
Olympiads in Informatics, 2009, Vol. 3, 38–59 38
© 2009 Institute of Mathematics and Informatics, Vilnius

Infrastructure for Contest Task Development

Rob KOLSTAD
USA Computing Olympiad
15235 Roller Coaster Road, Colorado Springs, CO 80921, USA
e-mail: kolstad@usaco.org

Abstract. The USA Computing Olympiad annually conducts six internet-based computer program-
ming competitions, each including three to four algorithmic tasks in each of three divisions. Cou-
pled with the training camp competitions, a typical annual USACO ‘problem budget’ approaches
75 new tasks at three distinct levels of difficulty.

In order to exploit a distributed coaching staff, USACO developers created and evolved the web-
based ‘probgate’ problem-development system to speed production of acceptable quality program-
ming contest tasks that are machine-gradable, well-accepted, and yield no or few complaints, re-
grades, or requests for clarification.

This paper describes each of the major modules and shows how they are used to simplify, speed
up, and automate administration of contests regularly accessed by more than 1,000 students.

Key words: programming contests, automation, contest test data, contest data validation, contest
preparation, contest automation, automatic grading.

1. Demographic Background

The USA Computing Olympiad is the USA’s designated organization for training and
selecting students to compete in the International Olympiad in Informatics.

In July, 2009, the United States had a population of just over 307 million people.
The USA includes 9.8 million square kilometers (about half the size of Russia or South
America; about twice the area of the European Union). The 3,500 mile (5,600 km) width
of the contiguous 48 states complicates gathering students for training camps or on-site
contests.

The USA has just over 29,500 high schools with a total of about 15M students; about
3.2M will graduate in 2009. Additionally, 0.3M high school students are ‘home schooled’
outside the traditional public and private school system.

Until recently, USA high schools included all levels of students and declined to uti-
lize ‘tracking’ to segregate them by performance. The past decade has seen increased
availability of ‘magnet,’ ‘gifted and talented,’ and ‘charter’ schools that offer focused
or deeper programs for academically inclined students. Additionally, many high schools
offer ‘Advanced Placement,’ ‘Honors,’ or International Baccalaureate coursework that
enables students to self-select into more challenging curricula (thus segregating academ-
ically focused students from their potentially less-diligent peers).



Infrastructure for Contest Task Development 39

All public secondary schools in the USA are governed by local (usually city-wide)
school boards that are generally overseen by state-level school boards. The federal gov-
ernment uses the new No Child Left Behind legislation and a few other techniques to
encourage a small number of national standards.

Of the USA’s 15+ million eligible students for the IOI, about 150–175 (0.001%)
participate in USACO contests (47% in bronze division, 36% in silver division, 16% in
gold division).

2. Task Development Background

The manageable number of students coupled with the natural fit of computer program-
ming contests to the internet enables the USACO to offer six annual online programming
contests (plus a qualification round) to USA students. Each contest has three divisions;
each division contains 3–4 tasks, usually 9–10 tasks total. Annually, these contests con-
sume 55–60 tasks.

The selection process thus garners a large amount of data for each student, so much
that the student’s worst performance can be dropped from statistics (most folks have a
bad day once in a while) while still yielding meaningful means, trends, and so on. The
monthly contests also enable tracking of students’ improvement over time (and correla-
tion with their participation in the USACO training site).

The USACO invites 16 (or so) of the best students to participate in the USA Invita-
tional Computing Olympiad, an on-site selection contest and training week for the IOI.
This camp has evolved to include six contests (four shorter, two longer) of 3–4 tasks each,
an additional ∼20 tasks.

In addition, the USACO administers bonus contests (e.g., over the New Year holiday
break) and special training events that also consume programming contest tasks.

All in all, the USACO creates and then consumes 75 or more fairly high-quality tasks
per year, all developed by a volunteer coaching staff of about a dozen coaches located
around the world.

The original implementation of the USACO grader enabled automated administra-
tion and grading of tasks in a contest environment. Task development and deployment
proceeded manually, including manual setup and installation of tasks into the contest
system.

