
Olympiads in Informatics, 2009, Vol. 3, 149–166 149
© 2009 Institute of Mathematics and Informatics, Vilnius

20 Years of IOI Competition Tasks

Tom VERHOEFF
Department of Mathematics and Computing Science, Eindhoven University of Technology
Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
e-mail: t.verhoeff@tue.nl

Abstract. The competition tasks at the International Olympiad in Informatics have evolved over
its 20-year history. We distinguish three periods in this evolution and highlight it from various
viewpoints. The 101 competition tasks are presented in a table that summarizes their task type
and difficulty level, and that classifies them according to concepts involved in their problem and
solution domains.
Key words: computer science competition, International Olympiad in Informatics, competition
tasks, algorithmics, history.

1. Introduction

The first International Olympiad in Informatics (IOI website, 2009) was held in 1989 in
Pravetz, Bulgaria, now 20 years ago. The format of the event has evolved over the years,
but its main principles have not changed. The high-level goal of the IOI is still that of
promoting computer science (CS) among the youth, and of discovering and stimulating
young talent in CS. The IOI is still offering a competition in algorithmic problem solving,
where solutions must be implemented in one of a few programming languages (Verhoeff
et al., 2006).

Let me remind you of two reasons for restricting the competition to algorithmic pro-
gramming problems, which nowadays are considered as belonging to a narrow subfield
of CS. Back in 1989, CS was not a regular topic in the high school curriculum in most
countries. Some school pupils did learn some CS – either by themselves, or through rela-
tives or devoted teachers – mostly in the form of computer programming. This limited the
options for a CS competition. Secondly, there were no widely accepted standards for the
communication of algorithms. In a competition for high school pupils, who had no for-
mal training in expressing algorithms, it was an obvious choice to require that they write
their algorithms as computer programs, which are machine executable. That way, a lot of
discussion about the intention and validity of an algorithm can be avoided. It also nicely
circumvents the language barrier1 in one direction, because programming languages are
quite universal.

1An international contest for high school students cannot rely on a single language for presenting the
contest tasks. It must also find a way for the contestants to communicate their work to the jury for evaluation.

150 T.Verhoeff

It may be comforting to some and sobering to others (myself included) that not much
has changed with respect to the educational context. CS is still not equally accepted
among other topics in the high school curriculum across the globe, and the means for
the communication of algorithms has not much improved. Compare this to the ‘maturity’
of mathematics. It would be unimaginable to drop math from the high school curriculum
(though, no doubt, there would be supporters for that), and it has a universally accepted
abstract notation for expressing mathematical objects, questions, and arguments.

What has changed substantially in the IOI since its inception is the difficulty level of
the contest problems, usually called ‘tasks’, and the evaluation mechanism to determine
a score for submitted work. The nature of the tasks has seen an increase, albeit small, in
diversity.

This article will walk you through the 20-year history of IOI tasks, all of which can be
found via (IOI website, 2009). It is not intended as a judgment of the past, though I will
take the opportunity to raise some critical notes. I will highlight various aspects, which
you can view from different viewpoints, such as

Task author who invents and formulates a task;
Contest director who integrates the whole task set;
Team leader who votes about the tasks and translates them;
Contestant who is challenged to solve the tasks;
Judge who prepares the evaluation of the submitted work;
Coach who trains contestants to obtain their best result;
Educator who may later use tasks for pedagogical purposes;
Academia and industry who are potential employers of contestants.

The 20-year history will be broken down into three periods, whose characteristics are
summarized in Table 1.

Table 1

The major periods in the evolution of IOI tasks

1st Lustrum2 2nd Lustrum2 2nd Decennium
1989 – 1993 1994 – 1998 1999 – 2008

Hours per day 43 5

Tasks per day 14 3

Scoring principle Partly subjective Based on test runs only

Grading method Manual Automatic

Present at grading Evaluator, leader, and contestant No-one

Grading platform Contestant computers Central Linux server5

Task types added Batch Interactive Output-only

Preparation Host SC only ISC supervision6

2 A lustrum is a five-year period; a decennium a ten-year period.
3 Except 5 on IOI’92 and IOI’93
4 Except 3 on Day One of IOI’93
5 Except IOI’99 and IOI’00
6 Except IOI’99

20 Years of IOI Competition Tasks 151

This period of 20 years involved 101 competition tasks. Appendix A provides a tabular
overview, which is explained in Section 5. It is impossible to cover all of the tasks here
in any detail. Having talked to many IOI stakeholders in the past, it became clear that
putting together a top-10 of “best” IOI tasks is not a reasonable endeavor. I have picked
one ‘representative’ task from each period, and I apologize for the necessarily subjective
nature of my choices.

2. First Lustrum: 1989–1993

The first IOI featured a single task on a single competition day. The next three IOIs
each had two competition days with a single task, while at IOI’93 there were three tasks
on Day One and only one on Day Two. The input-output requirements were specified
rather loosely. The first three years, I/O was through a console interface (keyboard and
screen), and thereafter through disk files. Grading was done manually by an evaluator
who operated the program on the contestant’s computer.

