
Olympiads in Informatics, 2009, Vol. 3, 17–25 17
© 2009 Institute of Mathematics and Informatics, Vilnius

Taking Kids into Programming (Contests) with
Scratch

Abdulrahman IDLBI
Syrian Olympiad in Informatics, Syrian Computer Society
e-mail: adlogi@gmail.com

Abstract. Since launching the Syrian Olympiad in Informatics (SOI) five years ago, encouraging
children to participate in the contest has been a challenging task, a common problem in many places
around the world. Students, and many educators as well, see programming as a tough subject to
learn. In addition, the style of IOI tasks is generally considered unattractive.

We started overcoming those obstacles through using Scratch, a graphical programming lan-
guage developed at the MIT Media Lab. Scratch allows kids to start learning programming concen-
trating on the concepts rather than the syntax, while providing them with the ability to construct
diverse projects that are attractive and meaningful to them. Scratch also allows examining chil-
dren’s programming skills against interesting tasks, and gives them the opportunity to move more
smoothly into learning a traditional language like C++ and other computer science topics.

Key words:introducing programming to children,Scratch contests,Syrian Olympiad in informatics.

1. Introduction

Through the past few years, studies have warned about the decreasing interest among
students to study computing-related fields, as they consider them tough and somehow un-
interesting. Similarly, people organizing activities related to computer science contests,
with challenges in programming and algorithms, constantly complain about the weak mo-
tive among youth to participate in them, especially when compared to the willingness to
participate in robotics or IT contests for example. This problem becomes more obvious as
the targeted audience gets younger. Taking the previous two examples of more acceptable
contests among youth may give us a clue to the potential reasons of the problem: (1) sole
programming is not as fantastic as building robots, (2) and children are not exposed to it
early in their daily life (nor most of the adults surrounding them) as they are to other IT
topics. Having these two points in mind would lead us to a solution.

When the Syrian Olympiad in Informatics started five years ago, the contest was di-
vided into several divisions depending on age. The oldest division had preparation re-
quirements similar to those of the IOI, and the national team for the IOI was chosen from
its participants; but as a division got younger it contained less algorithms and program-
ming in favor of more IT tasks (tasks related to knowledge of OS and desktop applica-
tions). While children were more familiar with IT skills than programming skills, testing
IT skills or promoting them did not lead to a better preparation for the IOI in the older



18 A. Idlbi

division, nor did it help in discovering and preparing potential young computer scientists.
In addition, the SOI organizers sought only students who were already considered dis-
tinguished in school mathematics or IT. Not approaching a wider audience of children
meant two things: first, there was no way to discover hidden talents in computer science;
second, without more children practicing programming the general public was not be able
to recognize its importance.

To overcome the popularity problem facing our contest we changed our strategy. We
decided to aim at all children and spread a culture of programming among them, which
would provide a better opportunity of selecting future computer scientists. This change
needed a powerful tool to be placed in the hands of children, and it was Scratch, a graph-
ical programming language developed at the MIT Media Lab. Scratch allows kids to start
learning programming concentrating on the concepts rather than the syntax, while en-
abling them to work on diverse projects that are attractive and meaningful to them. While
recently some researchers used Scratch to introduce programming to university students
and as a gateway to an advanced language like Java (Malan and Leitner, 2007), we argue
that Scratch can be used in a similar way with younger children, both to prepare them
to learn a language like C++ and to be used in contests with tasks similar to IOI tasks.
Children in the context of this paper are mainly those between 7 and 15 years old.

2. What is Wrong with Programming?

The awareness and understanding of parents and educators have a major role in making
any extracurricular activity for children succeed, but they are not the most important
factors. The most important one is how fun and attractive children find the topic of the
activity, and how closely it relates to them.

When it comes to programming, the languages used in the IOI (and many other typical
languages) look like Greek at a first glance, and for many students they remain like that for
a long time. Even the common simple start with a “Hello World” program raises several
questions that cannot be answered in the first few sessions of a programming course. After
that not-so-interesting start, children have to concentrate on remembering syntax details,
such as semicolons and parentheses, so the compiler does not get angry at them, instead
of concentrating on learning the programming concepts (e.g., variables, conditions, loops,
etc.) in addition to logic. It turns out that “students must become masters of syntax before
solvers of problems” (Malan and Leitner, 2007).

