
Olympiads in Informatics, 2008, Vol. 2, 90–104 90
© 2008 Institute of Mathematics and Informatics, Vilnius

Tasks on Graphs

Krassimir MANEV
Department of Mathematics and Informatics, Sofia University and
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences
5, J. Bourchier blvd., 1164 Sofia, Bulgaria
e-mail: manev@fmi.uni-sofia.bg

Abstract. Despite missing of the topic in standard school curricula, tasks on graphs are among the
most used in programming contest for secondary school students. The paper starts with fixing the
used terminology. Then one possible classification of tasks on graphs is proposed. Instead of the
inner logic of Graphs Theory, which is typical for some profiled textbooks, the classification ap-
proach of the general textbooks on algorithms was used. The tasks on graphs from last ten editions
of the Bulgarian National Olympiad in Informatics were considered and classified in order to check
the usability and productivity of the proposed classification.

Key words: graph structures, directed and undirected graphs and multi-graphs, classification of
tasks on graphs, algorithmic schemes.

1. “In the beginning ...”1

It is a fact that the task proposed in the first International Olympiad in Informatics (IOI),
held in Bulgaria in 1989, was a task on a graph. The statement of the task, as given to
the students, was published in (Kenderov and Maneva, 1989) and a more simple and
contemporary form of the statement of the task was included in (Manev et al., 2007,
p. 114).

Two years before the first IOI, an open competition on programming for school stu-
dents was organized just before and in connection with the Second International Con-
ference and Exhibition “Children in the Information Age” of IFIP, which took place in
Sofia, Bulgaria, from May 19 till May 23, 1987. The contestants were divided in three age
groups (junior – under 14 years, intermediate – under 16 years, and senior – older than 16
years). It is interesting that the task proposed to students of the senior group was also a
task on a graph. The statement of the task, as given to the students, was also published in
(Kenderov and Maneva, 1989). We would like to give here a contemporary form of this
task too.

Task 1 (Programming contest “Children in the Information Age”, 1987). Let the
bus stops in a city be labeled with the numbers 1, 2, . . . , N . Let also all bus routes of
the city be given: M1 = (i1,1, i1,2, . . . , i1,m1), M2 = (i2,1, i2,2, . . . , i2,m2), . . ., Mr =

1The Bible, Genesis 1:1.

Tasks on Graphs 91

(ir,1, ir,2, . . . , ir,mr), 1 � ij,k � N , ij,k �= ij,l when k �= l. Each bus starts from one
end of its route, visits all stops of the route in the given order and, reaching the other end
of the route, goes back visiting all stops in reverse order. Write a program that (i) checks
whether one can get from any stop to any other stop by bus; (ii) for given stops i and j

prints all possible ways of getting from stop i to stop j by bus; (iii) for given stops i and j

finds fastest possible way of getting from stop i to stop j by bus, if times for travel from
stop to stop are equal and 3 times less than the time to change busses.

During the years after the first IOI tasks on graphs became a traditional topic in the
programming contests for school students – international, regional and national. Some-
thing more – the number of the tasks on graphs given in these contests is significant.

Why this subject, which was never included in school curricula, is so attractive for
programming contests? When and how do we have to start introducing of graph concepts
and algorithms on the training of young programmers? Which tasks and algorithms on
graphs are appropriate for the students of different age groups, and which concepts have
to be introduced in order that students are able to understand and solve corresponding
tasks? How should we present the abstract data type graph (and related to it abstract type
tree) in data structures? These are only few of the questions that arise in the process of
teaching the algorithmics of graphs. In this paper we will try to give answers of a part of
them, based on more than 25 years experience of teaching algorithms on graphs, as well
as preparing tasks, solutions and test cases.

In Section 2 we will introduce some basic notions, not because the reader is not fa-
miliar with them but just to escape misunderstanding, because the different authors use
different terminology. In Section 3 one possible classification of tasks on graphs is pre-
sented, based on the character of used algorithms. The effectiveness and productivity
of proposed classification was checked on a set of tasks on graphs from the Bulgarian
olympiads in informatics and the results are presented in Section 4.

2. “. . . What’s in a name? . . .”2

Speaking about the terminology, we are strongly influenced by the remarkable book
(Harary, 1969). As it was mentioned in Chapter 2 of this book, which is dedicated to
the terminology, most of the scientists that work in the domain are using their own ter-
minology. Something more, the author supposed that Graph Theory will never have uni-
form terminology. Back then, we totally accepted the terminology of Frank Harary and
believed that uniformity was possible. About 40 years later we have to confess that he
was right. Uniform terminology in Graph Theory still does not exist and those used by
us, even if strongly influenced by that of Harary, is different from the original.

2.1. Graph Structures

Each graph structure G(V, E) is defined over a finite set V of vertices as a collection
of links E (see Fig. 1) such that each link is connecting a couple of vertices. The link

2W. Shekspeare, Romeo and Julet, Act II, Scene 2.