The first IOI task ever, the problem selected from six candidates for competition at
IOI 1989, was described as follows, quoted from the on-line version and (Kenderov and
Maneva, 1989; p. 21). It had no title.

Problem 1. Given 2 ∗ N boxes in line side by side (N � 5). Two adjacent boxes are
empty, and the other boxes contain N − 1 symbols "A" and N − 1 symbols "B".

Example for N = 5:

| A | B | B | A | | | A | B | A | B |

Exchanging rule: The content of any two adjacent non-empty boxes can be moved
into the two empty ones, preserving their order.

Aim: Obtain a configuration where all A’s are placed to the left of all B’s, no matter
where the empty boxes are.

Problem: Write a program that:

1. Models the exchanging of boxes, where the number of boxes and the initial
state are to be input from the keyboard. Each exchange is input by the num-
ber (from 1 to N − 1) of the first of the two neighboring boxes which are to
be exchanged with the empty ones. The program must find the state of the
boxes after the exchange and display it.

2. Given an initial state finds at least one exchanging plan, which reaches the
aim (if there is such a plan). A plan includes the initial state and the inter-
mediate states for each step.

3. Finds the minimal exchanging plan which reaches the aim.

Results: Present at least one solution for the example mentioned above.

Note that the task is composed of several related subtasks, allowing contestants to earn
partial credit for partial accomplishments. In the first lustrum, the subtasks are usually
based on the processing phases for the ‘full’ task, such as reading the input data into
a suitably defined data structure, carrying out a single state transformation, writing the
resulting state in a suitable format, etc.

152 T.Verhoeff

An IOI task is not complete without a plan for grading the work submitted by the con-
testants. Kenderov and Maneva (1989, pp. 40-41) present the following grading scheme
for the first IOI problem.

Four test examples were prepared by the Jury so that to check the program behavior in
various cases. Each test example determined the value of N and the initial state as a
sequence of A’s, B’s and zeroes for the empty boxes.

TEST EXAMPLE 1. N = 5, 0 0 A B A B A B A B

The solution had to be obtained in 4 steps.

TEST EXAMPLE 2. N = 5, A B B A 0 0 A B A B

The minimal number of steps had to be 3.

TEST EXAMPLE 3. N = 3, 0 0 A B A B

A message for no existence of a solution was expected.

TEST EXAMPLE 4. N = 4, 0 A B A 0 B A B

A message for incorrect input data was expected.

The Jury decided the maximum number of points to be 100, which should be distributed
as follows:

Subproblem 1. Up to 10 points.

Subproblem 2. Up to 40 points:

• up to 15 points for finding at least one plan or up to 20 points for all the plans
found out;

• up to 20 points for reporting the lack of solution;

Subproblem 3.

• up to 15 points for an attempt made for optimization;
• up to 40 points for complete optimization.

Other 10 points were planned to be given in addition – 5 points if some results had
been obtained after executing the program and 5 points for good programming style,
and original solution, etc. (at decision of the Jury).

To assess the difficulty level of the tasks, one should keep in mind that in the first
lustrum we were still dealing with Apple II and MS-DOS computers (CPU clock rates up
to approx. 25 MHz7), limiting programs to 640 KB RAM (without resorting to trickery for
accessing extended memory). The allowed programming languages were: Pascal, Basic,
Logo, and later also C and (non-standardized) C++; at IOI’91, FORTRAN was available
as well.

The first IOI problem would still make a nice IOI task, but not for an entire (5 hour)
competition day. In a high-school programming course, it can provide material for several
lessons, even nowadays. It has a concise formulation and its solution involves some im-
portant CS concepts, in particular, graphs. Note that Edsger Dijkstra (1959) published his,
now famous, shortest path algorithm for graphs, which can be used in this task, precisely
50 years ago.

7Unfortunately, it has proved impossible to trace hardware details for the first lustrum.

20 Years of IOI Competition Tasks 153

3. Second Lustrum: 1994–1998

IOI’94 offered three tasks of diverse difficulty on both competition days, thereby estab-
lishing a tradition for the years to come (but that may be overturned at IOI’09).

At IOI’95, a new kind of task was introduced, referred to as reactive or interactive
tasks, as opposed to the ‘classical’ (single-)batch-style tasks. In a batch task, all input
data is available at the beginning of the run and it does not depend on the program’s
behavior. In a reactive task, some output must be produced before new input becomes
available. That input may depend on the preceding output. The program has a dialogue
with a (programmed) environment, which may behave as an adversary. When all input is
predetermined but not completely available at the start, we speak of an online program-
ming problem (the opposite situation is called offline).

The first reactive IOI task was named Wires and Switches (IOI’95, Day Two) and
described as follows.