Manual setup is well-known to be error-prone, and the USACO was no exception.
Bugs and other issues were exacerbated by the just-in-time development effort, which
often resulted in tasks (including text, solutions, and test data) being created the night
before a contest (especially at camp with its very high rate of task consumption).

This development methodology not only created tremendous pressure and stress on
the coaches but resulted in errors in the task statements, occasional tasks that were not as
solvable as believed, test data that failed to meet the task specifications, and contest en-
vironment integration errors. Coupled with the stress and schedule pressure, the coaches
felt the overhead of task development and contest integration was high.



40 R. Kolstad

3. Task Development Paradigms and Related Work

The existence of online, web-available, automated grading systems coupled with the ad-
vent of ever-cheaper hardware and widely-available reliable free software for develop-
ment has fostered development of many grading systems around the world. Evolution of
such systems usually proceeds from a web page that enables compilation and execution
to a ‘sandbox’ to contain the behavior of submitted programs (imagine the security im-
plementations of letting anyone send source code to run on your site). The compile/run
system acquires a database of users in order to differentiate whose tasks are getting which
results. The major issue of scaling comes into play as the abilities of a single CPU are
exceeded.

Then the real challenge emerges: continuous development of new tasks and adminis-
tration of contests on a schedule. Once scaling solutions and dedicated staff (volunteers,
usually) are identified, the second-order issues can be attacked. Some country’s organi-
zations (e.g., those of Poland’s Diks et al. (2008), Canada’s Gordon Cormack, and The
Netherlands’ Tom Verhoeff (2008)) have devoted tremendous attention to the challenge
of using black-box testing to ascertain the quality of submitted solutions to contest tasks.

The USACO’s focus has been on providing a large, growing, and widely-available
set of contests to the largest possible audience. While judging the quality of task ideas
and text is difficult and extremely subjective, the works by the previously-named authors
provide some guidance for creation and judging of test data. By the criteria of high-
quality black-box testing, USACO’s test data does not measure up to the standards of the
IOI (and probably those of Diks, Cormack, and others). However, problem setter Richard
Peng’s efforts through the 2007–8 and 2008–9 seasons have increased test data quality
dramatically. The data still meet the simple objective criterion: Do the test data enable
fair and defensible differentiation among the contest competitors, preferably throughout
the range of skills in a given division? For USACO, mostly because of the task-weighted
scoring technique (also seen in use at IOI2008 in Egypt), both the top-, mid-, and low-
level participants (in the Silver and Gold divisions) are differentiated quite well across
a 1,000 point scale.

Diks et al. (2008) shared their Task Preparation Process at 2008’s Olympiads in In-
formatics conference. Using their methodology and manpower, their tasks end up with
superior ‘model’ solutions, better test development (black-box testing), and dramatically
more complete and in-depth analyses when compared to USACO’s ongoing efforts. Their
series of training booklets is further evidence of their development of insightful and thor-
ough solution analyses.

Verhoeff (2008), also at 2008’s Olympiads in Informatics conference, shared his pro-
posal for the Peach Exchange Format. Compared to this paper’s work, it has a much more
formal set of roles (and their descriptions) for developers, potentially much better ‘back-
ground’ (often mathematical) information for task development, ‘notes’ for developers
(see Verhoeff, 2008; p. 202), and a formal specification for a file structure layout for task
exchange.

USACO’s paradigms more strongly emphasize throughput in the task development
area at the expense of detailed analyses and extremely thorough black-box testing.



Infrastructure for Contest Task Development 41

4. Requirements

One advantage of conducting a dozen IOI-level and IOI-size (for half of them) program-
ming competitions per year is the rapid accrual of realistic statistics on the kinds of mis-
takes that creep into contest tasks. After one particularly stressful camp during which
Senior USACO Coach Greg Galperin created a huge task matrix on a whiteboard to chart
task development throughout the week, it became clear that automated scripts could not
only aid in task development and debugging but also in contest administration system de-
bugging. The decision was made to create a web-based task development system (which
would not only integrate the scripts but also provide a distributed user interface). In hind-
sight, this is the next logical step in developing a contest administration framework once
a grading system with a secure ‘sandbox’ is stable.

