results of this experiment are also given in the next
section.

5. Experimental Results and Comments

5.1. Statistics of Random Generated Rooted Trees with up to 8 Vertices

Because there is a single rooted tree (with a root in the vertex with label 1) when the
number of the vertices n is 1 or 2, the smallest interesting case is n = 3. There are
three different rooted trees in this case (two of them are really isomorphic but we are
considering isomorphic trees with different labeling of the vertices as different). The set
of random generated 3 rooted threes coincided with the set of all trees.

When n � 4, as it was expected, the distributions of the trees and random trees
become different (see the results for n = 8 in Table 1 and on Fig. 1.

It is possible to classify the deviation of the random generated distribution from the
real distribution (for all three observed characteristics) as “displacement of the peak”. For

infol v.2007/06/15 Prn:12/04/2010; 10:15 F:INFOL055.tex; VTEX/RRR p. 8

8 K. Manev et al.

Table 1

Rooted trees with 8 vertices

k Trees of height k Trees of width k Trees of branching k

ALL RND ALL RND ALL RND

1 19 1 857 5040 857 5040

2 15166 6321 80976 126000 111394 163170

3 84067 59472 129403 107520 114421 80850

4 102563 94710 44581 21875 30459 12005

5 49016 68880 5897 1659 4583 1029

6 10456 27720 411 49 411 49

7 857 5040 19 1 19 1

Fig. 1. Rooted trees with 8 vertices.

the heights – the random generated values leftmost of the peak of the distribution curve
are less then the real values and the random generated values rightmost of the peak are
grate than corresponding real values. We will call such deviation right displacement of
the peak. For width and branching the displacement is in the opposite direction – let us
call it left displacement. Statistically, as big the height of the rooted tree is as small is its
width (or branching), which explain the opposite directions of the displacements.

We have not an explication of the observed displacement but the trend is very clear.
That is why we could suggest to incorporate minor correction in the generator when
random tests are generated without any additional constrains on the structure of the rooted
trees – to lift a bit the average height (or to decrease width/branching) of the generated
objects.

5.2. Statistics for Small Subsets of Random Generated Rooted Trees with 7 Vertices

The results of the second experiment for the distribution by height are summarized in
Table 2. In order to compare the obtained distributions by height they are transformed in
percentages. As a criterion for similarity of two distributions was use the traditional χ2

criterion – the sum of the squares of the differences between real percentage and those
obtained by the random generation, divided to the real percentage (last element in each
of the columns from 8 to 13).