Wires and Switches. In Fig. 1, a cable with three wires connects side A to side B.
On side A, the three wires are labeled 1, 2, and 3. On side B, wires 1 and 3 are
connected to switch 3, and wire 2 is connected to switch 1.

In general, the cable contains m wires (1 � m � 90), labeled 1 through m
on side A, and there are m switches on side B, labeled 1 through m. Each wire is
connected to exactly one of the switches. Each switch can be connected to zero or
more wires.

Fig. 1. Cable with three wires and three switches.

Measurements. Your program has to determine how the wires are connected to the
switches by doing some measurements. Each switch can be made either conducting
or non-conducting. Initially all switches are non-conducting. A wire can be tested on
side A with probe P : Lamp L will light up if and only if the sensed wire is connected
to a conducting switch.

Your program begins by reading one line with the number m from standard in-
put. It then can give three kinds of commands by writing a line to standard output.
Each command starts with a single uppercase letter: T (Test a wire), C (Change a
switch), and D (Done). Command T is followed by a wire label, C by a switch la-
bel, and D by a list whose i-th element is the label of the switch to which wire i is
connected.

154 T.Verhoeff

After commands T and C, your program should read one line from standard
input. Command T returns Y (Yes) when the wire’s switch is conducting (the lamp
lights up), otherwise it returns N (No). Command C returns Y if the new switch state
is conducting, and N otherwise. The effect of command C is to change the state of the
switch (if it was conducting then it will be non-conducting afterwards and vice versa);
the result is returned just for feedback.

Your program may give commands T and C mixed in any order. Finally, it gives
command D and terminates. Your program should give no more than nine hundred
(900) commands in total.

Example. Fig. 2 presents an example conversation involving 8 commands relating
to Fig. 1.

Standard Output Standard Input
3

C 3 Y
T 1 Y
T 2 N
T 3 Y
C 3 N
C 2 Y
T 2 N
D 3 1 3

Fig. 2. Example conversation.

This task was devised by the author when moving into a new home, where the previous
owners had lost the chart describing how light fixtures and wall outlets were connected to
the switched fuse groups. A key idea for the solution is the binary search, another famous
algorithm, which is often not fully appreciated (Feijen and van Gasteren, 1996; §12.3.3).
The adversary used in evaluation attempted to minimize the amount of information con-
veyed at each query. For solutions and further details see (Verhoeff, 1995).

Starting with IOI’94, the grading process was automated so as to ensure that all sub-
mitted programs are given the same objective treatment. In preceding years, it had hap-
pened that a contestant program was allowed to continue running overnight in the hope
that it would produce an answer. Setting an explicit limit on the run time also served to
communicate the required efficiency level.

On the programming language front, Logo was dropped as of IOI’95, and Basic dis-
appeared at IOI’98, leaving only Pascal and C/C++.

Another break with the past was the decision to base the score of submitted programs
solely on a set of automatic test runs8 with carefully constructed secret input data. This
was mainly motivated by practical considerations, but is still a controversial issue (Ver-
hoeff, 2006). Although this minimizes the role of human evaluators at the IOI, it does

8The organizers use these systematically designed test runs to quantitatively measure program quality. They
should not be confused with the – often ad hoc – test runs executed by contestants.

20 Years of IOI Competition Tasks 155

increase the burden of thoroughly preparing the test runs in advance, a job that is often
underestimated, and it limits what aspects can be taken into account.

As a consequence of evaluating by automatic test runs only, subtasks had to be defined
in a compatible way. Just reading and storing the input or determining some configuration
without outputting it cannot be evaluated by test runs. In the second lustrum, subtasks
were typically defined by requiring additional output for related but simpler computa-
tions, and crediting these separately. Another way to obtain a partial score was to solve a
subset of the (secret) input cases.

4. Second Decennium: 1999–2008

The team leaders vote about acceptability of proposed tasks shortly before the actual
competition, and then the selected tasks have to be translated. IOI tasks involve a lot
of work to prepare. In particular, the choice of bounds and other constraints, and the
ingredients for a fair evaluation require ample consideration. The gradual increase in the
ability of the contestants and accompanying increase in the diversity and difficulty level
of the tasks has only complicated this further. Hence, it is not easy to assess proposed
tasks quickly, and thus the team leaders came to face an impossible duty.

At IOI’99 the International Scientific Committee (ISC) was established to supervise
the preparations for and development of future IOI competitions. The ISC has more time
to assess proposed tasks and help ensure their quality. It reports its findings to the General
Assembly of all team leaders, who can then take this into account when deciding on tasks.

In the second decennium, another new type of task was introduced. They became
known as output-only tasks, where the contestants do not submit their programs but only
the output files for several given (i.e., non-secret) input files. Of course, creation of the
output files requires algorithmic thinking, and in most cases also considerable amounts
of programming. In fact, each input file could potentially be tackled by one or more ded-
icated programs (for instance, a program to analyze and classify the input and a program
to handle a particular class of inputs, using the analysis results).