Even more, when children come to a programming course, they come with broad ex-
pectations and questions like “When are we going to make our first game (or virus)?”, and
those who are patient enough to learn the basics of the language would soon get frustrated
when they discover that they cannot do more than simple operations on meaningless data
sets using a text-based interface.

To set it in a single sentence: “Computer programming has been introduced using
programming languages that are difficult to use, with proposed activities that do not con-
nect with young people’s interests and in contexts where no one has enough expertise



Taking Kids into Programming (Contests) with Scratch 19

to provide guidance” (Resnick et al., 2003). These reasons make programming with the
commonly-used text-based languages inappropriate for introduction to a wide audience
of children, making it hard to discover potential young programmers early.

To solve this problem while preparing for SOI, we used Scratch to introduce pro-
gramming through the training of different divisions, and as a part of the contests for the
children under 15 years old.

3. Different Programming Experience with Scratch

Scratch is a new graphical programming language that makes it easy for children to create
their own interactive stories, animations, games, and arts. Coding in Scratch is much
easier than in traditional programming languages: to create a script, you simply snap
together graphical blocks, much like LEGO bricks or puzzle pieces. Scratch is designed
to help young people (ages 8 and up) to develop essential skills such as creative thinking,
clear communication, systematic analysis, effective collaboration, iterative design, and
continuous learning (Lifelong Kindergarten, MIT Media Lab, n.d.).

Scratch follows the principles of making a successful software tool for kids (Maloney
et al., 2004). Those principles include:

• making the value and possibilities of the tool clear from the beginning;
• respecting children interests;
• the ability to create complete meaningful projects that can be shown to others;
• supporting a wide range of different types of activities, giving the ability to aim

kids with different backgrounds and interests;
• the ability to get started quickly and without external help;
• the ability to learn additional features over time, and use the tool in more complex

ways.

For that, Scratch is described as offering a low floor (easy to get started), high ceil-
ing (ability to create complex projects), and wide walls (support for a wide diversity of
projects) (Lifelong Kindergarten, MIT Media Lab, n.d.).

With these principles in mind, Scratch was designed with core features that include
(Resnick et al., 2003):

• Building-block programming: Programming by snapping together graphical blocks
that fit in only syntactically-correct ways. This approach eliminates syntax errors
(which have proven to be a major obstacle for learning text-based programming
languages), allowing youth to focus on the problems they want to solve, not the
mechanics of programming.

• Programmable manipulation of rich media: Scratch programs manipulate images,
animations, movies, and sound; which offers programming activities resonant with
youth interests, providing them with an opportunity to start from their own comfort
zone, but then reach out to learn new things.

• Support for multiple languages: The possibility of translating Scratch interface to
many languages (Scratch is now available in more than 40 languages) and switch-
ing dynamically among them allows children to work and think with the language



20 A. Idlbi

most comfortable to them, and then to talk about the knowledge they are build-
ing more creatively, which develops a sense of mastership of the recently-gained
knowledge. Through our work in SOI, we could decrease the minimum grade for
accepting students in Scratch courses from the 4th grade to the 2nd grade after
translating Scratch into Arabic. We could also find effective 3rd-grade Scratch pro-
grammers after the translation, compared to not having any below the 6th grade
before the translation.

After getting it for free, students can start programming at once by dragging blocks
from eight categories on the blocks palette and snapping them together (only if they are
syntactically correct) on the scripts area. The result of running programs is shown im-
mediately on the stage where sprites (programmable objects) interact with each other
(Fig. 1). The available blocks support various programming concepts such as loops, con-
ditions, Boolean expressions, variables and lists (arrays) in addition to parallel execution
and events (Fig. 2).

Scratch is not the first programming language intended to be used for introducing
programming, and is much inspired by the ideas behind Logo. It is also not the only one
today with languages like NetLogo, StarLogo and Alice. However, Scratch seems to have
several advantages over others which have for example a too restricted virtual world or a
high learning curve (Malan and Leitner, 2007).

Fig. 1. Scratch interface (version 1.3.1) with the blocks palette (a), the scripts area (b), the stage (c), the sprites
list – the objects to be programmed (d), and the current sprite’s information (e). The shown project was one of
the 1st division’s tasks in SOI 2008.



Taking Kids into Programming (Contests) with Scratch 21

Fig. 2. Some of Scratch blocks showing supported programming concepts.

