
Olympiads in Informatics, 2008, Vol. 2, 171–180 171
© 2008 Institute of Mathematics and Informatics, Vilnius

On Using Testing-Related Tasks in the IOI

Ahto TRUU, Heno IVANOV
Estonian Olympiad in Informatics
Tähe 4-143, EE-51010 Tartu, Estonia
e-mail: ahto.truu@ut.ee, heno@siil.net

Abstract. One major area of software development that is mostly neglected by current computer
science contests is software testing. The only systematic exception to this rule known to us is the
Challenge round in the TopCoder contest. In this paper, we propose some patterns for designing
tasks around testing theory and examine their suitability for being blended into the existing IOI
competition and grading framework. We also present some case studies of using testing-related
tasks on actual contestants.
Key words: programming contests, task development, software testing.

1. Introduction

Most computer science contests focus on the “programming” part of the software devel-
opment process. This means the contestants are given a computational problem and are
asked to find or invent an algorithm for solving it and to implement the algorithm in one
of the programming languages supported at the particular contest. The programs are then
graded on a predefined set of (secret) test inputs and awarded points for every input (or
set of inputs) for which they produce correct output, without exceeding some predefined
resource constraints; typically there are limits on the total CPU time and the maximum
amount of RAM used by the program in a test run.

Several members of the IOI community have pointed out that this approach is too
narrow and in particular only rewards testing as much as it has an effect on the quality of
the final program submitted for grading. Due to the limited time in which the contestants
have to develop their solutions (typically five hours for solving three problems), they are
not able to perform systematic testing of their programs in addition to the other work. It
is therefore only natural that they tend to focus on the areas where their effort is more
directly rewarded.

It has been suggested by several authors (Cormack et al., 2006; Opmanis, 2006) that
the IOI community should consider bringing testing theory and its applications more
directly into the competition material. In this paper we examine the main modes of op-
eration of software testers and consider the suitability of each one as the basis for com-
petition tasks, with the aim of making testing activities the central point of the task. We
also provide several case studies of inflicting explicitly testing-related tasks upon actual
contestants: two tasks from BOI (Baltic Olympiad in Informatics) and one from a training
camp for the finalists of our national competition



172 A. Truu, H. Ivanov

2. Taxonomy

The two main attributes for classifying testing activities are black box versus white box
methods and static versus dynamic testing (Patton, 2006, pp. 51–122).

In black box testing techniques, the testers do not know the internal implementation
details of the software they are testing and rely exclusively on external interfaces. In white
box (sometimes also called clear box or glass box) techniques, the testers have access to
the implementation details of the software and actively use this knowledge to tailor the
test cases.

In static testing, the testers examine the software without actually running it (one may
argue that “analysis” is the proper term here instead of “testing”), whereas the dynamic
approach is based on observing (and possibly influencing) the program while it executes.

2.1. Static Black Box Testing

Having no access to the implementation details of the software and no ability to run it
either is effectively equivalent to not having the software at all.

In real-life software projects, the testing team uses the requirements documents to
define the test plan to be executed when the actual software arrives. This is also the mode
in which competition task developers normally operate: they must create the test data
based on the task description alone, not having access to the solutions that the test data
will be used on.

Since it is impossible to have an exhaustive test data set for any realistic problem, the
domain of input data is usually split into a limited number of equivalence classes and
the program is tested on just one instance (or at most a few instances) of each class. The
main objective is to achieve as complete as possible coverage of the problem domain
using limited number of test cases.

To evaluate the test data created by contestants in such a setting, the grading server
could have a set of solutions, probably one of them correct and the rest somehow flawed
– either producing wrong answers, violating some resource constraints or terminating
abnormally under certain conditions. It may also be possible to merge some (or even all)
the flawed solutions together into one that exhibits all the problems.

The grading would then consist of running the solutions on the test data provided
by the contestant and checking which of the faults are triggered and which are missed.
Of course, merging several flaws into one implementation brings the risk that the flaws
will interfere with each other and care has to be taken to properly track which one was
actually triggered by any given test case. We will discuss additional scoring details in
Subsection 2.5.