Evaluation of submissions for output-only tasks does not involve programming lan-
guages and program compilation and execution. On the other hand, since programs are
not collected, there is also no trace of what algorithms the contestants have developed.

The first output-only task was Double Crypt at IOI’01. Here is the description of the
more interesting output-only task XOR (IOI’02, Day One).

XOR. You are implementing an application for a mobile phone, which has a black-
and-white screen. The x-coordinates of the screen start from the left and the y-
coordinates from the top, as shown in the figures. For the application, you need various
images, which are not all of the same size. Instead of storing the images, you want to
create the images using the phone’s graphics library. You may assume that at the start
of drawing an image, all pixels of the screen are white. The only graphics operation
in the phone’s library is XOR(L,R,T,B), which will reverse the pixel values in the
rectangle with top left coordinate (L,T) and bottom right coordinate (R,B), where L
stands for the left, T for the top, R for the right and B for the bottom coordinate. Note
that in some other graphics libraries the order of the arguments is different.

156 T.Verhoeff

As an example, consider the image in Fig. 3 (right). Applying XOR(2,4,2,6)
to an all white image gives the image on the left. Applying XOR(3,6,4,7) to the
left image gives the image in the middle, and applying XOR(1,3,3,5) to the middle
image finally gives the image on the right.

Fig. 3. Screen after each of three successive XOR operations.

Given a set of black-and-white pictures, your task is to generate each picture
from an initially white screen using as few XOR calls as you can. You are given ten
input files describing the images, and you are to submit files including the required
XOR call parameters, not a program to create these files.

Output-only tasks were introduced to make certain classes of ‘hard’ problems accept-
able at the IOI. Evaluation based on a limited set of test runs with secret inputs has the
danger of biased results when the input space is ‘convoluted’. In that situation, the test
runs can explore only a – often very limited – subspace of allowed inputs, thereby pos-
sibly not covering corners where the contestant made mistakes or did exceptionally well
(Forisek, 2006). An output-only task involves some specific non-secret inputs, so that the
contestants know exactly which cases need to be handled.

XOR is such a ‘hard’ problem. In fact, the organizers did not know an efficient optimal
algorithm. It is an open-ended task according to (Kemkes et al., 2002). It does, however,
have a nice approximation algorithm that is guaranteed to be no more than a factor 2 off
the optimum. That is why this task used relative scoring, where contestant scores were
based on how well they did compared to other contestants. Relative scoring was first
featured in the memorable task Toxic iShongololo (IOI’97, Day One).

Subtasks as a means of offering an opportunity for partial credit came into disuse in
the second decennium. Instead, partial credit could be obtained depending on program
efficiency, by defining two or more subclasses of inputs, all of them requiring the same
‘full’ output. A typical way of classifying inputs is by their ‘size’. ‘Smaller’ or ‘sim-
pler’ inputs could be handled by less efficient, easier programs, whereas ‘larger’ or more
‘complex’ inputs required more sophisticated programs.

Test run clustering was introduced at IOI 2005 to reduce the opportunity for harvest-
ing undeserved points by guessing and other forms of opportunistic programming that is
not aimed at solving the actual computational task. The points for a cluster of test runs
are awarded only if all test runs in the cluster are successful. More generally, the score
for a cluster is defined as the minimum of the scores for the constituent test runs.

Another major change in this period (as of IOI’01) concerns the use of centralized
Linux servers for grading. This allows better control over resources (time, memory, files,

20 Years of IOI Competition Tasks 157

network) used by submitted programs during the evaluation test runs. The contestants
submit their work through a web interface to the contest support system, where evaluation
takes place. Previously, test runs were executed on the contestant computers after the
contest. Note that contestants would not necessarily be required to develop their programs
under Linux. Since the central contest server and the contestants’ development computers
can differ (if only in configuration details), the contestants need a facility to do their own
‘test runs’ on the server, that is, have their program executed on the server with their own
test input.

5. The 101 IOI Tasks

Appendix A presents an overview of the 101 competition tasks that appeared in the past
20 IOIs. There are many aspects one could want to summarize in such an overview,
depending on one’s background.

Task author: how much effort was needed for task creation; what alterna-
tives, bounds, and other parameters were considered;

Contest director: how balanced was the task set as a whole;
Team leader: how much effort was needed for understanding, assessing the

quality, and doing the translation;
Contestant: how much time was spent on understanding the task, on design-

ing an abstract solution, on implementing it as an executable program;
Judge: how much effort was needed to prepare test data, checkers, and a

summary of the design decisions behind the grading approach;
Coach: how easy were the results to understand and explain; what topics

need attention in training;
Educator: how useful were the analysis and solutions; which parts could be

used in school, covering what topics;
Academia and industry: to what extent did the tasks contribute to a better

image of computer science.