Experience made clear the requirements for tasks, which include rules like these:

• Text must be clear and complete.
• Text must be easily editable for repairs.
• Text must be easy to export to both web and to paper – since online contests use

one method and on-site contests use the other.
• It is desirable for text to have multiple coaches’ ratings and comments – this helps

determine which tasks belong on contests (vs. training or discard).
• Test data must be valid (i.e., conform to task’s data explanation).
• It must be easy to add, remove, reorder test data.
• The system must ease creation of data validators (Verhoeff, 2000) – the data valida-

tor was one of the most effective schemes for eliminating complaints and regrades.
• It is desirable to create data validator mechanically – the ability to have a program

read a task and deduce the input data format ensures a uniform, proper presentation
of input requirements in addition to saving time.

• The system must support all styles of IOI tasks (simple answer, multiple answer,
reactive, output-only, programmatic grader, etc.).

• The system must enable configuration of submission feedback (categories like:
case is required to be correct for submission to proceed, report right/wrong for one
or a set of tasks, or no feedback at all).

• The system must enable configuration of multiple-tests per case.
• Task must be solvable within the contest constraints.
• The system must provide automated evaluation of proposed solutions in contest

environment (running in any other environment does not “prove” solvability).
• The system must provide comparison of answers from various solutions/solvers –

this must be mechanical since answer sets can be large and similar.
• It must be easy to enter answer-graders and format-checkers.

Requirements for task development include:

– easy navigation,
– ability to create pool of tasks to use in various contests,
– ability to see status (including coach ratings) of each task,
– ability to see status of each contest,



42 R. Kolstad

– fast navigation for rating many tasks – fast, easy navigation encourages coaches to
rate more tasks,

– convenient contest setup and parameter management,
– archiving scheme so tasks can smoothly move to training or other places – one-

click archiving makes for easy reuse of tasks,
– collection of task analysis text,
– ease of set up and take down for contests, including automatic start/stop.

5. Chosen Task Development Paradigms

The task development paradigm centers on the task as a ‘unit’ with this (expandable) list
of components:

– numerical problem ID,
– task author,
– task analysis status,
– task editing status,
– count and list of task solutions (and solvers) with solution-agreement status,
– data validator and its status,
– test data and its feedback type,
– task ratings,
– task algorithm,
– estimated time for ‘ideal student’ to solve,
– task abbreviation/short name,
– task title,
– task text.

The task’s text includes these items (which are stored and manipulated as separate
entities):

– full task name,
– short task name/abbreviation,
– assigned owner for task,
– presentation order,
– division,
– author,
– date,
– text body,
– input format (including broken-out start/stop line numbers),
– sample input,
– input explanation,
– output format (including broken-out line numbers),
– sample output,
– output explanation,
– the task’s test data representation includes:



Infrastructure for Contest Task Development 43

– each of the test cases,
– memory limit,
– default time limit,
– grader program for task output (optional),
– format checker for task output (optional),
– auxiliary filename and contents (e.g., for external dictionary),
– data validator program,
– scoring tables for aggregates (when score depends on more than one test case),
– per-test case time limit.

Notes for test data are consolidated with notes in the task discussion.
Additionally, the development system’s paradigm includes the ability to set new task-

development instances (for training tasks, university training/homework tasks, personal
task development gateways, etc.).

6. Current Implementation

The system supplies several web pages to manipulate the task’s components:

– the login page,
– the main status and navigation page,
– the text presentation, ratings, algorithm, solution time, ratings, and comments page,
– the problem solution page,
– the test data management page,
– the contest management page.