4. SOI Structure and the Utilization of Scratch

SOI consists today of three divisions depending on age: the 1st division for students under
12, the 2nd for students under 15, and the 3rd for students under 20. Scratch is used in
SOI in two ways: to introduce programming before moving to C++ in all divisions, and
as a part of the contest itself for the two younger divisions.

Students in the two younger divisions start their training by following a 10-session
course which is open to all interested children under 15. In the first session, children
learn how to move an object on the screen, to draw while moving, and to create simple
loops. They do that while learning the concepts of what Seymour Papert calls “turtle
geometry”, making use of children’s knowledge about their body and how they move,
to draw basic figures and combine them together (e.g., drawing a square and a triangle
to create a house). Through this exercise they obtain their first debugging experience
(Papert, 1980). Children end this session with experiments on drawing more sophisticated
geometric shapes, with some of them using nested loops (Fig. 3).

Next, children are exposed every one or two sessions to a new project. Each project
has certain programming and thinking skills to be learned, and the instructor’s duty is to
point out these skills when they are needed. The sessions are titled “Hunting the Parrot”
or “Racing Game” instead of “Dealing with Events” or “Creating Variables”, allowing the
children to learn serious issues through “hard fun”. That is providing learners with chal-
lenging activities which are deeply connected with their interests and passions (Papert,
1993). This method relieves students of feeling strangers to programming or its related
science topics.



22 A. Idlbi

Fig. 3. Some of children creations by the end of their first session with Scratch.

Using Scratch at this stage gives children the potential to show their talents regard-
ing computing. While instructors observe that some students are more interested in using
Scratch as a design tool to create interactive media for example, others show interest in
the programming process itself by using complicated and advanced programming struc-
tures and controls (e.g., using nested loops and conditions, familiarity with variables and
using them in unexpected ways, etc.). By the end of the course, almost everyone has
enjoyed working with Scratch, and the instructor can identify who enjoyed Scratch as a
programming tool and nominate them to the next advanced course.

At the advanced course, children learn using more sophisticated techniques in Scratch,
as searching and sorting lists, and make more extensive use of Boolean expressions. Af-
ter that things get more formal with learning simplifying Boolean functions, expressing
them as logical gates, and using truth tables. Then, programming with C++ is introduced
depending on the child’s previous knowledge of programming concepts using Scratch.
While 1st division contestants are only required to comprehend simple programs and
guess the outputs resulting from various inputs (with 15% of the total points of the con-
test), 2nd division contestants have additionally to complete IOI-style tasks (with all C++
tasks having 40% of the total points). Besides learning programming in C++, students
learn more computer science skills and concepts such as estimating complexity and re-
cursion, and are introduced to several basic data structures. In addition to testing those
aspects of computer science implicitly through Scratch and C++ tasks, they are also the-
oretically tested through tasks similar to those used in the ACSL competitions (American
Computer Science League, n.d.). The theoretical section takes 20% of the total points in
each of the two younger divisions.

Scratch Tasks: In the contest, Scratch tasks have a considerable weight (65% of the
total points for the 1st division, and 40% for the 2nd division). Contestants in both divi-
sions face several Scratch tasks with various difficulties, and each is usually a game to be
programmed. Contestants are provided with the stage and the sprites (the objects to be
programmed) ready to be used so they do not waste time on painting the characters and
objects of the game, and they are asked to add the behaviors (i.e., constructing the scripts)
to accomplish specific missions. While a task description presents every detail about the
required mission, students have also access to a working model of the mission as a Java
applet, and by comparing it to their implementations they can make sure that they are on
the right path.



Taking Kids into Programming (Contests) with Scratch 23

Having a racing game for example as a task, kids are provided with the images of the
car, the race route, and the obstacles; and with an explanation of the race rules: how the
car behaves when driving on/outside the specified route or when it goes through obstacles,
how it accelerates, how the score is calculated, and when the game ends. Contestants have
to implement the scripts for doing that, with each part of the mission having a specific
amount of points.

Submitted solutions are graded manually. Two graders check together each project
and compare each partial behavior with the matching one from the working model. When
the apparent behaviors are similar the corresponding amount of points is granted, other-
wise, graders have to look for the scripts controlling the investigated behavior and esti-
mate how far it was from attaining the desired results, and assign points according to their
judgment.

