
Olympiads in Informatics, 2008, Vol. 2, 192–207 192
© 2008 Institute of Mathematics and Informatics, Vilnius

Programming Task Packages: Peach Exchange
Format

Tom VERHOEFF
Department of Mathematics and Computer Science, Technische Universiteit Eindhoven
P.O. Box 513, NL–5600 MB Eindhoven, The Netherlands
e-mail: t.verhoeff@tue.nl

Abstract. Programming education and contests have introduced software to help evaluation by
executing submitted taskwork. We present the notion of a task package as a unit for collecting,
storing, archiving, and exchanging all information concerning a programming task. We also de-
scribe a specific format for such task packages as used in our system Peach, and illustrate it with
an example. Our goal is to stimulate the development of an international standard for packaging of
programming tasks.

Key words: programming education, programming contest, programming task, task package,
grading support software, data format.

1. Introduction

Programming education and contests have introduced software to help evaluation by ex-
ecuting submitted taskwork. Typically, a programming task is understood to be a short
text that describes the requirements on the program to be constructed. Such task descrip-
tions can be found in various problem archives, such as the (UVa Online Judge, 2008).
However, it takes more than just its task description to be able to (re)use a program-
ming task. In this article, we present the notion of a task package as a unit for collecting,
storing, archiving, and exchanging task-related information. Ideally, such task packages
can be dropped into your favorite programming education and contest hosting system to
configure it for the task.

We have used task packages for many years now in our programming education and
contest hosting system, called Peach (Peach, 2008). Using these task packages has helped
us ensure completeness and correctness of task data.

We will discuss the contents and format of task packages and also the interface and
operations for task packages. Particular concerns are the support for

• multiple languages to express human readable texts (including, but not restricted
to, the task description);

• multiple programming languages allowed for solving the task;
• multiple platforms to deploy tasks;
• diverse task styles;

Programming Task Packages: Peach Exchange Format 193

• validation of package content;
• handling of relationships between tasks, e.g., where one task is a variant of another

task;
• flexibility to allow easy incorporation of changes, such as changing the task’s name.

2. Package Contents

In this section, we discuss the various pieces of information that (could) belong in a task
package. As a running example, we use the task Toy Division. Here is its task description:

TOY DIVISION

PROBLEM

K kids together receive T toys. They wonder whether it is possible to divide
these toys equally among them, that is, with each kid obtaining the same num-
ber of toys and no toys remaining. If this is possible, they also want to know
how many toys Q each of them receives.

Write a program to answer the questions of these kids.

INPUT

A single line is offered on standard input. It contains two the numbers K and T ,
separated by a space.

OUTPUT

The answer must be written to standard output. The first line contains the string
’Yes’ if it is possible to divide the toys equally, and ’No’ otherwise. If equal
division is possible, then a second line must be written, containing the num-
ber Q of toys each kid obtains. If there are multiple answers, then it does not
matter which answer your program writes.

CONSTRAINTS

K, T , and Q are non-negative integers, less than 108. The execution time limit
is 0.1 s.

EXAMPLE

Standard Input
3 15

Standard Output
Yes
5

SCORE

There are 10 evaluation cases. Each completely solved case gets 10 points.
Incomplete outputs get 0 points; there is no partial score.

(END OF TASK DESCRIPTION)

194 T. Verhoeff

The following kinds of task-related information can be distinguished:

• textual information in natural language, such as the task description;
• data files, such as input data for evaluation runs;
• configuration parameters, such as resource limits;
• tools, such as a task-specific output checker;
• scripts, e.g., to build an executable or coordinate the evaluation process;
• submissions (good and bad), as exemplary solution and to help verify everything;
• metadata, e.g., classification of task type; some metadata could be textual.

It is good to be aware of the various stakeholders of task-related information. The termi-
nology often depends on the setting.

Supervisor makes management-level decisions, e.g., about the task name, set of tasks to
use together, presentation style, etc.; could also be called owner. In an educational
setting, this role is played by the teacher; in a contest setting, by the contest director
or chair of the scientific committee.

Author creates the task; makes technical decisions about the task; often needs to carry
out various experiments to explore alternatives and tune parameters.

Solver attempts to carry out the task, i.e., solve the stated problem, resulting in work to be
submitted for evaluation; could also be called performer. In an educational setting,
this is the student participating in a course; in a competition, it is the contestant.
Keep in mind that the solver is the primary stakeholder.