2.2. Dynamic Black Box Testing

In dynamic black box testing, the tester has the possibility to run the software, but no
knowledge of its implementation details. This is the mode in which integration testing



On Using Testing-Related Tasks in the IOI 173

usually works in major software projects. Independent software verification and valida-
tion (especially in the sub-domain of security analysis) is also often done in this mode,
since the vendor of the software may not be co-operating.

In a competition, this mode could be implemented by giving the contestants access
to an implementation with known defects. To maintain the black box status, the imple-
mentation should obviously be given in binary form only. To prevent reverse engineering
(as opposed to pure black box testing), it may be even better to expose the flawed imple-
mentation as a service on the grading server such that the students can submit inputs and
receive outputs, but not interfere otherwise.

Giving out several binaries with only small differences would help the contestants
focus their reverse engineering efforts on the areas where the implementations differ.
Consequently, this should probably be avoided, unless the implementations have major
differences in the overall structure that would render them resistant to differential analy-
sis. Thus, the network service access would be the technically preferred way to provide
several slightly different versions, each one with a distinct defect.

The scoring of the test data produced could be similar to the case of static black box
testing. A grading possibility specific to this task type only is to give the contestants a
binary with known defects and ask them to implement a “bug-compatible” version. This
approach was used in BOI’98, as reported in Subsection 3.2.

2.3. Static White Box Testing

Static white box testing should involve examining the internals of the software without
running it. When trying to come up with tasks based on this approach, the first concern
is keeping the testing static. After all, the contestants have programming tools available
and know how to use them, which means they can easily turn the static testing exercise
into a dynamic one!

There are two major kinds of activities in practical software development that can be
classified under this heading: code reviews and program analysis. Code review is a team
effort and results in a human-readable document (most of time in the form of annotations
on top of existing source code). As such, it is probably the least suited as a basis for an
IOI-style task. Perhaps we could invent an annotation language for marking up existing
code in some machine-readable form, but this would probably get too heavy to fit into the
hour and a half that a contestant has per task.

On the other hand, asking the contestants to create a simple program analysis tool
can be just the approach to keep them from rewriting any human-readable presentation
of the algorithm from the task text into an executable implementation. As with the black
box testing case, the key is that the actual code is not available until grading time. This
approach was used in BOI’95, as reported in Subsection 3.1.

2.4. Dynamic White Box Testing

Dynamic white box testing means the tester is free to run the software and also has access
to the implementation details. A natural way to achieve this setting in the contest environ-
ment could be to provide the software to test in source code form. To avoid bias between



174 A. Truu, H. Ivanov

contestants using different languages, either equivalent source should be provided in all
languages, or the program could be given in some pseudo-code.

This approach was tried in a recent training camp, as reported in Subsection 3.3.

2.5. Scoring

There are some scoring considerations common to all of the task types mentioned above,
involving two main aspects of test data quality: correctness and completeness.

On the correctness level, the test cases could be rated:

• well-formed when the file format meets the conditions set in the task description
(for example, a line of 200 characters where the task description allowed for no
more than 100 characters would be malformed);

• valid when the file is well-formed and the semantic value of its contents matches the
conditions given in the task description (for example, presenting an unconnected
graph in an input file would make the file invalid if the task called for connected
graphs only);

• correct when both the input and output file are valid and agree with each other (a
test case consisting of a valid input file and a valid output file which do not agree
with each other would still be incorrect).

Obviously, no points should be awarded for any test cases other than correct ones.
However, there are still several possible ways to handle the rest:

• The grading server could validate all proposed test cases as they are submitted and
accept only the correct ones.

• The grading server could accept all test cases initially, but filter out the incorrect
ones as the first step of the grading process. If the contestant is allowed to submit
only a limited number of test cases for the task, this already is a small penalty in
that the incorrect cases take up slots that could have been used for correct ones.

