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Abstract. The goal of a programming contest grading system is to take unknown code and execute
it on test data. Since the code is frequently buggy and potentially malicious, it is necessary to run
the code in a restricted environment to prevent it from damaging the grading system, bypassing
resource constraints, or stealing information in order to obtain a better score.

We present some background on methods to construct such a restricted environment. We then de-
scribe how the South African Computer Olympiad has used a Linux Security Module to implement
a restricted environment, as well as the limitations of our solution.
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1. Introduction

The South African Computer Olympiad (SACO) is an annual programming contest,
whose final round is modelled on the International Olympiad in Informatics (IOI). In
particular, contestants submit solutions in source form, in a variety of languages, to an
online submission system. The online submission system provides a variable amount of
feedback immediately to the contestant (typically, the results of some sample case). Final
scores are only made available after the contest, by running each solution on a variety of
test cases.

While we are not aware of any contestants having attempted to cheat by submitting
malicious solutions, we must nevertheless protect the integrity of the grading system by
running them in a sandbox, or locked-down environment. In some ways, this is easier
than sandboxing a general application, since solutions are only intended to have a limited
interaction with the execution environment (read a file, do some computation and write
a file), and so it is possible to use a more tightly locked environment than would be pos-
sible for running applications that had legitimate needs to access the display, keyboard,
network and so on. However, we must also enforce the rules of the competition (such as
execution time limits), so some additional work is required.

The following section lays out our requirements in more detail. Section 3 discusses a
number of approaches to sandboxing. In Section 4 we describe which approach we chose
and how we implemented it. Conclusions are presented in Section 5.
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2. Requirements

2.1. Security Requirements

Usually, sandboxing is used to prevent applications from either damaging the host envi-
ronment or leaking information about it (for example, by stealing passwords or credit-
card numbers from a browser). For a programming contest, there are some other limita-
tions that must be taken into account. Below is a list of some of the goals we aimed to
meet:

1. Resources (particularly, CPU time and memory) must be restricted, to prevent a
malicious (or more likely, incorrect) solution from blocking the whole system.

2. Resource constraints must be accurate. For example, if a program has a one-second
time limit, it is acceptable for it to run for 1.5 seconds and terminate normally, as
long as it is possible to determine that the time limit was in fact breached. It is
also important that programs are not able to make it appear that they used fewer
resources than they actually did.

3. Programs must be limited to a single thread. This prevents programs from taking
advantage of multi-core systems to get more computation done in the time avail-
able, as well as simplifying a number of other implementation details.

4. Programs must not be permitted to spawn other processes. This prevents, for ex-
ample, a problem involving mathematical computation from launching an external
program like bc or Octave to do the computation.

5. Programs must not be able to communicate with the outside world (for example,
through TCP/IP sockets). This prevents the solution from offloading processing
onto a separate, possibly faster system, as well as ensuring secrecy of test data.

6. A single run of a program must not be able to communicate with any other run
(for example, by leaving a file with precomputed primes in the filesystem, or using
inter-process communication).

2.2. Other Requirements

While security is obviously the primary goal, some potential solutions may be deemed
unusable for other reasons. Other requirements include

1. The setup time must be minimal. We do not have a large cluster of machines for
evaluation, so throughput is a concern.

2. It must not significantly impact performance. This is so that CPU time limits are
not affected by the security mechanism.

3. It must allow common operations by the standard libraries of the compilers used
(GCC for C and C++, FreePascal, Python and Java). Some of these libraries do I/O
using system calls that can also be used in ways that violate the security policies
above, so it is unacceptable to block these system calls unconditionally.
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3. Background

3.1. System Call Interception

In Linux and indeed most desktop/server operating systems, applications do not have
direct access to devices such as ethernet ports or disk drives, and can only access memory
that is allocated to them. In order to interact with devices or other applications, it is
necessary to use system calls. A system call is similar to a function call, but transfers
control to the operating system kernel which undertakes these actions on behalf of the
user.

One approach to restricting the actions that an untrusted application can take is to
intercept these system calls. Linux provides the ptrace system call, which allows one
process to be notified about any system calls made by another. The controlling process
can then override or suppress system calls that the untrusted application should not be
allowed to make according to the security policy.

This interception process adds a small amount of overhead, because for each system
call there is an additional context switch from the kernel to the process that makes the
decisions and back again.