92 K. Manev

Fig. 1. Directed multi-graph (a), directed graph (b) and undirected graph (c).

is directed when the couple is ordered and undirected when the couple is unordered (2-
elements subset of V). We will call undirected links edges and directed links – arcs.
Unfortunately, most of the authors of books on graph structures denote the edge that
links vertices v and w by the ordered couple (v, w) instead of more precise set notation
{v, w}. Such notation sometimes leads to misunderstandings. We will be happy to see
the tradition changed, but for the moment it seems impossible.

If E is a set of links (edges or arcs) we are speaking of graphs. If a multi-set E of
links is considered, i.e., a repetition of elements of E is permitted, than we are speaking of
multi-graphs. Applying ordering and repetition principles of Combinatorics, four kinds
of graph structures are obtained – directed graphs (or digraphs), undirected graphs (sim-
ply graphs), directed multi-graphs (simply multi-digraphs) and undirected multi-graphs
(simply multi-graphs). Distinguishing the four kinds of graph structures in the training
process is important because sometimes algorithms solving the same task in different
structures are different. A trivial example is the procedure of presenting graph structure
in a matrix of incidence g[][]. When the structure is given in the input file as a list of
links it is enough to assign g[v][w]=1 for the arc (v, w), but for the edge (v, w) both
assignments g[v][w]=1 and g[w][v]=1 will be necessary.

Special kind of links (v, v) are called loops. Our experience suggests that it makes
sense to allow loops in directed graph structures and do not allow them in undirected,
which will be our assumption through the paper. But this does not mean that loops should
not be included in undirected graph structures at all. It is quite possible that an interesting
task idea could presume existing of loops in a graph or multi-graph.

2.2. Traversals in Graph Structures

The idea of “moving” in a graph structure, passing from a vertex to another vertex that
is linked with the first, is one of the most fundamental in the domain. We will call such
moving in a graph a traversal. It is worth separating directed traversals from undirected.
We will call the sequence v0, v1, . . . , vl of vertices of a directed graph structure a course
of length l from v0 to vl, if there is an arc (vi, vi+1) in E for i = 0, 1, . . . , l − 1. When
v0 = vl then the course is called a circuit. We will call the sequence v0, v1, . . . , vl of
vertices of an undirected graph structure a path of length l from v0 to vl, if there is an arc
(vi, vi+1), for i = 0, 1, . . . , l − 1 and vi−1 �= vi+1 for i = 1, 2, . . . , l − 1. When v0 = vl

Tasks on Graphs 93

then the path is called a cycle. The constrain vi−1 �= vi+1 in the undirected case is crucial.
Without this constrain it will happen that the undirected graph from Fig. 1(c.) contains
the cycle 1,2,1 which is unacceptable. In the digraph from Fig. 1(b.), for example, the
same sequence 1,2,1 is a circuit and even the sequence 1,1,1,1,2,1 is a circuit.

A graph structure in which there is a course, respectively path, from each vertex to
each other vertex is called connected. Directed graph structures in which for each two
vertices there is a course in at least one of the two possible directions are called weakly
connected. When a graph is not connected, then it is composed of several connected sub-
graphs called connected components.

Some authors prefer to call courses and paths that not repeat links and/or vertices
with specific names (sometime different for both cases – lack of repeated links and lack
of repeated vertices only). Others prefer to call them simple courses and simple paths,
respectively (for the circuits and cycles v0 = vl is not considered a repetition of vertex).
We will use the short names courses and paths for the most frequent case when the repe-
tition of vertices is not allowed (which imply no repetition of links too). For rare cases of
repetitions other names, longer and even self-explaining could be used.

Traversals of graph structures that pass trough each link once are called Euler traver-
sals. Traversals of undirected graph structures that pass trough each vertex once are called
Hamilton traversals.

2.3. Graph Structures with Cost Functions

On each graph structure it is possible to define cost function on vertices cV : V → C,
cost function on links cE : E → C, or both, where C is usually some numerical set of
possible values (natural numbers, rational numbers, real numbers, etc. or subset of those
sets). Values of the cost functions, beside cost, are called also length, weight, priority, etc.
depending on the situation. If a graph structure has no cost function defined then we will
presume that the cost of each vertex and link is 1. Cost functions are usually extended in
some natural way on sub-graphs and other sub-structures defined in the graph structure.
For example the cost of a path in a graph is usually defined as a sum of costs of its
vertices, of its edges or both of vertices and edges (if applicable).

The notion path (or course) of minimal cost, called also shortest path (or course)
is fundamental for algorithmics on graphs. Both tasks mentioned in Section 1, the task
from IOI’89 and the task from the contest organized in parallel with the International
Conference and Exhibition “Children in the Information Age”, included searching of
shortest path. Let us now reformulate them in terms introduced here.

Task 2 (IOI’1989): Let V be the set of all strings of length 2N composed of N − 1
letters ‘A’, N − 1 letters ‘B’, and 2 consecutive letters ‘O’. Two strings (vertices of V)
are linked by an edge if one of the strings could be obtained from the other by swapping
letters ‘O’ and two other consecutive letters, conserving their order. The strings in which
all letters ‘A’ are leftmost of all letters ‘B’ (does not mater where the letters ‘O’ are)
are called final. Write a program that for a given string S finds and prints one path of
minimal length (trivial cost of each edge is 1) from S to some final string. If there is no
path between S and a final string, the program has to print the corresponding message.