Subsections below detail each of these.
The task development infrastructure is part of an integrated training/contest adminis-

tration system written almost entirely in the perl programming language (the ‘sandbox’
being the only exceptional program; C felt like a better tool for its implementation).
About two dozen scripts (including administrative programs) total about 10,000 lines of
perl for the contest development infrastructure. At the time of implementation, perl was
one of only a few implementation tools mature enough to implement the system effec-
tively. Today, one could probably use any of several languages and/or tools. The author
is an expert perl programmer, so it was a natural choice at the time. The system runs on
FreeBSD and Linux (with a migration to a pure Linux environment planned for the near
future).

7. Login/Authentication

The current implementation of the task development system is accessed via a login page
on the web; see Fig. 1. A database keeps track of both coaches and competitors’ user-
names and passwords (over 105K as of 1 May 2009).



44 R. Kolstad

Fig. 1. Authentication page for problem editing gateway.

8. Status and Navigation

The main status and navigation page shows all the managed tasks in groups that have been
assigned by the coaches. Typical groupings are for upcoming contests, unassigned tasks
of a similar type, and unassigned tasks of a given division (e.g., gold, silver, or bronze).

Fig. 2 shows a small fraction of the top of the main status navigation page. The very
top includes some submit buttons used for group naming and other functions:

• Submit new problem: plots a task input page that collects each of the sections
mentioned above for a given task.

• Make new group: creates a new group with the name supplied in the input box.
• Rename group: Changes the name of the group whose checkbox has been clicked

to the name supplied in the input box.
• Help: plots a page of explanatory text.
• Manage Contests: brings up the contest setup page.
• Replot this page: redisplays the page with all updates.
• Submit selector: activates a filter that displays only those groups whose name

matches the regular expression entered in the Selector box (dramatically reduces
traffic when working on a single contest).

• Enlarge and Shrink: Increases or decreases the typeface size.

The headings show up next followed by the first (of many) group headers. The group
header rows include the header (and its checkbox) with the group name and some com-
mands in addition to a single line status message previously entered by a contest director.



Infrastructure for Contest Task Development 45

Fig. 2. Status and navigation page.

The per-group commands include:

• EXPORT – Copy this group’s tasks to the contest whose name matches the group
name.

• ARCHIVE – Copy this group’s tasks to the training task development system and
remove them from this page.

• REMOVE_GRP – Move the tasks in this group to the section below for unallo-
cated tasks and delete the group name and its status message.

• ADD_PROBS – Move the tasks whose checkbox has been marked into this group.
• PUBLISH_ANALYSIS – Retrieve the analyses entered for this group’s tasks and

copy them to the web for display with task data.
• ADD_NOTE – Shown only for special users when the contest ‘note’ is empty;

bring up note-text editing page.

The rest of the page shows the name and status for each of the tasks managed by this
particular task management system (in this case, 188 tasks are summarized below). Each
line contains a set of color-coded information about this task:

• Task Number: The numerical ID of the task. Clicking the number displays the
text-editing page.

• Task Number/Order: The presentation order number of the task, if it exists, is
displayed after the task.

• Owner: The next column shows the task’s owner.
• Status: A: The color of the letter A indicates the existence of the analysis (red for

missing, blue for present). Clicking the A brings up the analysis entry page.
• Status: E: The color of the letter E indicates whether the task has been final-edited

(bold-blue for not-edited, black for edited).
• Status: Xs/Ya: X is the number of solutions submitted; Y is the number

of solutions in agreement with the master solution. Bold-blue indicates insuffi-
cient solutions or agreements. Clicking this item brings up the solution submission
and status page.



46 R. Kolstad

• Status: VX: Bold-blue V means the validator is not submitted; presence of the
bold-blue X indicates the existence of test data that does not pass the validator’s
tests.

• Status: Xt[A.B.C]: X is the number of test cases that have been submitted. A is the
number of tests required to be passed for submission to succeed; B is the number of
tests whose results will be shown when a submission is made; C is the number of
tests that will be run normally. Clicking this item brings up the test data submission
page.

• N: Diff Orig Fun Opin: These five items represent respectively the number of
ratings entered by coaches as their evaluation of the task: the average difficulty
rating, the average originality rating, the average fun rating, and the average overall
opinion. The integer averages are the product of ten and the mean of all the 1–5
rating entries.