infol v.2007/06/15 Prn:12/04/2010; 10:15 F:INFOL055.tex; VTEX/RRR p. 9

Testing of Programs with Random Generated Test Cases 9

Table 2

Random generated rooted trees with 7 vertices – height distributions

h ALL RND R20 R30 R40 R50 %ALL %RND %R20 % R30 %R40 %R50

1 1 13 0 0 0 0 0.01% 0.08% 0.00% 0.00% 0.00% 0.00%

2 1056 1829 2 5 5 2 6.28% 10.88% 10.00% 16.67% 12.50% 4.00%

3 5550 6819 6 13 12 14 33.02% 40.57% 30.00% 43.33% 30.00% 28.00%

4 6240 6063 9 8 20 27 37.13% 36.07% 45.00% 26.67% 50.00% 54.00%

5 3240 1872 3 4 3 6 19.28% 11.14% 45.00% 13.33% 7.50% 12.00%

6 720 211 0 0 0 1 4.28% 1.26% 0.00% 0.00% 0.00% 2.00%

16807 16807 20 30 40 50 0% χ2 = 12 χ2 = 43 χ2 = 29 χ2 = 22 χ2 = 13

Table 3

Random generated rooted trees with 7 vertices – width distributions

W ALL RND R20 R30 R40 R50 %ALL %RND %R20 % R30 %R40 %R50

1 720 211 0 0 0 1 4.28% 1.26% 0.00% 0.00% 0.00% 2.00%

2 9720 7539 9 14 23 33 57.83% 44.86% 45.00% 46.67% 57.50% 66.00%

3 5580 7233 10 13 12 12 33.20% 43.04% 50.00% 43.33% 30.00% 24.00%

4 750 1662 1 3 5 4 4.46% 9.89% 5.00% 10.00% 12.50% 8.00%

5 36 149 0 0 0 0 0.21% 0.89% 0.00% 0.00% 0.00% 0.00%

6 1 13 0 0 0 0 0.01% 0.08% 0.00% 0.00% 0.00% 0.00%

16807 16807 20 30 40 50 0% χ2 = 18 χ2 = 16 χ2 = 17 χ2 = 19 χ2 = 8

The experiment shows the expected amelioration of the similarity when the number
of random generated objects is growing from 20 to 50 – values of 43, 29, 22 and 13.
Applying the same χ2 criterion on the generated in the previous experiment set of 16807
random trees of 7 vertices we could see that the significant increasing of number of gen-
erated trees do not lead to crucial amelioration of the distribution – the value χ2 = 12 in
this case is practically the same as the value for 50 random generated trees.

As it is also expected the single tree with h = 1 had no real chance to be generated
randomly. On the other side of the scale – a rooted tree with the maximal h = 6 was for
the first time generated randomly only in the case of 50 generated trees. That means – if
the task is such that the solution has to be tested on the marginal trees of height 1 and 6
then such tests have to be generated by hand.

From the other two experiments only the obtained distributions for the width of ran-
dom generated subsets of 20, 30, 40 and 50 rooted trees is presented (see Table 3), because
the results for distributions for branching, as it was mentioned above, is very similar.

Measuring the similarity with χ2 criterion we could see that in the case of width
distribution the sets with 20, 30 and 40 rooted trees approximate almost identically the
real distribution with (similarity of 16, 17 and 19, respectively) and the set of 50 random
generated trees approximate real distribution much better – similarity 8. But the similarity

infol v.2007/06/15 Prn:12/04/2010; 10:15 F:INFOL055.tex; VTEX/RRR p. 10

10 K. Manev et al.

of the width distribution of generated for the first experiment set of 16807 random rooted
trees happens to be 18 – not better than in the case of 20 and 30 random generated trees.
So, our conclusion that generating of too much test cases is not necessary is confirmed
by the width distribution too.

6. Conclusions and Ideas for Further Research

Generating of random test cases for evaluation the programs of the participants in pro-
gramming contests has no alternative. But with not controlled random test generation we
could obtain test sets that do not permit a fair evaluation process – with to many simi-
lar test cases or with missing of some important test cases. When a black box testing is
performed it seems important that the test set contains test cases, which cover the whole
variety of values of the intrinsic characteristics of the generated objects. Our experiments,
even very simple, confirm this conjecture.

Discussion in this paper has some particularities that have to be stressed. First, we
are considering all (i.e., labeled) rooted trees without excluding isomorphic cases. Much
more reliable results could be obtained if we consider only one of set of isomorphic trees
– i.e., not labeled rooted trees. For the purpose corresponding software could be created
for eliminating isomorphic cases.

Second, our experiments are made on trees with very small number of vertices. As
it was mentioned above, the interesting for evaluation of competitive programs are trees
with hundred thousand of vertices. It is obvious that the same experiments are impossible
for such large trees because of impossibility to generate all of them in real time and to
collect the necessary statistics. For the purpose some combinatorial and statistical results
for the distribution of the observed characteristics have to be attracted.

And third, each generation in the described experiments was performed once. From
statistical point of view it will be better if each of these generations was repeated as many
times as possible in order to eliminate the statistical mistake. The reason to do the former
was to simulate the process of generation of real test cases – the author of random test
cases usually performs the generation once. And we would like to see what will happen
in such case.

The presented experiments and corresponding discussions was made on the example
of rooted trees. But the problems will be the similar with generation of any object that
could be used as a test case for a task proposed for programming contests – general graph
structures, sequences of numbers, strings, set of geometric objects, etc.

