
Olympiads in Informatics, 2009, Vol. 3, 60–66 60
© 2009 Institute of Mathematics and Informatics, Vilnius

Moe – Design of a Modular Grading System

Martin MAREŠ
Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University
Malostranské nám. 25, 118 00 Praha 1, Czech Republic
e-mail: mares@kam.mff.cuni.cz

Abstract. Programming contests often employ automatic grading of submitted solutions, but fre-
quently in an ad-hoc way. This article describes our attempt at creating a modular and flexible
grading system called Moe, which is not tied to the specifics of a single contest.

Key words: automatic grading, Moe, mo-eval.

1. Introduction

Many programming contests in the world, including the IOI, employ automatic grading
of the contestants’ solutions. This is accomplished by running them on batches of input
data and testing correctness of the output. Time and memory limits are usually enforced
during the process, which allows to take the efficiency of the algorithm into account.

During the last two decades, a multitude of such evaluation systems have been de-
veloped, but most of them are tied to the specifics of a single contest and they are usu-
ally neither publicly available nor well documented. This leads to waste of effort by
re-implementing the same things over and over, and also to repeating mistakes somebody
else has already made and understood.

This variability can be observed even within a single contest. Most of the IOI host
countries have used grading systems developed for their national contests, often exten-
sively modified to handle the different conditions of the IOI. Similarly, the regionals of
the ACM ICPC differ in their contest environment between regions.

It was repeatedly suggested that a single unified contest system should be built and
used at all the major contests. However, it has been argued that the differences between
contests would make the system too complicated and cumbersome to maintain. Also,
diversity and the ease of experimentation with new ideas are too valuable to lose.

In our previous paper (Mareš, 2007), we have proposed a modular grading system
instead, that is a set of simple, yet flexible modules with well defined roles and interfaces.
A contest organizer would then pick a subset of the modules and use them as building
blocks of his contest environment together with other locally developed parts. This allows
us to minimize the effort without sacrificing flexibility.

This paper is a report on the state of development of our modular system called Moe.

Moe – Design of a Modular Grading System 61

2. The Design of Moe

Moe is a successor of our previous system (MO-Eval), originally developed for the con-
tests we organize, and subsequently generalized. Its primary target is Linux, but most
modules should run on any POSIX-compliant operating system. The sole notable excep-
tion is the sandbox, which is intimately tied to the details of the OS and of the CPU
architecture.

The source code of Moe and the (so far incomplete) documentation are available
under the terms of the GNU General Public License from the website mentioned in the
references.

2.1. Available Modules

Moe currently contains the following modules:

• sandbox – runs the contestant’s solution in a controlled and secure environment,
limiting its execution time, memory consumption and system calls. It is the most
mature part of Moe, already in use at several contests (see below for the list of
applications). The current version of the sandbox requires a recent Linux kernel on
the i386 architecture. A port to the amd64 architecture is near completion, but it
requires fixing several security issues in the kernel ptrace interface first, as noted
by Evans (2009).

• judges – a set of utilities for comparing the solution’s output with the correct an-
swer at the given level of strictness, which can range from ignoring white-space
characters to ignoring the order of lines or all tokens. The judges are built upon
a library of functions for strict and fast parsing of text files, which can be easily
used as a basis for custom judge programs. This part is also mature.

• evaluator (also known as grader) – this module controls the whole grading process.
It calls the compilers, the sandbox and the judges as described by configuration
files. It handles multiple types of tasks: e.g., batch, interactive, open-data. We have
a reliable implementation in Bourne shell, but it is unnecessarily hard to maintain,
so we plan to rewrite it in a higher-level language (most likely Perl or Python) in
near future.

• queue manager – since the evaluation of tasks at a big contest must be performed
in parallel, the queue manager can be used to maintain a queue of solutions and
distribute them among graders running on multiple machines. Finished, but needs
lots of polish to make it usable by a wider audience.

• submitter – handles submitting of solutions by contestants and passing them to the
evaluation system. While the submitter has been designed for competitions which
do not use a web-based interface, it can be also used as a clean interface between
the web modules and the rest of the system. Working, but needs revision.

62 M. Mareš

Fig. 1. Typical interconnection of modules.

• test suite – the correctness and security of most modules is critical to the success of
the contest. We are building a test suite which tries to cover all known edge cases
and attacks on system security. The test cases contain unit tests for various func-
tions, regression tests for historic bugs, and security tests inspired by the analysis
of possible attacks by Forišek (2006).