• Alg/Time: These two items show the algorithm abbreviation (as entered on the
problem display page by a knowledgeable coach) and the ideal student’s solution
time in minutes (also entered on the problem display page).

• Solns: The number represents the number of solution programs submitted; the sub-
sequent login IDs are the names of the solutions submitted (or, sometimes, names
assigned by the submitter).

• Abbr: The short problem name, its abbreviation.
• E: Clicking the E exports the single task to the contest administration system.
• R: Clicking the R removes the task from its group and moves it to the unassigned

task list at the bottom of the page.
• Name: The long name (title) of the task.

Problem creation and contest configuration proceed in parallel. To set up a contest,
a coach enters a canonical name (e.g., NOV09, DEC09, JAN10, etc.) and clicks Make
new group. He then ticks the checkboxes of tasks to move to that group and clicks the
ADD_PROGS tag on the group’s header.

Coaches can read the task’s text, enter ratings, enter solutions, enter test data, add a
validator, and submit output format checkers and graders. Any replot of the status change
shows all updates that have been entered.

When a problem is almost “ready” (i.e., it is final-edited, has at least two solutions
that agree with the master solution, has a validator that passes all the input data, and has
at least eight test cases), the background color around the “Status” fields changes to light
green. When the analysis is entered (generally not required until the contest is almost
over), the background shade changes to dark green.

A contest is fully ready when a dark green stripe runs completely through the “Status”
column’s fields.

9. Text, Comments, and Ratings

Fig. 3a shows the top part of a typical problem presentation page. It leads off with na-
vigation links and then prominently displays the problem’s name and owner (and also



Infrastructure for Contest Task Development 47

Fig. 3a. Top of text presentation page.

algorithm and solution time, if available). The editing status appears in italics just below
the task name. The problem text itself then appears.

The problem text includes many components. The largest component is usually the
problem statement itself which, by USACO convention, includes the limits on all the
various input parameters.

Following the problem text, the problem’s short name (abbreviation) appears with an
easy-to-find capitalized heading.

Fig. 3b shows the input/output section of this task’s display. The input format still
uses the old-fashioned “Line 1, Line 2, ...” notation instead of the more modern “Next 3
lines...” notation. The starting line and optional ending line are entered for each “section”
of input as part of the input process. These fields are used by the mechanical validator
creation routine to create loops that check the input.

The “Input details” section is optional, as is “Output Details.”
Fig. 3c shows the next set of information from the text page. It includes navigation

buttons to:

– edit the problem’s text, name, division, or input/output parameters,
– show recent changes to the text,
– navigate to the test data or solution pages,



48 R. Kolstad

Fig. 3b. End of text presentation on text presentation page.

– remove the task altogether,
– remove all entered data except the task’s text,
– mark the task’s editing as approved (only available to special directors),
– a shortcut to submit a solution (presumably created while reading the text above).

Finally, Fig. 3d shows the rating and comment box along with the coaches’ ratings.
Some coaches are empowered to enter an estimated “Solution Time” and “Solution Algo-
rithm” which then appear on the summary page. When a large pool of tasks is available,
a coach can scan solution times and algorithms to create a contest very quickly.

10. Text Editing

The text editing page is mostly self-explanatory (see Fig. 4a) with fields to enter:

– the full task name,



Infrastructure for Contest Task Development 49

Fig. 3c. Text page navigation and comments.

– the short task name (abbreviation),
– the task’s owner,
– the optional task presentation order,
– the task’s division,
– the task’s author,
– the task’s date,
– when the task was used,
– the task’s text.

The page’s display then continues with the self-explanatory input and output specifi-
cations; see Fig. 4b. This figure has been edited to remove blank fields and white space.
Terminology has evolved over time; the “Input Explanation” is displayed to competitors
as “Input Details.”

11. Solution Page

Coaches spend most of their time on the “Solutions Page” honing their solutions and
ensuring the answers are correct. The page enables saving of multiple solutions for each
coach so they can compare various algorithms and techniques.