94 K. Manev

Task 3 (Programming contest, 1987): A graph G(V = {1, 2, . . . , n}, E) is given.
The set E of edges is defined by r of its paths of length m1, m2, . . . , mr, respectively in
such a way that each edge of G is included in at least one of the given paths. The cost of
each vertex is 3 and the cost of each edge is 1. Write a program (i) to check whether the
graph is connected; (ii) for given two vertices v and w, to generate all paths between v

and w; (iii) for given two vertices v and w, to find the path between v and w with minimal
cost.

Let G(V, E) be a graph with cost function cE : E → C, where C is a numeric set
with non negative values. Then the function d: V × V → C, where d(v, w) is the cost
of the shortest path from v to w is a distance in classic mathematical sense of the word
because (i) ∀v, w ∈ V , d(v, w) � 0 and d(v, w) = 0 iff v = w; (ii) ∀v, w ∈ V ,
d(v, w) = d(w, v); (iii) ∀v, w, u ∈ V , d(v, w) � d(v, u) + d(u, w).

Introducing of distance function gives us the possibility to consider the graph G(V, E)
as a geometric object and to define the corresponding notions. For example, a center of
the graph G is each vertex v, which minimize D(v) = max{d(v, w)|w ∈ V } and the
diameter of the graph G is D(G) = max{d(v, w)|v, w ∈ V }. The analogy between the
“geometry” of a graph and the geometry of well known Euclidean space is an origin of
interesting tasks on graphs.

2.4. Graph Structures and Relations

Let A and B be arbitrary sets. Each subset R of the Cartesian product A × B is called
a relation. School and university curricula in mathematics provides a large amount of
useful relations: among numbers (“x is less then y”, “x is less then or equal to y”, “x
is equal to y”, etc.), among geometric objects (“the point p lies on the line l”, “the line
l passes trough the point p”, “lines l and m are parallel” etc.), among subsets of some
universal set (“A is a subset of B”, “A and B intersect”, etc.).

A lot of relations we could find outside mathematics, in the world around us. For
example, relations among people – “x is a son of y”, “x likes y”, “x and y are in the
same class”, etc; or the very popular relation among villages “the village x is linked with
the village y by a road” (similar relations could be established among city crossroads
linked by streets, railway stations linked by railway roads, electricity sources, distribu-
tion centers and customers linked by electricity lines, etc.). That is why many different
tasks can arise, in a natural way, in connection with a specific finite relation – abstract
(mathematical) or from the real world.

Unfortunately, school curricula (and even some university curricula) use many rela-
tions without to consider the notion itself and its properties – especially the properties of
relations over Cartesian squares A×A – reflexivity, symmetry, anti-symmetry, transitivity.
Some specific relations over Cartesian squares – equivalences (reflexive, symmetric and
transitive), partial orders (reflexive, anti-symmetric and transitive) and total orders (re-
flexive, strongly anti-symmetric and transitive) are significant both for mathematics and
algorithmics.

The notion finite relation coincides with the notion digraph. Indeed, each digraph
G(V, E) could be considered as a relation E ⊆ V × V and vice versa. A finite relation

Tasks on Graphs 95

E ⊆ V ×V that is symmetric (and optionally reflexive) is really a graph. That is why, each
task connected with some relation could be considered as a task on a digraph or graph.
Let us consider some examples. It will be helpful to fix the set V to be {1, 2, . . . , n}.

Task 4: Let E ⊆ V ×V be equivalence. Find the number of classes of equivalence of
E. Is this number equal to 1? If the number of classes is great than 1, find the classes of
equivalence of E.

This task (really set of very similar tasks) is classic for relations of equivalence. Be-
cause equivalence is reflexive and symmetric relation, G(V, E) is a graph. From the graph
point of view this task could be formulated as: “How many connected components has the
graph G(V, E)? Is the graph connected? If not, then find the vertices of each connected
component of G”.

Task 5: Let E ⊆ V × V be total order (we will denote (x, y) ∈ E with x � y)
and V ′ ⊆ V , |V ′| = M . Find a sequence a1, a2, . . . , aM of all elements of V ′ such that
a1 � a2 � . . . � aM .

Of course, this is the task for sorting a subset of elements of a given total order. It is so
popular that a specific branch of the Theory of Algorithms is dedicated to it. Anyway, the
task could be formulated as a task on digraph. It is well known that relations of ordering,
considered as digraphs, have no circuits. So the task for sorting a given subset of a totally
ordered set will look like: “Given a digraph G(V ′, E′) without circuits. Find a course
with a maximal length in G”. Relation E′ in this formulation is, obviously, the restriction
of E on V ′. Digraphs without circuits are very popular and have specific name – dag
(abbreviation of directed acyclic graphs, because some authors use the notion cycle for
digraphs too).

Task 6: Let E ⊆ V ×V be a partial order which is not total (we will denote (x, y) ∈ E

with x � y again). Find a sequence a1, a2, . . . , aM of elements of V with maximal length
such that a1 � a2 � . . . � aM .