Most of that information is hard to obtain or no longer available. Concerning the
translation and comprehension effort, for example, one could measure the word, line, or
page count of the task description. There is some variation in this length, ranging from
half a page to three pages or more. But I find this metric too superficial. I have chosen to
restrict myself to presenting information on

• task type,
• difficulty level (if data was available), and
• classification of technical features.

5.1. Difficulty Levels

Difficulty levels are distinguished on the basis of what percentage of contestants were
able to ‘fully’ solve the task. We consider a submission scoring 90% or more as ‘fully’

158 T.Verhoeff

solving the task, i.e., modulo a ‘small’ mistake. The three main difficulty levels are: easy
(> 40% ‘fully’ solved), medium (between 40% and 10%), and hard (< 10%). The
medium level is subdivided into three sublevels: medium-easy, medium-medium, and
medium-hard; see Table 3.

This is admittedly a somewhat arbitrary definition of difficulty level and it is not an
absolute measure, but relative to the actual population of contestants for a particular IOI.
It is, however, objective and these same criteria have been used in various IOI question-
naires.

Unfortunately, scores per contestant per task are not available for all IOIs. The diffi-
culty level of tasks for a particular IOI can be assessed together as a set, by considering
the cut-off scores for the medals. Table 9 shows these scores relativized to the maximum
score. Keep in mind that according to the IOI Regulations (no more than) half of contes-
tants receive a medal, where the ratio of the number of bronze, silver, and gold medals is
3 : 2 : 1. That is, approximately one half of all contestants receive no medal, one quarter
a bronze medal, one sixth a silver, and one twelfth a gold medal. The lower the relative
medal cut-off scores, the fewer points were needed to obtain medals, the harder the task
set was for that population of contestants.

5.2. Task Classification

The classification concerns these three aspects:

1) the given context and input,
2) the computational task and output,
3) the (algorithmic) ingredients of a full-scoring solution.

The first two items together characterize the problem domain, and the third item the
solution domain. In the overview tables, these three items are separated by semicolons.
The terminology follows common practice; for instance, see (Skiena, 2008). It is worth-
while to consider integration into (Verhoeff, 2004) and (Verhoeff et al., 2006). The clas-
sification is not entirely satisfactory; some tasks are hard to classify concisely.

Note that Kyryukhin and Okulov (2007) provides technical information (in Russian)
on all competition tasks of the first 18 IOIs, including the task descriptions, analyses,
solution guidance, classifications, and code snippets (both pseudo code and Pascal imple-
mentations). I have occasionally consulted this useful reference when making the classi-
fication in Appendix A, but my classification is not the same.

6. Conclusion

The past 20 IOIs involved 101 competition tasks, covering a wide range of CS topics, task
types, and difficulty levels. I have summarized them in Tables 5 through 8. I recommend
that these tables are verified, refined, and extended with further information, and are kept
up to date. In particular, it would be interesting to refine the difficulty assessment, by
separately measuring the difficulty of

20 Years of IOI Competition Tasks 159

• comprehension, for instance, in terms of number of concepts and definitions in-
volved;

• mathematical analysis, for instance, by number and nature of key properties (lem-
mata) to be discovered;

• algorithm design (the focus of this article);
• implementation (mostly ignored in this article).

It would also be useful to have a cross-reference of the classification, which lists for each
class all related tasks. An on-line data base comes to mind.

Many of the tasks are too hard to use ‘as is’ in regular CS courses for secondary
education. The kind of algorithmics that nowadays plays a role at the IOI is too advanced
for incorporation in the high-school curriculum. When looking at the difficulty level of
the individual tasks and at the cut-off scores for medals, there is an obvious trend towards
relatively harder problems, that is, towards problems and problem sets that are solved by
a decreasing percentage of contestants. I do not think this is a good development.

Table 2 lists the five tasks that I have contributed to the IOI competitions.
While analyzing the past, it became painfully clear that the IOI community needs to

do a better job at preserving its historic record. All task descriptions are available on-
line10, but other information is often lacking. In particular, it is desirable to know

• computing platforms and other constraints;
• results per task for all contestants (possibly anonymized);
• test data (preferably in digital form), checkers, and motivation;
• problem analyses, design options and decisions, exemplary11 pseudo code and doc-

umented program texts12.

In most cases it is not easy or plainly impossible to (re)evaluate your own attempt at a so-
lution according to the rules of that IOI. Consult (Verhoeff, 2008) for further suggestions
on this topic.

The next decennium will certainly see new developments. Computer hardware and
programming languages evolve: object-oriented and component-based software on multi-

Table 2

IOI tasks contributed by the author

Task Year Remarks

Wires and Switches IOI’95 Interactive, see (Verhoeff, 1995)

Median Strength IOI’00 Interactive, see (Horváth and Verhoeff, 2002)

Double Crypt IOI’01 Output only, uses AES9

Reverse IOI’03 Output only, output is a ‘program’

Mean Sequence IOI’05 Easy, non-trivial

9Advanced Encryption Standard (established as a NIST standard in 2002).
10For IOI’90 it unclear on the (IOI website, 2009) which were the actual competition tasks.
11worthy of imitation
12Kyryukhin and Okulov (2007) come a long way in providing this information for the first 18 IOIs.