50 R. Kolstad

Fig. 3d. Ratings, comment box, and rating navigation.

Fig. 5 shows a typical solution page. The top line provides navigation. The table shows
the status of all submitted solutions:

• Solver is the solution’s name, most often that of the submitter.
• Size shows the length of the solution (or the number of cases in the official solu-

tion).
• Available displays which cases have been run (and, in the case of disagreeing an-

swers, red denotes those that don’t agree).
• Actions include deleting the solution, (re-)running it, copying it to the official solu-

tion (along with its answers), or ‘X’ to mark the available case solutions as invalid
(in order to re-run them).

Auxiliary comparison buttons enable selected runs to be displayed either in full or as
‘diff’s. One can run or re-run all solutions.

The Solution Agreement Table displays smiling (or not-so-smiling) faces to display
which programs are in agreement. The faces are clickable to show the differences in the
output files. New, unrun test cases display as gray numbers in the ‘Available’ column; the
Solution Agreement Table displays question marks until the solutions are run on the new
data (generally with a single click to “Run all Solutions”).



Infrastructure for Contest Task Development 51

Fig. 4a. Text editing: parameters and body.

The Best CPU Time per Case table is self-explanatory and is used to ensure that
tasks have plenty of “head room” for slightly inferior algorithms or implementations – or
the effect of other programming languages (most notably, Java).

Finally, submission boxes enable sending in of new solutions and renaming existing
solutions.

12. Test Data

The test data submission page handles not only the submission and display of test data
but also (see Fig. 6a):



52 R. Kolstad

Fig. 4b. Input and output specifications.

• memory limit,
• default time limit (optionally overridden on a case-by-case basis),
• output grader program uploading,
• format checker program uploading,
• auxiliary filename and actual file contents uploading,



Infrastructure for Contest Task Development 53

Fig. 5. Solution submission and display page.

• validator uploading.

The test data display includes:

• Test#: The case number of this test (not always sequential in early stages of test
data development).

• Grade Type: Whether this test case is run upon submission (with or without a
requirement that the test be passed for successful submission) or later for results.

• #Lines in and Lines out: size of the test case.
• CPU Lim: The override value for the maximum CPU time.
• Input and Output: summaries of the first lines of input and output for the test case.



54 R. Kolstad

Fig. 6a. Test data programs and display.

• Action: A button to delete the test case.

The bottom half of the test data submission page (see Fig. 6b) includes:

• Delete ALL Test Files: The big gun.
• Re-Pack the case numbers: To make the case numbers be sequential (often used

after test case deletion).
• Re-Run Validators: Does the obvious thing. This is handy when someone is edit-

ing the validator in the filesystem instead of via the web page.
• Set IOI dispositions: Obsolete functionality that marked every other case as

“show result during submission.”
• Create aggregates: Invokes functionality that enables combining of individual

test cases into super-cases.
• Download all test cases: Creates any of four portable formats for moving all the

test cases around (or editing) in a single file (which is reloadable below).
• Move case ...: Self-explanatory.

The bottom of the page is where the actual uploading or entry of test cases occurs.
The fields are self-explanatory.



Infrastructure for Contest Task Development 55

Fig. 6b. Test data submission.

13. Contest Management

The contest management page (see Fig. 7a) has a relatively boring presentation but is,
of course, the center of administrative power. It uses the paradigm of cloning old con-
tests to create new ones (modifying the ioiconfig.perl file from one contest to update it
with the new contest’s information). Each contest is stored in a contest directory with its
configuration, problem texts, submissions, and so on. Functionality includes:

• Edit: displays the configuration editing page (see below).
• Clone: Creates a new contest with the name entered in the box near the top by

cloning a previous contest.
• Enable logins/DISable Logins: Toggles the configuration to allow non-contest-

directors to login or not.
• Activate/DEACTIVATE: Manipulates a table that shows which contests are avail-

able for logging in. Without available login, participants cannot even see informa-
tion about the contest and cannot login.