System call interception is also prone to security holes if not implemented correctly,
mostly due to race conditions (Watson, 2008). This is because the values passed to the
kernel can be modified by another thread between the time they are checked by the inter-
ceptor and the time the kernel sees them. However, this is less of a concern for us, since
we do not need to support multi-threaded processes.

Another limitation of system calls is the sheer number of them: over 300 in current
versions of Linux. Arguably, the system call interface is the wrong level of abstraction,
because the same semantic operation (for example, extracting data from a file handle) can
be achieved with many different system calls.

Examples of general-purpose, configurable system call interceptors include Systrace
(Provos, 2003) and GSWTK (Fraser et al., 1999).

3.2. Linux Security Modules

Linux provides an interface by which alternative security policies may be plugged into
the kernel. Whenever the kernel is about to undertake some privileged action on behalf
of the user, a hook in the current security module is used to determine whether it should
be permitted. This is also used to implement the default security policy (for example, to
allow the root user to access any file).

The interface for a security module is at a more appropriate level for our task: it deals
with abstract actions, such as read from a file, rather than the specific system call used
to achieve that action. It is also less vulnerable to the same race conditions as system
call interceptors, because the security module accesses data within the kernel rather than
userspace data that will later be copied into the kernel.

Unfortunately, the interface is frequently changed between kernel releases, and the
documentation of the interface is often not updated to reflect the changes. This means
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that a system based on the module cannot freely upgrade the kernel to take advantage of
new features or security fixes to the kernel itself.

3.3. Virtualisation

Virtualisation allows one instance of an operating system (the guest) to run inside another
(the host). When the untrusted program is run inside a guest operating system, it will be
unable to access the resources of the host as it has no way to even address them (for
normal uses of virtualisation, special configuration must be done to make host resources
accessible from the guest).

This provides a high level of security, since rather than having to catch bad system
calls, there is no way for a malicious application to even form a bad system call. And
because any side effects of the program (such as leaving files in a temporary directory)
are limited to the guest operating system, they can be wiped and a pristine guest operating
system used for the next run.

The primary disadvantage of this approach is that the guest operating system would
need to be booted for each run, adding significant overhead to the evaluation process.

4. Implementation

In the previous section, we listed three general approaches: system call interception, se-
curity module, and virtualisation. At the time we made the decision, we were not aware
of the general-purpose system call interceptors, and writing one from scratch seemed a
daunting task. Virtualisation was rejected because we wanted a light-weight setup that
would not require us to maintain an operating system image separate from the primary
operating system on the evaluation server. At the time, we were also only using a single
machine for both the web front-end, compilation and evaluation, and we felt that booting
a virtual operating system for each evaluation would be too expensive. We thus chose to
use a Linux Security Module.

The Linux Security Module (LSM) framework provides a communication channel
(/proc/self/attr/exec) for user processes to communicate with the security mod-
ule. A wrapper program uses this channel to configure a restricted environment, then
calls exec to launch the untrusted program. There are a number of commands that can
be sent using this stream. There are some commands that are specific to Java (see 4.5);
the remaining ones are listed in Table 1).

Once the process calls exec, the security restrictions come into place, and cannot be
changed further. The allow exec command exists to allow further layers of wrappers
around the actual program to execute (some interpreters, for example, are actually shell
scripts which exec the “real” interpreter.

The majority of security module hooks are for more exotic functionality that a contest
solution should have no need for, such as setting or querying scheduling policy, changing
user, inter-process communication and so on. For each of these, we simply check whether
we’ve flagged the task as restricted (which is quite easy, since the kernel task structure
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Table 1

Commands that can be issued to the security module

Syntax Meaning

version major.minor Mark this process as restricted, and check for version mismatches

allow threads n Set the number of threads the process may have at any time

allow exec n Allow n calls to exec

allow write Remove any extra restrictions on filesystem access

allow write file Allow creation and write access to file

has a field available for the security module to store information), and if so, reject the call
with the appropriate error code.

For calls related to creating or writing to files, we check both the global write enable,
and the list of files marked as writable (for a contest problem, this would typically be
just the output file). Note that there are multiple system calls to modify the data in a file
(write, fwritev, pwrite, truncate, ftruncate, sendfile, . . . ), but they are
all handled with the same security module hook – a distinct advantage over system call
interception. In addition, the parameters to the hook use the kernel’s internal representa-
tion of the filesystem, so there is no need to compare pathnames to determine whether are
simply different ways to refer to the same file (due to symlinks, for example).