Formulation of this task as a task in digraph will be: “Given a dag G(V, E). Find a
course with a maximal length in G”.

The examples given above concerned relations over the Cartesian square. But relations
over the Cartesian product of two different domains could also be considered in graph
formulation.

Task 7: Let R1 ⊆ A × B and R2 ⊆ B × A are such that (a, b) ∈ R1 if
and only if (b, a) ∈ R2. Find a subset {(a1, b1), (a2, b2), . . . , (aM , bM)} of R1 (or
{(b1, a1), (b2, a2), . . . , (bM , aM)} of R2, which is the same) with maximal numbers of
elements such that ai �= aj and bi �= bj , 1 � i < j � M .

Relations R1 and R2 with mentioned above property are called mutually reversed.
Examples of mutually reversed relations are the above mentioned couple “the point p

lies on the line l” and “the line l passes through the point p”. An example from real life
could be the couple “the person p could do the work w” and “the work w could be done
by the person p”. For each couple of mutually reverse relations we can build a graph
G(V = A ∪ B, R1) (or G(V = A ∪ B, R2), which is the same) considering elements
of R1 (R2, respectively) as not ordered. Such graph is called bipartite. Searched subset
M of edges such that each vertex is an end of at most one edge in M is called matching.

96 K. Manev

In graph formulation the task will be: “Given a bipartite graph G(V = A ∪ B, R1). Find
one maximal matching of G”.

2.5. Trees and Rooted Trees

Discussion of tasks on graph structures is impossible without introducing the notion tree.
By the classic definition, graph T (V, E) is a tree if it is connected and has no cycles.
For the purposes of algorithmics the notion rooted tree is more helpful. Two equivalent
inductive definitions of rooted tree are given below.

DEFINITION 1. (i) The graph T ({r}, ∅) is a rooted tree. r is a root and a leaf of T ;
(ii) Let T (V, E) be a rooted tree with root r and leaves L = {v1, v2, . . . , vk}. Let v ∈ V

and w �∈ V ; (iii) Then T ′(V ′ = V ∪ {w}, E′ = E ∪ {(v, w)}) is also a rooted tree. r is
a root of T ′ and leaves of T ′ are (L − {v}) ∪ {w}. This definition (Fig. 2(a.)) is more
appropriate for building of rooted trees.

DEFINITION 2. (i) The graph T ({r}, ∅) is a rooted tree. r is a root and a leaf of T ; (ii)
Let T1(V1, E1), T2(V2, E2), . . . , Tk(Vk, Ek), be rooted trees with roots r1, r2, . . . , rk,
and leaves L1, L2, . . . , Lk, respectively. Let r �∈ V1 ∪ V2 ∪ . . . ∪ Vk; (iii) Then T ′(V ′ =
V1 ∪ V2 ∪ . . . ∪ Vk ∪ {r}, E′ = E1 ∪ E2 ∪ . . . ∪ Ek ∪ {(r, r1), (r, r2), . . . , (r, rk)}) is
also a rooted tree. r is a root of T ′ and leaves of T ′ are L1 ∪L2 ∪ . . . ∪Lk. Rooted trees
T1, T2, . . . , Tk are called subtrees of T ′. This definition (Fig. 2(b.)) is more appropriate
for analyzing rooted trees. Introducing the notion sub-tree it is leading to natural recursive
procedures.

By definition rooted trees are undirected graphs. Anyway, Definition 1 is introducing
an implicit direction on the edges of the rooted tree. We could say that v is a parent of
w and that w is a child of v. Obviously each rooted tree is a tree and each tree could be
rebuild as rooted when we choose one of the vertices for its root.

If G(V, E) is a graph and T (V, E′) is a (rooted) tree such that E′ ⊆ E than T is called
a spanning (rooted) tree of G. Graph G is connected if and only if it has a spanning tree.
So, the most natural way to check whether the graph G is connected is to try to build a

Fig. 2. Two equivalent definitions of rooted tree.

Tasks on Graphs 97

spanning tree of G. If c: E → C is a cost function on edges of G(V, E) we could extend
it to spanning trees of G, defining c(T (V, E′)) =

∑
e �∈E′ c(e). Each spanning tree T of

G with minimal (maximal) c(T) is called minimal (maximal) spanning tree of G.

2.6. Presentation of Graph Structures and Trees

As in each other domain, presenting abstract data types graph, digraph, multi-graph,
multi-digraph and tree in data structures is crucial for creating of efficient algorithms.
Traditionally, the graph structures are given in input files, as it was mentioned above, in
form of a list of links preceded by the number n of its vertices and the number m of its
links and an instruction that links have to be interpreted as undirected (edges) or directed
(arcs).

When the essential part of the algorithm that will be implemented on a graph structure
G(V, E) is an iterative instruction of form

for e ∈ G do {. . .}
then the list of links is a perfect presentation and the implementation will have time
complexity O(m). If the same algorithm is implemented over a presentation of G with
an adjacency matrix (i.e., 2-dimentional array g such that g[v][w] is the number of the
links between v and w) than the time complexity will be O(n2) and the implementation
will be slower for graph structures with a relatively small number of links.