160 T.Verhoeff

core networked processors with interactive multimedia user interfaces require multi-
threading, distributed algorithms, and network protocols. The IOI does not have to follow
these trends, but if the aim is to stimulate youthful talent, then it is advisable to investigate
the possibility of attractive tasks involving newer technologies.

The programming languages that may be used in the IOI competition are now re-
stricted to Pascal and C/C++. Java and Python have been around for more than ten years
and are quite popular and accessible. It will be interesting to see how the IOI evolves
on the language front, striking a balance between expressing algorithms elegantly and
implementing them efficiently for actual execution.

Acknowledgments

The anonymous reviewers provided critical and helpful feedback on the first version of
this paper. I would like to thank Gyula Horváth for assisting in the task classification and
for collecting the score data for Table 9.

A Tabular Overview of Tasks and Task Sets

Tables 5 through 8 list all 101 IOI competition tasks of the past 20 years together with task
type, difficulty level (where objectively assessable), and a classification. Table 3 explains
the codes for task types and difficulty levels. Abbreviations for the classification are listed
in Table 4. Table 9 shows the relative cut-off scores for medals, which can be used to
assess the difficulty level of the task sets as a whole. For more detailed explanations, see
Section 5.

Table 3

Type and difficulty codes used in Tables 5 through 8

Code Task Type

B Batch
I Interactive
O Output only
T Theoretical

Code Difficulty ‘Fully’ solved by13

E Easy 40% – 100%
M Medium-Easy 30% – 40%
M Medium-Medium 20% – 30%
M Medium-Hard 10% – 20%
H Hard 0% – 10%

13Percentage of contestants scoring � 90% on the task.

20 Years of IOI Competition Tasks 161

Table 4

Classification abbreviations used in Tables 5 through 8

Code Problem Features

Ari Arithmetic
CG Computational Geometry
Cnt Counting
Comb Combinatorial
Dist Distance
DS Data Structure
Enum Enumerating
FSM Finite State Machine
Gm (Combinatorial) Game
Gr Graph
Ham Hamilton
i implicit/implied
Mh Manhattan
Mtch Matching
Num Number (integer)
Opt Optimization
(un)Rank (Un)Ranking
Rect Rectangle
Sch Scheduling
Srch Searching
Seq Sequence
Srt Sorting

Code Solution Features

Approx Approximation
BB Branch & Bound
BFS Breadth First Search
BS Binary Search
BT Backtracking
DC Divide & Conquer
DFS Depth First Search
DP Dynamic Programming
ES Exhaustive Search
Exp Exponential
Grdy Greedy
MI Mathematical Insight
MM Meet in the Middle
MST Min/Max Spanning Tree
(N)P (Nondet.) Polynomial
Heu Heuristics
Hash Hashing
L(A) Linear (Algebra)
Pc Precomputation
Rec Recursive
SP Shortest Path
SL Sweep/Scan Line

Table 5

Overview of competition tasks in first lustrum

1. IOI 1989, Pravetz, Bulgaria

[Exchanging Boxes] B M Seq; Srt, Opt; iGr, BFS

2. IOI 1990, Minsk, Belorussian Republic, SU

[Sliding Puzzle] B H 2d Num Grid; Comb Opt; iGr, BT

[Watchmen] B H Num Seq; Sch, Opt; ES

3. IOI 1991, Athens, Greece

Square Problem B E 2d Grid; Ham cycle, Cnt; iGr, BT

S-Terms Problem B H Grammar; DS, Enum, String rewriting; _

4. IOI 1992, Bonn, Germany

Islands in the Sea B Nonogram (logic puzzle); Solve; BT

Climbing a Mountain B Constraints; Sch, Opt; BT

5. IOI 1993, Mendoza, Argentina

[Necklace] B Color cycle; Cut Opt; L
[Company Shares] B Weighted Gr; Enum; all-pair SP
[Rectangles] B 2d CG, Rect; Areas; z-Buffer, DFS

[Itinerary] B Gr; Cycle Opt; DP

162 T.Verhoeff

Table 6

Overview of competition tasks in second lustrum

6. IOI 1994, Haninge, Sweden

The Triangle B Num triangle; Opt; iGr, DP
The Castle B 2d Grid; Cnt, Opt; iGr, DFS
The Primes B Magic digit square; Primes, Enum; Pc, BT

The Clocks B FSM, Sch, Opt; MI, LA
The Buses B Num Seq; Sch, Opt; BB
The Circle B Num cycle, Opt, Enum; BT

7. IOI 1995, Eindhoven, The Netherlands

Packing Rectangles B M 2d CG, Rect; Area, Opt, Enum; ES
Shopping Offers B M Constraints; Comb Opt; DP
Printing T M Program analysis & modification