• Enable Analysis Mode/Disable Analysis Mode: Toggle the configuration file
variable that specifies whether the contest is analysis mode (vs. regular competition
mode).

14. Contest Configuration

The contest configuration page enables input for the all the standard contest configuration
parameters:

– contest name,



56 R. Kolstad

Fig. 7a. Contest management.

– brief description,
– contest duration (for each division),
– contest start and stop times,
– team, proctor, division, file submission, and analysis mode parameters,
– age break for legal participants,
– contest type and time zone.

15. Current Status

The system has been in production for half a decade with complete functionality as de-
scribed in this paper. The system currently manages 998 tasks (most from the past; a few
hundred for the future) and has 96 users who can edit ‘probgate’ (the contest problems).
Another half dozen instances support other organizations. An additional 61 users (some
of them the same as the previous users) are working in ‘traingate’ to create more train-
ing materials for USACO. During March of 2009, 21 different coaches performed 3,343
different actions (task reading, task submission, etc.) in the system.

Contests are ready on-time, with requests for translation sent out 3–4 days before the
competition begins. A typical season of six contests now yields – for the entire year –
perhaps half a dozen queries for clarification (usually from new competitors) and, in
general, no more than a single grading protest.



Infrastructure for Contest Task Development 57

Fig. 7b. Contest configuration options.

16. Current Deficiencies

As systems do, the problem management system requires a facelift and internal update to
bring it into the 21st century:

• Task timing (a function of the Linux kernel) is not reliable enough.
• The web display for contest tasks is too large; only filtering saves it from being too

unwieldy to be used.
• Database navigation has efficiency, paradigm, and speed issues.



58 R. Kolstad

• The web displays are not as stylish or as functional as they need to be to be truly
professional.

• The navigation among pages is inconsistent and poorly formatted.
• It is not yet possible to create one-off custom contests for trainees.
• It is not yet possible to create ‘programming bees.’
• The older training pages are not integrated into this system and need to be.
• Logging is not always performed properly.
• The interface for ‘confirmers’ is not complete.
• The system should perform automatic tracking of ‘solution times’ for coaches who

develop tasks.
• Processing the end of a contest still contains several manual steps; these should be

integrated into the contest management subsystem.

17. Conclusion

While an IOI consumes six tasks (or perhaps 8–12, depending on one’s point of view) in
a year, the USACO consumes more than six dozen. The continuous development cycle
has exposed many of the important factors in creating quality contests:

– data validation,
– multiple solvers,
– contest implementation without schedule pressure,
– automated contest configuration,
– running the USACO contest schedule would not be possible without this level of

automation.

Our most important item for near-term future development is custom contests for
training using old contest tasks.

The USACO system has proven successful for half a decade and complements the
growing set of other systems available on the internet and contributes to the diversity of
contests and environments that enable the field of competitive informatics to continue to
grow and mature.

References

Diks, K., Kubica, M., Radoszewski, J., Stencel, K. (2008). A proposal for a task preparation process. Olympiads
in Informatics, 2, 64–74.

Verhoeff, T. (2000). RobIn for IOI I/O, unreleased draft, August.
http://olympiads.win.tue.nl/ioi/twg/robin/Doc.txt

Verhoeff, T. (2008). Programming task packages: peach exchange format. Olympiads in Informatics, 2,
192–207.



Infrastructure for Contest Task Development 59

R. Kolstad consults for the TAEUS corporation on intellectual proper-
ty issues surrounding software and hardware. Rob is the head coach
of the USA Computing Olympiad, and is also the head judge at the
Pikes Peak Regional Science Fair. Rob earned his PhD in software
from the University of Illinois at Urbana-Champaign after complet-
ing an MSEE at Notre Dame and undergraduate BASc degree from

Southern Methodist University. Rob earned his Ph.D. in software from the University
of Illinois at Urbana-Champaign after completing an MSEE at Notre Dame. His under-
graduate BASc degree from Southern Methodist University was among the first computer
science bachelor’s degrees offered in the United States.