If the essential part of the algorithm is an iterative instruction of the form
for v ∈ V ′ ⊆ V do{for w ∈ V ′′ ⊆ V do{...if (v, w) ∈ E{. . .}}}

then the implementation with list of links will be of complexity O(|V ′||V ′′|.m) and with
an adjacency matrix – of complexity O(|V ′||V ′′|), which is much better.

If the essential part of the algorithm is an iterative instruction of the form
for v ∈ V do{for w such that (v, w) ∈ E do{. . .}}

then the implementation with adjacency matrix will be of complexity O(n2). In such case
it will be more appropriate to use another presentation of the graph structures – lists of
neighbors (in undirected case) or lists of children (in directed case) which will give us an
implementation of complexity O(m).

Especially for rooted trees, we would like to mention the presentation list of parents
– an array g[] such that g[i] is the parent of i for each vertex that is not the root r
and g[r]=0. This presentation of rooted trees is very convenient when it is necessary to
build a rooted tree (spanning, minimal spanning, etc.) or to maintain it.

It is worth also mentioning that different specific tree structures (heaps, index trees,
suffix trees, etc.) are an inevitable part of efficient implementation of many algorithms
but discussing of such specific tree structures is far beyond the scope of this paper.

3. Classification of Tasks on Graphs

Classification of tasks on graphs is important due to different reasons. Good classification
could be very helpful for preparing curricula and organizing the training process – for
deciding which classes of tasks are to be taught and in which order, just to have a smooth

98 K. Manev

passing from more easy to more difficult tasks. Classification could be very helpful for
preparing contests too – for avoiding tasks of a same class in one contest or similar tasks
in two consecutive contests. In this chapter we will consider first some classifications of
tasks on graphs and then will discuss the place of tasks on graphs among other classes of
tasks used in programming contests.

3.1. Classifications of the Profiled Textbooks

Profiled textbooks – see, for example, (Christophides, 1975) and (Gondran and Minoux,
1984) – prefer to classify tasks on graphs following the inner, graph-theoretical, logic of
the book. Our preferable way is another but it is worth discussing briefly these classifica-
tions.

In (Christophides, 1975) the classification is based totally on the theory. The following
main classes of tasks are considered:

Connectivity and accessibility; Independent and dominating sets of vertices; Col-
orings; Centers (radii, diameters); Medians; Spanning trees; Shortest paths; Euler
traversals; Hamilton traversals and traveling salesman problem; Flows; Matchings.
The approach of (Gondran and Minoux, 1984) is a bit different. The textbook first

separates the following classes of tasks, for which good (polynomial) algorithms exist:
Connectivity; Shortest paths; Spanning trees; Flows; Matchings; Euler traversals.
Then the authors consider a group of tasks, for which polynomial algorithms still do

not exist. Some algorithmic concepts which are useful for approaching algorithmically
hard tasks are also considered – greedy, backtracking (branch and bound), dynamic pro-
gramming, etc.

Classifications on the base of the inner, graph-theoretical, logic have their reasons.
But they are not convenient for the education and training of young programmers. Such
an approach can sometimes hide important common features of significantly different
(from graph-theoretical point of view) tasks. For example, both sources referred to above
consider as different topics connectivity, spanning trees and shortest paths. But the sim-
plest way of checking the connectivity of an undirected graph structure is to try to build
a spanning tree of this graph. From the other side, a spanning tree of a graph with root r,
built in breadth, is a tree of shortest paths from r to each other vertex of the graph.

Without underestimating theoretical classifications of the tasks in graphs, we prefer
the “algorithmic” classifications – such that collects in one class tasks, solvable by similar
algorithms or, more general, by same algorithmic scheme. As we will see it is possible
that some class of tasks could be a result of both classification approaches. This will
happen when tasks of some, “theoretically” identified, class are solvable with a specific
algorithmic scheme, not applicable at all or inefficient for another kind of tasks – Euler
traversals, for example.

3.2. Classifications of the Textbooks in Algorithms

Classification of tasks on the basis of the used algorithms is an approach that is typical
for the general textbooks on algorithms. These books are not aimed at considering the

Tasks on Graphs 99

tasks of a specific mathematical domain but to introduce the general principles and ap-
proaches of design (and analysis, of course) of algorithms. That is why these textbooks
are trying, usually, to identify as much as possible tasks that are solvable by the algorithm
(or algorithmic scheme) in consideration.

As a base of our attempt for classification we used the leader among the textbooks in
algorithms (Cormen et al., 1990) and compared it with some other popular textbooks –
(Reingold et al., 1977; Aho et al., 1978; Sedgewick, 1990; Brassard and Bratley, 1996),
as well as the most popular in Bulgaria (Nakov i Dobrikov, 2003). It is obvious that
the chapter on graphs of (Reingold et al., 1977) is organized in a similar way as the
profiled books on graph algorithms, so we will not consider it.