In near future, we plan to add several new modules:

• feedback – processing of evaluation results and generation of various reports (e.g.,
score tables, sheets with detailed feedback for contestants).

• scoring – multiple small modules for advanced scoring strategies, like gradual time
limits (programs near the time limit get partial score) and approximation tasks
(points are awarded depending on the precision of the result).

• supervisor – controlling several hundred computers at a big contest is no easy task.
This module will maintain a queue of jobs (usually snippets of shell scripts or
request to distribute files) and schedule their parallel execution at given machines,
possibly using a tree-like topology to spread the load.

2.2. Programming Languages

Most parts of the system are free of assumptions on the programming languages used
in the competition. The only dependencies are in the evaluator and in the sandbox. The
evaluator needs to know how to compile and run the programs, which can be of course
easily configured. The sandbox has to be set up to permit the system calls issued by the
language’s runtime libraries.

Pascal (compiled by either GPC or FPC), C and C++ (compiled by GCC) are sup-
ported since the first release of Moe and there are no known problems with them, except
for the occasional slowness of Pascal I/O libraries.

C# compiled by Mono turned out to be more problematic, because its runtime libraries
use various unusual system calls, which are forbidden in the default settings of the sand-
box. Also, Mono spawns multiple threads even for trivial programs. We have patched the
runtime environment to avoid threading and the most problematic system calls, while the
rest is handled by a language-specific configuration of the sandbox.

Moe – Design of a Modular Grading System 63

We have added experimental support for Haskell recently, compiled by GHC.
Adding further compiled languages should be easy, as long as their runtime environ-

ment behaves in a sane way. Interpreted languages are also supported, but except for
interpreting the C# byte code, they did not receive much testing yet.

2.3. Interfaces

To facilitate interconnection of the modules, each of them is written as a stand-alone
program with basic parameters passed as its command-line arguments. In addition to
this, we accompany every solution by a status file, which collects all information related
to grading of the solution. All modules can contribute their bits: the submitter records
which programming language has been used, the sandbox reports the execution profile
(time, memory, number of system calls), the evaluator informs about the results of each
test case, while the queue manager annotates on which grading machine has served the
task and how long did the task wait in the queue.

We have resisted the industry-standard temptation of using XML as a one-size-fits-all
format. Instead, the status file has the form of a simple structured text file, inspired by the
Lisp S-expressions, but strictly divided to lines and typeless. This is very easy to generate
and parse, especially in shell scripts which form the glue joining the evaluator modules.
Moreover, it has the same expressive power as XML, so the files can be converted back
and forth if an application wishes.

A typical example looks as in Fig. 2.
As the status files are a relatively recent addition to the Moe infrastructure, they are

not yet fully supported by all modules, but they probably will be at the time of publication
of this article.

task:pyramid The name of the task [2pt]

lang:c Language of the solution

test(A section for a single test

id:1 Name of the test

time:0.375 Run time in seconds

mem:1355776 Memory consumption in bytes

points:0 Points awarded

status:RE Status code

message:Runtime error Explanatory message

exitcode:1 Program exit code

)

test(A section for another test

id:2

...

)

...

Fig. 2. An example status file.

64 M. Mareš

2.4. Configuration

We pay much attention to the configurability of the whole grader. Most aspects of the
evaluation process are controlled by many configuration variables, whose values are gath-
ered from several sources and these are stacked one onto another in a manner similar to
the Cascading Style Sheets.

First of all, there is a top-level configuration file with global defaults. These can be
overridden by per-task configuration files. The per-task configuration usually involves
things like setting of time and memory limits, but it can modify any variable if needed.
This way, we can extend the compiler options if the task requires a special library to
be linked, or change the sandbox options to permit otherwise disallowed system calls.
Finally, the settings can be modified for individual test cases.

A fragment of configuration can be also restricted to a specific programming lan-
guage. This allows compilation commands, settings of the sandbox, or rules for interpre-
tation of runtime errors to be defined differently for each language.

Moreover, the values of the settings are expanded before each use, which includes
interpolation of references to other configuration variables. For example, this feature is
commonly used to make the compilation command for each language refer to a variable
with user-defined compiler switches, or to substitute time and memory limits to the list
of sandbox options.