• The grading server could also assign explicit penalty points for the incorrect test
cases submitted.

It is probably sensible to check for the format of the submitted files in any case, to
weed out silly mistakes like submitting an output file in lieu of an input file or vice versa,
but the decision to reject or accept invalid or incorrect cases would probably depend on
the particular task.

There are also several possible ways to assign score for the correct test cases. Since
the main goal besides correctness of every test data set is completeness, the following
approaches come forward:

• To award some points for each test case that causes failure in at least one of the
faulty programs. Of course, we need to limit the number of test cases a contestant
can submit in order to have an upper limit on the value of the task. The problem
with this approach is that it would grant full score to a test data set that makes the
same faulty program fail in every test case. Certainly, this is not good coverage.

• To overcome the problem with the previous approach, we could instead award some
points for each faulty program that fails on at least one test case submitted by the



On Using Testing-Related Tasks in the IOI 175

contestant. That would put an automatic upper bound on the value of the task,
as there would be a fixed number of faulty solutions that could fail. But still this
approach would probably result in a lot of contestants just submitting the maximal
allowed number of randomly generated large test cases in the hope that there will
be something in them to trigger all the faults. It would be very hard to avoid them
getting high scores with no actual design in any of the test cases.

• To further improve the grading accuracy, we could divide the faulty solutions into
clusters based on the passed/failed patterns. If we then award points based on the
number of clusters we get, that would encourage the students to carefully design
the test cases to isolate specific faults. It would probably depend on the task details
whether it would be better to collect into one cluster all the solutions that pass ex-
actly the same set of test cases or whether we should also consider how they fail on
the cases that they do not pass. The distinct failures could include abnormal termi-
nation, exceeding time or memory constraints, producing wrong answers. Some-
times perhaps even different wrong answers could be counted as different faults.

One issue that should be considered in the context of a large event like IOI is the
computation power needed to grade these types of tasks. It takes O(N ·K) time to eval-
uate the solutions of N contestants to a batch task that has K test cases, but it will take
O(N ·K·M) time to evaluate the solutions to a testing task where each contestant can
submit K test cases on which M different implementations have to be tested. Also the
grading reports may get excessively long if their layout is not carefully considered.

3. Case Studies

3.1. Task IFTHENELSE, BOI’95

This is a program analysis task that was proposed for the 1995 Baltic Olympiad in Infor-
matics by Rein Prank from Tartu University.

The task considered a simple programming language consisting of IF/THEN/ELSE
statements with only comparison of two integer variables for equality as the conditions
and asked the contestants to write a tool that would analyze a program written in that
language, report all possible outcomes, and for each outcome also a set of initial values
for the variables to produce that outcome. (The complete original text of the task is given
in Appendix A.)

The grading was done on 11 independent test cases valued from 2 to 5 points, for a
total of 50 points for the task. As can be seen from Fig. 1, the task resulted in quite good
distribution of scores among the 14 participants of the event.

3.2. Task RELAY, BOI’98

This is a task that was proposed for the 1998 Baltic Olympiad in Informatics, again by
Rein Prank.



176 A. Truu, H. Ivanov

Fig. 1. Distribution of scores for the task IFTHENELSE.

The task described a sufficiently intricate data filtering and sorting problem on racing
times (see Appendix B for the full text). The contestants were asked to develop a “bug-
compatible” version of a binary that contained several classic mistakes:

1) using a strict inequality when a slack one should have been used in filtering;
2) sorting by the wrong key;
3) ignoring the seconds when checking that a time value does not exceed 2 hours;
4) forgetting to carry from seconds to minutes when subtracting time values.