Letter Game B E String list; Opt, Enum; ES
Street Race B M Gr; Vertex Cnt, Enum; P
Wires and Switches I M Find mapping; BS

8. IOI 1996, Veszprém, Hungary

A Game I E 2p Gm; Sum Opt; MI+L or DP
Job Processing B H Constraints; Sch, Opt; Grdy, MM
Network of Schools B M Gr; Opt; DFS

Sorting a 3-valued Sequence B E Num Seq; Srt, Opt; Srt, P
Longest Prefix B M String list; Opt; Pc, P
Magic Squares B M FSM; Event Seq; iGr, BFS

9. IOI 1997, Cape Town, South Africa

Mars Explorer B 2d Grid; Opt; iGr
Game of Hex I 2p Gm; Moves; Heu
Toxic iShongololo B 3d Grid; Opt; Heu

Map Labeling B 2d CG; Rect placement; Heu
Character Recognition B 2d Image; Approx Mtch; Heu
Stacking Containers I 3d CG, unit cubes; Heu

10. IOI 1998, Setúbal, Portugal

Contact B String; Cnt, Enum; Histogram, Srt
Starry Night B 2d Image; Subshape Mtch; ES
Party Lamps B FSM; Enum; Linear Algebra, Brute Force

Picture B 2d CG, Rect; Perimeter; SL
Camelot B 2d Grid, 1p Gm; Opt; iGr, ES
Polygon B Number cycle, Ari; Opt, Enum; DP

20 Years of IOI Competition Tasks 163

Table 7

Overview of competition tasks in third lustrum

11. IOI 1999, Antalya-Belek, Turkey

Little Shop of Flowers B Constraints; Comb Opt; DP
Hidden Codes B String list; Mtch, Opt; P
Underground City I 2d Grid, implicit maze; Find loc; ES

Traffic Lights B Weighted Gr; Path Opt; iGr, SP
Flatten B 1p Gm, Num Seq; Move Seq, Opt; iGr, LA, NP?
A Strip of Land B 2d Num Grid; Rect, Area Opt; P

12. IOI 2000, Beijing, China

Palindrome B M String; Opt; DP
Car Parking B M Num Seq; Srt, Opt; Srt, Grdy
Median Strength I M Implicit Num Seq; Find median; Heap

Walls B M Planar iGr; Opt; Dual Gr, all-pair SP
Post Office B M 1D CG; Comb Opt; DP
Building with Blocks B H 3d Grid; Set Packing Opt, Rot/Refl; BB

13. IOI 2001, Tampere, Finland

Mobile Phones I H 2d Grid; Rect Cnt; Binary Tree
Ioiwari Game I M 2p Gm; Win; iGr, minimax
Twofive B H String, Num, iSeq; (un)Rank; MI, Pc, DP

Score I M 2p Gm, Labeled Gr; Win; DFS, minimax
Double Crypt O M Crypto func; Find keys; Hash, MM
Depot B H 2d Grid, Num Seq; Inverse, Enum; BT

14. IOI 2002, Yong-In, Korean Republic

The Troublesome Frog B M 2d CG; Line, Opt; DP, Hash
Utopia Divided B H 2d CG, Num Seq; Sch; MI, DC, Srt
XOR O H 2d Grid; Rect, Opt; NP?, Approx

Batch Scheduling B H Constraints; Sch; DP
Bus Terminals B H 2d CG, Mh Dist; Opt; P
Two Rods I H 2d CG; Rect, Find 2 segments; BS

15. IOI 2003, University of Wisconsin Parkside, U.S.A.

Trail Maintenance I M Gr; Subgraph Opt; MST
Comparing Code B H String list; Mtch, Opt; P
Reverse O H FSM; program; NP

Guess Which Cow I H 2d Grid; Query Opt; BFS, bit level
Amazing Robots B H 2d Grid, Sch; Solve maze; iGr, BFS
Seeing the Boundary B H 2d CG, Polygons; Visibility; polar SL

164 T.Verhoeff

Table 8

Overview of competition tasks in fourth lustrum

16. IOI 2004, Athens, Greece

Artemis B H 2d Bit Grid; Rect, Opt; Pc, DC, Srt
Hermes B M 2d CG; Dist Opt; DP
Polygon O H 2d CG; inverse Minkowski sum; NP

Empodia B M Num Seq; Subsequence Enum; MI, L
Farmer B M Num Seq; Comb Opt; DP
Phidias B M 2d CG, Rect; Cut Opt; DP

17. IOI 2005, Nowy S ↪acz, Poland

Garden B M 2d Grid; Rect, Opt; Pc, SL
Mean Sequence B E Num Seq; Cnt Num Seq; L
Mountain B H Num Seq; Answer queries; Binary Tree

Birthday B M Num Cycle; Comb Opt; L
Rectangle Game I M Gm, Rect, Cut; Win; MI
Rivers B M Num Tree; Comb Opt; DP