Contestants in the 3rd division are prepared with IOI-requirements, and the national
team is chosen from them. While they do not have Scratch tasks in their contest, they use
Scratch through the preparation process which goes as follows: after selecting prospec-
tive students depending on their school records (especially in math) they are introduced
to programming using Scratch for three or four sessions. At the beginning they learn fun-
damental control blocks (representing loops and conditions), and start then implementing
a couple of projects. After being exposed to programming concepts in Scratch, they start
learning C++ and other IOI-requirements. Here too, Scratch plays an important role in
attracting teenagers to programming and helping instructors to distinguish prospective
programmers through the way they use Scratch in.

5. Results: SOI, Scratch and the Community

As mentioned earlier, we decided to change to strategy in the SOI to aim at all children
and give them the opportunity to get to know about programming in an interesting con-
text, and Scratch was the right tool for that. Surveying students’ opinions from various
introductory courses showed that more than 90% enjoyed working with Scratch, though
some said they felt board at some point when complicated concepts had to be explained
by the instructor.

An interesting point was that about 60% of the surveyed students from both courses
in the two younger divisions said they enjoyed more working with others, and they would
prefer a contest where they solve tasks as a team rather than individuals. Most of the
remaining 40% of the students were reported as male students.

As regards the general public, with the introduction of Scratch the national contest
received more interest, with many schools asking us to train their students or to organize
workshops for their instructors on preparing to the contest. Many university students
were also attracted to the idea of teaching young children stuff they had not known about
themselves before their university-level education.

The most important result was the change of SOI’s contribution to the society. SOI
is no longer a mere contest to recognize young students who are the most talented in



24 A. Idlbi

computer science. We think now about programming from a different perspective, an
educational creative one: to help children develop themselves as creative thinkers.

When we talk to educators or parents we tell them that most students who come to
SOI would not grow up to become professional programmers, but programming would
still be important for everyone: it would allow them to express themselves more creatively
and perfectly, help them to develop their logical thinking, and facilitate understanding the
new technologies they are facing everywhere in their daily life. In other words, “the con-
tinual use of abstract thinking in programming can guide and discipline one’s approach to
problems in a way that has value well beyond the information technology-programming
setting. In essence, programming becomes a laboratory for discussing and developing
valuable life skills, as well as one element of the foundation for learning about other
subjects” (National Research Council, 1999). This enhancement in role of the national
contest would not have taken place without having a new tool that represents this philos-
ophy, and this tool is Scratch.

Acknowledgements

I extend my thanks to Scratch team at the MIT Media Lab for their wonderful work. I am
so grateful to my colleagues from the Computer & Automation Engineering Department
at Damascus University who supported the adoption of Scratch in SOI. In particular, I
would like to thank Beshr Al Nahas, Boushra Jbr, Waed Khwiess, Maya Taki and Kusay
Tomeh for inspiring discussions and sharing results from their extensive experience with
children and Scratch. I also thank my dear friend, Ahmad Baghdadi, for supporting me
during this work and reviewing this paper.

References

American Computer Science League (n.d.). Sample Problems.
http://www.acsl.org/samples.htm

Lifelong Kindergarten, MIT Media Lab. (n.d.). About Scratch.
http://info.scratch.mit.edu/About_Scratch

Malan, D.J. and Leitner, H.H. (2007). Scratch for budding computer scientists. In Proceedings of the 38th
SIGCSE Technical Symposium on Computer Science Education. ACM, 223–227.

Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B. and Resnick, M. (2004). Scratch: A sneak preview.
In Proceedings of the Second International Conference on Creating, Connecting and Collaborating through
Computing. IEEE Computer Society, 104–109.

National Research Council (1999). Being Fluent with Information Technology. National Academies Press,
Washington, DC.

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. Basic Books, Inc. New York, NY.
Papert, S. (1993). The Children’s Machine: Rethinking School in the Age of the Computer. Basic Books, Inc.

New York, NY.
Resnick, M., Kafai, Y. and Maeda, J. (2003). A Networked, Media-Rich Programming Environment to Enhance

Technological Fluency at After-School Centers in Economically-Disadvantaged Communities. Proposal to
National Science Foundation.



Taking Kids into Programming (Contests) with Scratch 25

A. Idlbi is a fresh graduate from the Computer & Automation Engi-
neering Department at Damascus University, and has been a scientific
coordinator of Syrian Olympiad in Informatics since 2006. He was also
the deputy leader of the Syrian team in IOI 2007. After participating
in IOI 2004 and 2005, he has worked on introducing programming to
the youth. His interests include promoting usage of new technologies
to provide children with better learning opportunities.