The grading was done using 7 “positive” and 4 “negative” test cases. For each “posi-
tive” test case (that is, where the given implementation worked correctly), the contestant
received 2 points if their solution produced the same (correct) answer as the given pro-
gram. For each “negative” test case (that is, where the given implementation worked
incorrectly), the contestant received 4 points if their solution produced the same (incor-
rect) answer as the given program, 2 points if their solution yielded an incorrect answer
different from the one produced by the given program, and no points if their solution pro-
duced a correct answer (this indicated a fault in the given program that the contestant did
not detect). Also, to prevent random output from scoring half the points for the “negative”
test cases, a contestant’s solution that failed in more than one “positive” test case would
be denied the 2 point scores for the “negative” cases. As can be seen from Fig. 2, this task
also turned out a good distribution of scores.

3.3. Task QUICKSORT, EOI’08 Training Camp

This task was devised by ourselves for a practice session held for the finalists of the
Estonian Olympiad in Informatics.

The students were given a correct implementation of the QuickSort algorithm and
several modifications where strict inequalities had been replaced by slack ones and vice
versa (see Appendix C for full text of the task). They were then asked to develop test data
that would enable them to tell these versions apart from each other by looking only at the
test failure patterns.

In Fig. 3, the line “Tests” shows for each contestant the number of test cases that
triggered at least one fault, the line “Faults” shows the number of faults triggered by at



On Using Testing-Related Tasks in the IOI 177

Fig. 2. Distibution of scores for the task RELAY.

Fig. 3. Results for the task QUICKSORT.

least one test case, and the line “Patterns” shows the number of distinct passed/failed
patterns yielded by the set of test cases.

The results of this experiment are probably not directly comparable to the two previ-
ous case studies. The average experience level of the participants was significantly below
that of the BOI contestants, the session was the last one in the evening of a rather long
day, and the students knew their work would not be graded competitively.

Additionally, for some of the participants, the session was the first time they had to
perform significant part of their work outside the IDE on Linux. In fact, the main goal of
the session from the viewpoint of preparing the future BOI/IOI team members was to get
them comfortable setting up shell scripts for quickly running their solutions on several
test cases.

4. Conclusions

As can be seen from the above case studies, it should be possible to set up good IOI-style
tasks based on any of the main modes of operation observed in real-life quality assurance



178 A. Truu, H. Ivanov

teams. We have seen successful examples derived from both black-box and white-box, as
well as from both static and dynamic techniques.

We have also seen a somewhat less successful example, which only confirms the
obvious: even though tasks can be created based on any area of software testing, care
must be taken to ensure the task matches the experience of the contestants and the time
available for solving the problem posed to them.

Appendix

A. Task IFTHENELSE

Any line of the program in the programming language IFTHENELSE begins with the
line number and contains only one command. The variables are of an integer type, the
lowercase letters are used as their identifiers.

The input file presents a subprogram (number of lines � 20) that computes one integer
value and contains only the lines of the following syntax:

<line number> IF <ident>=<ident> THEN <line number> ELSE <line number>

<line number> RETURN(<integer>)

where the command RETURN finishes the execution of the subprogram and returns the
integer as a value.

Find all the possible results of the execution of the subprogram. Write each of them
only once together with such values of all the variables of the subprogram that bring to
this result.

EXAMPLE.
The file ITE.DAT contains the subprogram

11 IF a=b THEN 12 ELSE 15

12 IF b=c THEN 13 ELSE 15

13 IF a=c THEN 14 ELSE 16

14 RETURN(14)

15 RETURN(15)

16 RETURN(77)

The answer:
14:

a=1, b=1, c=1

15:

a=1,b=2,c=3

B. Task RELAY

A young programmer has written software for orienteering competitions. The file RE-
LAY2.EXE contains his program for ranking the participants of second relay by their in-



On Using Testing-Related Tasks in the IOI 179

dividual results. As input data, the program uses the files START.IN and FINISH.IN pre-
senting some parts of Start and Finish protocols containing all the participants of second
relay and possibly some others. First line of both files contains the number of competitors
in the file. Each of the remaining lines consists of the number of the competitor and his
(her) starting/finishing time (hours, minutes, seconds), in order of starting/finishing. The
participants of first relay may have the numbers 100, 101, 102, . . ., 199; the participants
of second relay the numbers 200, 201, 202, . . ., 299 etc. Maximal possible number is 499.