The part dedicated to graphs of (Cormen et al., 1990) starts with the chapter “Elemen-
tary Graph Algorithms”, which discusses the traversals of the vertices of graph structures
called Breadth-First search and Depth-First search (BFS and DFS). Both approaches are
applicable for solving different tasks related to connectivity of graph structures and the
accessibility of a vertex from another vertex. But these two algorithmic schemes are used
for solving some specific tasks also. BFS, for example, is building a tree of shortest paths
in graphs without cost function on the edges and DFS is a basic step for efficient topo-
logical sorting, finding of strongly connected components, articulation points and edges,
etc. All other mentioned above books consider both BFS and DFS. That is why BFS and
DFS will be different classes in our classification.

The second chapter of (Cormen et al., 1990) is dedicated to algorithms for finding
minimum spanning tree of graphs (MSP). This topic is included in all of considered
textbooks. So, Minimum spanning tree will be a class in our classification too. It is worth
to mention that (Brassard and Bratley, 1996) discuss algorithms for MST in the chapter
on greedy algorithms in a special section dedicated to applying greedy scheme on graphs
(we will discus this fact later).

The next two chapters of (Cormen et al., 1990) are “Single-Source shortest paths” and
“All-Pairs Shortest Paths”. We will suppose that the splitting of the topic Shortest paths in
two is made by the authors just to limit the size of the chapters. No other among the con-
sidered textbooks makes the distinction. And let us append two remarks. First, the word
“shortest” has to be considered in a larger sense – tasks for finding the largest path, more
reliable path, etc., are solvable with the same approach – the relaxation approach. And
second, the tasks for finding the center(s), the median(s), the radius (or diameter), etc., of
graphs (considered in depth only in (Nakov i Dobrikov, 2003) are also solvable by
the relaxation approach.

The last chapter of (Cormen et al., 1990) is “Maximum Flow”. Beside some basic
algorithms for finding Maximum flow in a network, the chapter also considers the strongly
related but specific task for finding Maximum matching in bipartite graphs. (Brassard and
Bratley, 1996) does not consider these two topics at all and the other textbooks consider
them separately.

Something that is missing in (Cormen et al., 1990) but is included in all other text-
books is the Exhaustive search – the general way for solving a huge amount on NP-
complete problems in Graph Theory. The tasks for finding Hamilton traversal of graph

100 K. Manev

and closely related Traveling salesman problem are the most used examples for this class
of tasks. Speaking of exhaustive search in graphs we usually have in mind backtracking
traversals. But in this class could be included any task, for the solving of which it will be
necessary to generate all permutation of the vertices, all subsets of vertices (or edges), etc.

Only (Nakov i Dobrikov, 2003) includes a chapter dedicated to such specific topic
as Euler traversal of multi-graphs and related problems. None of the textbooks consider
the topic Games in graphs (of type Nim and similar). From graph-theoretical point of
view these tasks could be classified in the topic Independent and Dominating Subsets.
There is a specific approach for solving these tasks (functions of Sprague-Grundy and
splitting a game in sum of more simple games). We will include such specific topics in
our classification too.

3.3. Tasks on Graphs in the General Classification of Tasks

As it was mentioned above, general textbooks on algorithms have always a chapter (or
few chapters) dedicated to tasks on graphs (and corresponding algorithms). Anyway,
some authors are inclined to put some graph tasks in other chapters of their books. One
example, which was mentioned above, was classifying MST task in (Brassard and Brat-
ley, 1996). The book is considering the algorithm of Prim and the algorithm of Kruskal
for finding MST as greedy.

Such classification has a very serious reason. In the cyclic matroid 3 of a graph the
spanning trees, and only they, are maximal independent sets. As it is well known from
the theory, greedy algorithms that search a maximal independent set of a matroid with
some optimal property always find the optimum. Following such logic, the algorithm of
Dijkstra for the task Single-source shortest path is also greedy. Its goal is also a maxi-
mal independent set of the cyclic matroid of the graph (i.e., rooted tree) with additional
optimum property – to be a tree of the shortest paths from the source.

Let us mention some other examples. In (Keleved�iev, 2001), which is a short
introduction to Dynamic Programming (DP), the algorithm of Dijkstra for finding the
shortest path was considered as an example for applying the DP approach and there is a
reason for this too. Dijkstra’s algorithm is maintaining a table of vertices for which the
shortest path from the origin is found (i.e., of sub-tasks solved to the moment). Solving
the task for the remaining vertices is reduced (by relaxation steps) to already solved sub-
tasks.

As another example let us consider the exceptional book (Kir�hin i Okulov,
2007), which collects statements and solutions of tasks from the first eighteen IOI. The
above mentioned task from the first IOI, that by our classification is a typical BFS task,
is classified in the book as a task on a sequence. With the same success authors could
classify it as Exhaustive search. In the way, as exhaustive search authors classified, for
example, both the task for first day of IOI’1991 (Hamilton path) and the task “Camelot”
from second day of IOI’1998, which we prefer to classify as Breadth-first search. Differ-
ent classifications of tasks on graphs give us different points of view to the ways the task
could be solved.