The configuration mechanism also serves as a core of our format of task packages.
Essentially, the role of a task package can be played by an arbitrary directory, as long
as it contains an appropriately named configuration file. Its variables then point to other
files within the same directory, which contain the test cases, judges, model solutions,
and other components of the task. As this file naming convention is usually fixed within
a single competition, it is customary to use the configuration stacking to inherit most
variables from a top-level configuration file and let each task care of its differences from
the defaults only (see Fig. 3 for an example).

We are following the discussion on standardization of task packages initiated by Ver-
hoeff (2008), but the Peach format proposed there is too restrictive for our use. We want to

IO_TYPE=file this is a standard batch task with file I/O

TESTS=”1 2 3 4 5” names of test cases (files n.in, n.out)

POINTS_PER_TEST=1 points awarded per test case

TIME_LIMIT=5 time limit per test case in seconds

MEM_LIMIT=4096 memory limit per test case in KB

TEST_4_TIME_LIMIT=10 override for a specific test case

EXT_pas_MEM_LIMIT=8192 Pascal solutions get twice as much memory

OUTPUT_CHECK=’$PDIR/judge
$TDIR/$TEST.in
$TDIR/$TEST.out
$TDIR/$TEST.ok’

this task does not have unique output, so use
a problem-specific judge

Fig. 3. An example task configuration file.

Moe – Design of a Modular Grading System 65

keep the assumptions about task formats in Moe at minimum. It is quite possible, though,
that a single format will be recommended as a default in the future, when some consensus
is reached. Also, Moe’s flexibility makes it quite easy to import tasks from other systems.

3. Applications

Our system is still under construction and many parts need lots of improvements. It is
however lacking mostly in features and documentation, rarely in reliability. Its design
and implementation have already proven itself at multiple occasions.

First of all, it serves as a basis of the competition environment at the Czech national
olympiad in last six years. We also regularly use the same environment at the Czech–
Polish–Slovak preparation camps whenever they are held in Czech republic. As the orga-
nizers of these camps enjoy experimentation with new types of tasks, we have used Moe
modules in many previously unexpected ways. A nice example was awarding points by
playing a tournament between all pairs of submitted solutions. (More such “hacks” are
described in our previous paper.)

A new version of Moe, which pioneered the submitter, has been developed for the
Central-European Olympiad in Informatics 2007.

Since 2007, Moe is used as the evaluation back-end of CodEx, which is an automated
system for checking students’ programming assignments at the Faculty of Mathematics
and Physics of Charles University in Prague. To handle this load, we have created queue
manager module. As Moe contributes only a small piece to a big puzzle here, we have
introduced the status files to make data interchange easier. The CodEx version was also
the first to support C# and Haskell.

Recently, the organizers of IOI 2009 have decided to use Moe’s sandbox as a part of
their contest environment.

4. Future Plans

We plan to continue the development of Moe in the forthcoming years. First of all, we
wish to fill all the gaps, especially in the documentation, and make the use of status files
systematic. We also want to rewrite the evaluator module and add the feedback, scoring,
and supervisor modules as described in Section 2.1.

Further plans include extension of the submitter module to provide on-line feedback,
which will make it directly usable in contests like the ACM ICPC. Also, we would like
to support more operating systems, architectures and programming languages.

As most free-software projects, Moe is developed by volunteers. Any bug reports,
suggestions for new features, patches to the code or any other contributions are heartily
welcome. Also, if you use parts of Moe in your contest, please let us know, we are inter-
ested in your experience.

66 M. Mareš

References

Evans, Ch. (2009). Linux syscall interception technologies partial bypass. Security advisory CESA-2009-001.
Retrieved 27 February 2009 from:
http://scary.beasts.org/security/CESA-2009-001.html

Forišek, M. (2006). Security of programming contest systems. In Informatics in Secondary Schools, Evolution
and Perspectives. Vilnius, Lithuania.

Mareš, M. (2007). Perspectives on grading systems. Olympiads in Informatics, 1, 124–130.
Mareš, M. et al. (2009). The Moe web site.

http://www.ucw.cz/moe/
Verhoeff, T. (2008). Programming task packages: peach exchange format. Olympiads in Informatics, 2, 192–

207.

Martin Mareš is as an assistant professor at the Department of Applied
Mathematics of Faculty of Mathematics and Physics of the Charles
University in Prague, a researcher at the Institute for Theoretical Com-
puter Science of the same faculty, organizer of several Czech program-
ming contests, member of the IOI Scientific Committee and a Linux
hacker.