Initially we attempted to block all operations for which we did not explicitly see a
need in a contest environment. However, we were surprised to discover the extent to
which standard libraries depended on these calls for internal use. For example, we found
that glibc preferred to use mmap for file I/O, and various files in /etc are consulted
during library startup. In the end, we decided that it was easiest to rely on just the standard
kernel security model for most read-only operations, and block or restrict only operations
that had side-effects.

4.1. Separate User Account

Before the introduction of the kernel module, we used to have a weaker security system
that merely executed programs under a different user ID, using sudo (Miller and Jepe-
way) to allow the user ID that runs the submission system to launch processes under this
user ID. We decided to keep this model when adding the kernel module. While partly
for defence-in-depth, this made it possible to allow the normal UNIX file access controls
to govern read access without exposing the full set of test data, results etc. to submitted
programs.

4.2. Resource Limits

The security module prevents multithreading and process execution, but CPU time and
memory limits are enforced via the standard setrlimit system call. We use a wrapper
program that forks, sets the limits and the security module settings, and finally launches
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the program. It then waits for it to terminate and records the results (such as the exit
code and execution time). setrlimit can only set a CPU time limit with one-second
precision, so we round up the time limit for the purposes of setrlimit and check the
actual time consumed after termination.

4.3. Side Channels

When the kernel module was initially introduced, jobs were run in parallel, starting as
soon as they were submitted. We did not find a good way to prevent side channels between
processes running concurrently. Although we are able to block the obvious routes such
as sockets or files in a common area, there is a wealth of information available in /proc

and our attempts to block access here led to instabilities in the kernel module itself. It
is also known that shared caches between processors can be used to extract information
by timing memory accesses, even if one of the processes does not intend to leak this
information (Osvik et al., 2006).

In our current system, jobs are queued and executed serially on each grading server,
so side channels between running processes are not a concern. The most obvious side
channel between processes that do not execute concurrently would be to leave a file in
the filesystem. This is prevented by restricting the processes to write to only a specified
list of files, all of which are purged after execution. There may still be side channels
available (particularly related to uninitialised memory), but we believe that exploiting
them reliably would be at least as much work as solving problems correctly in the first
place.

4.4. Alternate Root Directories

In Linux (and other UNIX-like operating systems), it is possible to run a process in an
environment where the root directory is actually only a subdirectory of the “real” root
directory. This prevents the process from accessing any files other than those specifically
placed in that subdirectory.

At present, we have not implemented this, largely due to the unwillingness to maintain
separate copies of files in the alternative root filesystem. While we’re not aware of any
additional security we would gain from this, it would provide better defense-in-depth
should any of the other security provisions fail (for example, should any of the contest
test data become world-readable by accident).

4.5. Java

The Sun JVM (Java Virtual Machine) performs a lot of operations that would normally
be blocked by the kernel module. While we initially tried to use the security module
unchanged for Java, we found it impractical to let through the system calls that the JVM
needed while simultaneously keeping the system secure for C and C++ programs. We
have instead used the Java security manager to limit solutions to legal operations, and the
command line option -Xmx to limit the maximum Java heap size.
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The Java security manager uses a policy file which describes which privileged actions
may be undertaken by which classes. The default configuration is quite permissive, al-
lowing various operations not suitable for an olympiad (such as write access to any files,
subject only to OS-level checks). We use the -Djava.security.policy command-
line option to specify our own policy file. This custom policy limits all classes to just a
list of explicitly allowed permissions – mostly querying of Java system properties, but
also general read access, and write access to the output file. The file format permits a
variable expansion syntax, so we are able to use a single file and provide the name of the
output file on the command line for each evaluation.

5. Conclusions

When we started this project, we were under the impression that the Linux Security Mod-
ule interface was a reasonably stable interface, suitable for third-party development of
custom security modules. However, the interface changes with almost every kernel re-
lease, and maintainence has been more difficult than expected. Posts to the Linux Kernel
Mailing List (Edge, 2007) suggest that in fact the interface is only intended for security
modules maintained within the kernel tree, and as of Linux 2.6.24, it is no longer possible
to build modules outside of the kernel tree. While it is a simple, low-overhead interface
at a good abstraction level, we will have to consider whether other options will require
less maintainence in the long term.
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