3For short introduction to Theory of Matroids see, for example, (Welsh, 1976).

Tasks on Graphs 101

3.4. Graphs in the Proposed IOI Syllabus

In (Verhoeff et al., 2006) a proposal for a Syllabus of IOI was published. It is interesting
to see the place of the specified above topics in the Syllabus. Briefly, the authors explicitly
suggest excluding from the topics of IOI matching in bipartite graphs and flows in net-
works. And more, the Syllabus does not mention at all (and so exclude implicitly) games
of type Nim (and related) in graphs. All other topics are covered in one or another form.

We would not like to guess the reasons of authors to exclude (explicitly or implicitly)
these specific topics – general reasons for excluding topics from the Syllabus are given
in the mentioned paper. We would like only to stress that tasks from excluded classes are
proposed in national olympiads and could appear in task sets of future IOIs too, because
the Syllabus of IOI has to be instructive, rather then restrictive. Discussion of this topic
and especially attempts to exclude some topics from the Syllabus of IOI is going beyond
the scope of this paper but put in front of the community very serious question: what kind
of mathematical knowledge we have to give to the new generation of mathematicians –
the computer programmers?

4. Tasks on Graphs in the Bulgarian Programming Contests

To conclude this paper we would like to consider the place of tasks on graphs in Bulga-
rian programming contests. For this purpose we checked large amount of tasks from all
Bulgarian programming contests from the last 10 years published in (Infoman, 2008). A
set of 85 tasks was identified and each task was classified in one of the classes that we
specified in previous section. Results are given in Table 1. This will help us to realize
which classes of tasks are most used in programming contests.

The tasks of each class were additionally classified by the age group for which they
were proposed. This will help us to realize when the tasks of a specific class appear for
the first time in competitions and which the preferred tasks for each age group are. The
definitions of age groups in Bulgarian programming contest changed over the years (see
(Manev et al., 2007)) so we are using the following average definition: group C – 14–15
years; group B – 16–17 years; group A – 18–19 years. When a task was given during a
contest for selection of Bulgarian national team, it was classified in group A.

From Table 1 it is obvious that the most preferable class of tasks in Bulgarian pro-
gramming contests is Shortest path for graphs with cost function on edges or on edges
and vertices. From the two cases – single-source and all-sources – the first dominates (19
versus 6 tasks). Tasks with classical formulation (solvable with algorithm of Dijkstra or
algorithm of Floyd-Warshal) are very few – the two tasks for group C and two of the tasks
for group B.

The usual way to escape classical formulation is to define the graph implicitly or to put
some additional obstacles (or optimization criteria) on vertices and/or links. Sometime the
shortest path task is combined with some task from different domain. As an example of
such combination let us mention the following task.

102 K. Manev

Table 1

Tasks on graph from the Bulgarian programming contests for last 10 years

Age group
Class of tasks Number of tasks

C B A

Breadth first search and related (including connectivity checking,
identifying connected components, shortest path in graphs without cost
function, etc.)

15 6 3 6

Depth first search and related (including topological sorting + some
optimization, strongly connected components, etc.). Remark. Tasks
solvable both by BFS and DFS are classified in the previous group.

15 2 4 9

Euler traversals 3 1 2

Minimum spanning tree 2 2

Shortest path (both single-source and all-sources) and related 25 2 7 16

Matching and flows in networks 6 2 4

Games in graph (of type Nim) 2 1 1

Exhaustive search 15 1 2 12

Difficult to classify 2 2

Task 8 (Winter tournament 2000, group A) (Infoman, 2008). Vertices V of a graph
are points of the Euclidean plane and edges are line segments linking some of the vertices.
Let C ⊆ V are the vertices of the graph from the convex hull of V . For each vertex v of
V find the closest to v vertex of C.

It is not unexpected that the second place is shared by the BFS and DFS. Because tasks
solvable both by BFS and DFS (i.e., connectivity, accessibility, etc.) are classified only
in BFS, it is possible to say that, in Bulgarian national contests, the couple BFS&DFS
is even more popular than Shortest path. Something more, exploring a graph in depth is,
or may be, the first task on graphs that young programmers have to solve. This is easy
to explain – with a recursive implementation of DFS we could escape introducing the
abstract data type stack. Objectively the BFS had to be easier to understand in age 14–15
but it will need introduction of the abstract data type queue.

Tasks for BFS and DFS in which the graphs are explicitly given are very rare. Usually
the graph is extracted from mazes of squares, spaces of situations with an operation for
transforming one situation in another (like the task from the first IOI), some relation (for
example, the interval [a, b] is included in the interval [c, d]), etc. The most frequently used
task that is solvable by DFS is longest course in a dag.

The fourth most popular category in Bulgarian national programming contests is Ex-
haustive search. It is obvious that in the process of creating of tasks it is impossible to
escape the numerous NP -complete tasks of Graph Theory. Especially because there are
many situations from the real life, which are modeled as NP -complete tasks (traveling

Tasks on Graphs 103

salesmen, splitting group of people in cliques, etc.). It seems normal that the topics rec-
ommended for excluding in the Syllabus of IOI (matching, flows and games of type Nim)
are rare. But it is strange that the tasks of the categories Euler traversals and Minimal
spanning tree are very rare. We have not reasonable explanation of this fact.