EXAMPLE.

START.IN FINISH.IN
6 5
203 13 12 7 104 13 48 59
201 13 12 10 201 13 52 40
305 13 15 8 305 13 53 1
202 13 24 31 202 13 59 47
204 13 48 59 203 15 25 21
301 13 52 40

The output file RELAY2.OUT must contain the numbers of the participants of second
relay having received positive result (i.e., running time not more than 2 hours), ranked by
their individual results. If the results are equal then the participant having finished earlier
must be higher in the table. In case of our example the output must be

202

201

The program RELAY2.EXE is not completely correct. Your task is to test the program,
to diagnose the mistakes in it and to write in your programming language a program
MYRELAY that makes the same mistakes as the prototype. Your program will be tested
with some positive tests (where RELAY2 computes correct results) and some negative
tests (where the output of RELAY2 is not correct). Full points for a positive test will be
given if your program gives correct output. In case of negative test you get full points if
your program gives the same output as RELAY2 and half of the points if your output has
correct format and is wrong but different from the output of RELAY2. You get no points
for a negative test where your program computes the correct result (this indicates an error
in RELAY2 that you did not detect). The half-points will be given only in the case if your
program fails not more than one time with positive tests.

Your program must not incorporate the original RELAY2.EXE nor any part of it. It
is also forbidden to call RELAY2.EXE from your program. If such violation of the rules
will be detected by the judges, your score for the entire problem will be 0.

All the test cases contain only correct (i.e., possible in real competition) data. All
participants of second relay in FINISH.IN occur in START.IN, but some participants
having started can be not in Finish protocol. In all test cases the output of RELAY2.EXE
has right format, i.e., contains one integer on each line. In all test cases the correct output
and the output of RELAY2.EXE contain at least one and not more than 100 participants.



180 A. Truu, H. Ivanov

C. Task QUICKSORT

Consider the following implementation of the QuickSort algorithm:

1. procedure qs(var a : array of integer; l, r : integer);
2. var i, j, x, y: integer;
3. begin
4. i := l; j := r; x := a[(l + r) div 2];
5. repeat
6. while a[i] < x do i := i + 1;
7. while x < a[j] do j := j - 1;
8. if i <= j then begin
9. y := a[i]; a[i] := a[j]; a[j] := y;
10. i := i + 1; j := j - 1;
11. end;
12. until i > j;
13. if l < j then qs(a, l, j);
14. if i < r then qs(a, i, r);
15. end;

Create a set of test cases that is able to distinguish between the following variations:
1) the above (correct) implementation;
2) the ‘<’ on line 6 is replaced by a ‘<=’;
3) the ‘<’ on line 7 is replaced by a ‘<=’;
4) the ‘<=’ on line 8 is replaced by a ‘<’;
5) the ‘>’ on line 12 is replaced by a ‘>=’.

References

Cormack, G., Munro, I., Vasiga, T. and Kemkes, G. (2006). Structure, scoring and purpose of computing com-
petitions. Informatics in Education, 5(1), 15–36.

Opmanis, M. (2006). Some ways to improve olympiads in informatics. Informatics in Education, 5(1), 113–124.
Patton, R. (2006). Software Testing. Sams Publishing.

A. Truu is a software architect with GuardTime AS. He has been in-
volved in programming competitions since 1988, first as a contestant
and later as a member of the jury of the Estonian Olympiad in Infor-
matics as well as a team leader to the Baltic, Central European and
International olympiads, and the coach of Tartu University’s team to
the ACM ICPC.

H. Ivanov is a software developer with AS Logica Eesti. He has been
to several different international competitions (BOI, CEOI, IOI, ACM
ICPC) both as a contestant and as a team leader. He headed the team
that created the grading system for the BOI’03 in Tartu, and has since
maintained it for use in the Estonian Olympiad in Informatics.