Eliminating the mentioned above limitation of the presented experiments as well as
investigation of many other aspects of the problem could be subject of a future research.
Better knowledge of the statistical distribution of important characteristic of included in
competitive tasks discrete objects will permit us to generate better test sets even when a
random generation is used. It is worth to make the necessary efforts in this direction in
order to obtain more adequate evaluation of contestants’ program.

infol v.2007/06/15 Prn:12/04/2010; 10:15 F:INFOL055.tex; VTEX/RRR p. 11

Testing of Programs with Random Generated Test Cases 11

References

Bird, D., Munoz, C. (1983). Automatic generation of random self-checking test cases. IBM System Journal,
22(2), 229–245.

Cormen, T.H., Leiserson, C.E., Rivest, R.L. (2001). Introduction to Algorithms. MIT Press.
Duran, J., Ntafos, S. (1984). An evaluation of random testing. IEEE Trans. on Software Engineering, SE-10,

438–444.
Kaner, C., Falk, J., Nguyen, H.Q. (1999). Testing Computer Software, 2nd Ed. John Wiley and Sons, Inc.
Manev, K. (2008), Tasks in graphs. Olympiads in Informatics, 2, 90–104.
Myers, G.J. (1979). The Art of Software Testing. John Wiley and Sons.

K. Manev is a professor of discrete math and algorithms in Sofa Uni-
versity, Bulgaria, PhD in computer science. He was a member of NC
for OI since 1982 and president of NC from 1998 to 2002. He was
member of the organizing team of First and Second IOI, leader of Bul-
garian team for IOI in 1998, 1999, 2000 and 2005. From 2000 to 2003
he was an elected member of IC of IOI. Since 2005 he represents the
Host country of IOI’2009 in IC of IOI.

B. Yovcheva is assistant professor of informatics in Shumen Univer-
sity, PhD in education in iInformatics. She is creator of the private
school A&B of Math and Informatics in Shumen and teacher of some of
the most successfull Bulgarian participants in International and Balkan
Olympiad in Informatics.

M. Yankov is an assistant professor of informatics in Shumen Univer-
sity. He is a coach of the students from Shumen University for compe-
titions in programming.

P. Petrov is an young teacher in informatics in A&B School of Shu-
men. He is coach of the regional team of Informatics for 15.5 years of
Shumen. He is an author/co-author of a book on algorithms and algo-
rithmic problems. Since 2009 he is an assistant professor of informatics
in Shumen University and coach of the students from Shumen Univer-
sity for competitions in programming.

infol v.2007/06/15 Prn:12/04/2010; 10:15 F:INFOL055.tex; VTEX/RRR p. 8

8 K. Manev et al.

Table 1

Rooted trees with 8 vertices

k Trees of height k Trees of width k Trees of branching k

ALL RND ALL RND ALL RND

1 19 1 857 5040 857 5040

2 15166 6321 80976 126000 111394 163170

3 84067 59472 129403 107520 114421 80850

4 102563 94710 44581 21875 30459 12005

5 49016 68880 5897 1659 4583 1029

6 10456 27720 411 49 411 49

7 857 5040 19 1 19 1

Fig. 1. Rooted trees with 8 vertices.

the heights – the random generated values leftmost of the peak of the distribution curve
are less then the real values and the random generated values rightmost of the peak are
grate than corresponding real values. We will call such deviation right displacement of
the peak. For width and branching the displacement is in the opposite direction – let us
call it left displacement. Statistically, as big the height of the rooted tree is as small is its
width (or branching), which explain the opposite directions of the displacements.

We have not an explication of the observed displacement but the trend is very clear.
That is why we could suggest to incorporate minor correction in the generator when
random tests are generated without any additional constrains on the structure of the rooted
trees – to lift a bit the average height (or to decrease width/branching) of the generated
objects.

5.2. Statistics for Small Subsets of Random Generated Rooted Trees with 7 Vertices

The results of the second experiment for the distribution by height are summarized in
Table 2. In order to compare the obtained distributions by height they are transformed in
percentages. As a criterion for similarity of two distributions was use the traditional χ2

criterion – the sum of the squares of the differences between real percentage and those
obtained by the random generation, divided to the real percentage (last element in each
of the columns from 8 to 13).

E
-C

o
lo

rf
u

l

	Infol055
	INFOL055