We did not succeed to classify only 2 of considered tasks. One of them – Lowest
common ancestor in a rooted tree is a popular tasks, but a specific approach for solving it
is necessary. We would like to present here the second of unclassified tasks.

Task 9 (Autumn tournament, 2005) (Infoman, 2008). A set V of vertices and the
positive integers d(v, w) for each v, w ∈ V, v �= w are given. Find a graph G(V, E) with
minimal number of edges and a positive integer length of each edge in such way that the
shortest path for each couple of vertices v, w ∈ V is equal to the given d(v, w).

5. Conclusions

Graph structures are an important origin of tasks for olympiads in informatics. They
are modeling real life situations and so the tasks become more natural and easy for un-
derstanding. Graphs are not included in classical mathematical school curriculum but
most of the notions and concepts are understandable by relatively young students. As it
was mentioned, tasks on graphs appear in Bulgarian national contests for student aged
14–15 years. So teaching of graph concepts and algorithms really starts at the age of
12–13 years.

The classification of tasks on graphs, proposed in this paper, is one of many possible.
It could be discussed and ameliorated. It is possible a classification of tasks on graphs to
be based on another principles. But some classification of tasks on graphs is necessary
for each team of teachers that is coaching contestants in programming. On the base of
the proposed classification we could conclude that in the “Bulgarian model” of teaching
graphs concepts and algorithms we are starting with BFS and DFS on age 14–15 years.
At the age of 16–17 years shortest path tasks are included in the training process. At the
age of 18–19, beside algorithmically hard tasks, solvable by different kind of exhaustive
search, some specific topics, like Matching in bipartite graphs, Flows in networks and
Games of type Nim, also appear in the sets of contests’ tasks.

Classification of tasks together with analysis of results during the contests could help
us to better organize both the training process and the contests (national and local) – to
identify kinds of tasks that are not appropriate for some age group, to identify kinds of
tasks that are included in the tasks sets more or less frequently than usual, etc.

We would like to thanks numerous authors of task on graphs for Bulgarian program-
ming contests as well as all Bulgarian contestants for their work, which made this research
possible.

References

Aho, A., Hopcroft, J. and Ulman J. (1978). Data Strucures and Algorithms. Addison-Wesley.
Brassard, G. and Bratley, P. (1996). Fundamentals of Algorithmics. Prentice Hall.

104 K. Manev

Christophides, N. (1975). Graph Theory. An Algorithmic Approach. Academic Pres.
Cormen, T.H., Leiserson, Ch.E. and Rivest R. L. (1990). Introduction to Algorithms, Second Edition. The MIT

Press.
Gondran, M. and Minoux, M. (1984) Graphs and Algorithms. John Wiley & Sons.
Harary, F. (1969). Graph Theory. Addison-Wesley Publishing Company.
Infoman (2008). Bulgarian portal for competitive programming.

http://infoman.musala.com (visited in February2008)
Kenderov, P. and Maneva, N. (Eds.) (1989). Inernatonal Olympiad in Informatics. Sofia.
Manev, K., Kelevedjiev, E. and Kapralov, S. (2007). Programming contests for school students in Bulgaria.

Olympiads in Informatics, 1, 112–123.
Keleved�iev, E. (2001). Dinamiqno programirane. Anubis, Sofi�.
Kir�hin, V.M. i Okulov, S.M. (2007). Metodika rexeni� zadaq po informatike.

Me�dunarodnye olimpiady. BINOM, Moskva.
Nakov, Pr. i Dobrikov, P. (2003). Programirane = + + Algoritmi. Top Team Co, Sofi�.
Reingold, E.M., Nivergelt, J. and Deo, N. (1977). Combinatorial Algorithms. Theory and Practice. Prentice

Hall.
Sedgewick, R. (1990). Algorithms in C. Addison-Wesley.
Verhoeff, T., Horváth, G., Diks, K. and Cormack, G. (2006). A Proposal for an IOI Syllabus. Teaching Mathe-

matics and Computer Science, VI(I), 193–216.
Welsh, D.J.A. (1976). Matroid Theory. Academic Press.

K. Manev is an associate professor in discrete mathematics and algo-
rithms at Sofa University, Bulgaria. He is a member of the Bulgarian
National Commission for Olympiads in Informatics since 1982 and was
a president of the commission (1998–2002). He was a member of the
organizing team of first (1989) and second (1990) IOI, president of the
SC of Balkan OI’1995 and 2004, leader of the Bulgarian national team
for

IOI’1998, 1999, 2000 and 2005 and BOI’1994, 1996, 1997, 1999 and 2000. In 2007
he was a leader of Bulgarian team for First Junior Balkan OI. From 2000 to 2003 he
was an elected member of IC of IOI. In 2005 he was included again in IC of IOI as
a representative person of the host country of IOI’2009. He is author of more than 30
scientific papers, 1 university textbook and 9 textbooks for secondary schools.