18. IOI 2006, Mérida, Yucatán, Mexico

Forbidden Subgraph O H Gr; Subgraph Opt; NP
Pyramid B M 2d Num Grid; Rect, Opt; Pc, Binary Tree
Mayan Writing B E String; Cnt; L

A Black Box Game IO H 2d Grid; Find configuration; Rec, Exp
The Valley of Mexico B M Gr; Planar Ham path; DP
Joining Points B H 2d CG, 2 Point sets; 1p Gm; Rec, DC

19. IOI 2007, Zagreb, Croatia

Aliens I M 2d Grid; Find center; BS
Flood B H 2d Mh CG; Segment Enum; dual iGr, BFS
Sails B H Num Seq; Comb Opt; Grdy, Diff Tree

Miners B E String; Sch, Opt; DP
Pairs B H 1d/2d/3d Mh CG; Pair Cnt; Srt, SL
Trainings B H Gr, Tree; Even Cycle, Opt; DP

20. IOI 2008, Cairo, Egypt

Type Printer B E String list; Sch, Opt; Trie, DFS
Islands B H Weighted Gr; Path Opt; MI, Tree diameter
Fish B H iGr; Comb, Cnt; MI, Srt, Binary Tree

Linear B M String, iSeq; Comb, Rank; MI, Pc, DP
Teleporters B H 1d CG; Motion Opt; iGr, DFS/BFS, Grdy
Pyramid Base B H 2d CG; Rect, Area Opt; MI, BS, SL, DS

20 Years of IOI Competition Tasks 165

Table 9

Relative cut-off scores for medals (no data available for 1993, 1997)

References

Dijkstra, E.W.D. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1, 269–
271.

Feijen, W.H.J. and van Gasteren, A.J.M. (1996). Programming, proving, and calculation. In C.N. Dean and
M.G. Hinchey (Eds.), Teaching and Learning Formal Methods, Academic Press, pp. 197–243.
§12.3.3: http://www.mathmeth.com/wf/files/wf2xx/wf214t.ps (accessed May 2009)

Forisek, M. (2006) On the suitability of programming tasks for automated evaluation. Informatics in Education,
5(1), 63–76.

Horváth, G. and Verhoeff, T. (2002). Finding the median under IOI conditions. Informatics in Education, 1(1),
73–92.

International Olympiad in Informatics Website. http://www.IOInformatics.org/ (accessed
May 2009)

Kemkes, G., Cormack, G., Munro, I. and Vasiga, T. (2007). New task types at the Canadian computing compe-
tition. Olympiads in Informatics, 1, 79–89.

Kenderov, P.S. and Maneva, M.N. (Eds.) (1989). In Proceedings of the International Olympiad in Informatics,

166 T.Verhoeff

Pravetz, Bulgaria, May 16–19. Union of the Mathematicians in Bulgaria, Sofia.
Kiryukhin, V. and Okulov, S. (2007). Methods of Problem Solving in Informatics: International Olympiads.

LBZ (BINOM. Knowledge Lab), Moscow (in Russian). http://www.lbz.ru/ (accessed May 2009)
Skiena, S.S. (2008). The Algorithm Design Manual (2nd ed.). Springer-Verlag.

http://www.algorist.com/ (accessed May 2009)
Verhoeff, T. (1995). The lost group chart and related problems. In Simplex Sigillum Veri, A Liber Amicorum for

Prof. Dr. F.E.J. Kruseman Aretz. Faculty of Mathematics and Computing Science, Eindhoven University of
Technology. December 1995, pp. 308-313.
http://www.win.tue.nl/ wstomv/publications/kruseman.pdf (accessed May 2009).

Verhoeff, T. (2004). Concepts, Terminology, and Notations for IOI Competition Tasks.
http://www.win.tue.nl/wstomv/publications/terminology.pdf (accessed May 2009)

Verhoeff, T. (2006). The IOI is (not) a science olympiad. Informatics in Education, 5(1), 147–159.
Verhoeff, T., Horváth, G., Diks, K. and Cormack, G. (2006). A proposal for an IOI Syllabus. Teaching Mathe-

matics and Computer Science, IV(1), 193–216.
http://www.win.tue.nl/ wstomv/publications/ioi-syllabus-proposal.pdf (ac-
cessed May 2009)

Verhoeff, T. (2008). Programming task packages: peach exchange format. Olympiads in Informatics, 2,
192–207.

T. Verhoeff is assistant professor in computer science at Eindhoven
University of Technology, where he works in the group Software Engi-
neering & Technology. His research interests are support tools for ver-
ified software development and model driven engineering. He received
the IOI Distinguished Service Award at IOI 2007 in Zagreb, Croatia,
in particular for his role in setting up and maintaining a web archive of

IOI-related material and facilities for communication in the IOI community, and in es-
tablishing, developing, chairing, and contributing to the IOI Scientific Committee from
1999 until 2007.