Grader is involved in evaluating the submitted work for a task. In an educational setting,
this is often a teaching assistant; in a competition, this is nowadays often supported
by an automated grading system, which is administered by a grading system ad-
ministrator, who configures the system for specific tasks. Note that also developers
of automated grading systems are to be considered as stakeholders.

Mediator helps interpret evaluation results. In an educational setting, this could be done
by an instructor, sometimes parents play this role; in a competition, this is done by
a coach or team leader.

Trainer helps in preparing the solver, e.g., through directed practicing. In an educational
setting, this is often the job of a teaching assistant; in a contest setting, there are
typically several trainers, each with their own area of expertise. It is also possible
that solvers practice by themselves. This stakeholder has a specific interest in the
ability to reuse tasks easily.

Researcher investigates tasks, submitted work, and evaluation results; this could be for
historic reasons, but also to help improve education and competition practices, or
with a purely scientific interest. This stakeholder is helped by consistent and com-
plete archiving of tasks, similar to what (Sloane’s OEIS, 2008) does for integer
sequences.

Programming Task Packages: Peach Exchange Format 195

2.1. Textual Information

The task description contains all information (or pointers to such information) that the
task author wants to offer to the students or contestants confronted with the task. In (Ver-
hoeff, 1988) some guidelines for creating programming problem sets are presented. The
task description must specify unambiguously, precisely, consistently and completely what
qualifies as an acceptable solution. Typically, each participant submits work on the task
in the form of (one or more) files. For files with program code, the task description states
the interfaces and the relevant contracts (assumptions and obligations), and provides at
least one example.

Besides a task description the following texts are useful to include in a task package.

Hints In an educational setting, we find it useful at times to include a separate text with
hints, which can be disclosed to participants under appropriate circumstances. Even
for contests, it can be useful to have separate hints.

Background information This includes, for instance, historic and technical information
(algorithms, data structures), and motivation for particular features, e.g., their rela-
tionship to a syllabus (Verhoeff et al., 2006).

Grading information That is, information that concerns the process of grading submit-
ted work for this task. In an educational setting, this could involve instructions for
assistants doing the actual grading. In a contest setting, it could cover information
useful in understanding the grading result.

Notes These are short texts about the contents of other items, for instance, summarizing
the purpose of the task, evaluation cases, and test submissions, and they can be used
to generate various overviews (also see Section 3 about operations on task pack-
ages). These notes belong to the category of metadata, which can include machine-
readable information as well (treated in Section 2.7).

The hints for our example are:
HINTS FOR TOY DIVISION

Consider the integer equation T = K ∗ Q with unknown Q.
What special cases are there?
(END OF HINTS)

Some background information for the example:
BACKGROUND INFORMATION FOR TOY DIVISION

The purpose of this task is to present a simple, nontrivial programming prob-
lem. The cases K = 0 could be eliminated to simplify it even further, by con-
straining the input to K > 0.
It has proven to be a good exercise in careful reading of specifications, and the
use of integer division, including the modulo operator.
(END OF BACKGROUND INFORMATION)

196 T. Verhoeff

Some grading information for the example:
GRADING INFORMATION FOR TOY DIVISION

The proper case distinction needs to be made. For K = 0, the equation T =
K ∗Q degenerates to T = 0. That is, equal division is not possible if T �= 0, it
is possible if T = 0, in which case any Q (in range) will do.

For K �= 0, the equation T = K ∗Q is a linear equation in Q. It is solvable
in integers if and only if K is a divisor of T , or, alternatively, if T mod K = 0.
In that case, Q is uniquely determined by Q = T/K.
Manual graders should judge the layout, comments, names, and idiom. Partic-
ular points of further attention are:

• avoiding division by zero;
• use of 32-bit arithmetic (or better);
• use of integer division, rather than floating-point division (inaccurate)

or repeated subtraction (too slow).

K T Q Remarks

1 0 0 * The only divisible case with K = 0
2 0 1 No Smallest T with K = 0 that is not divisible
3 0 99999999 No Largest T with K = 0 that is not divisible
4 1 0 0 Smallest case with K > T = 0

5 1 99999999 99999999 Largest Q that is divisible
6 2 1 No Smallest case with K > T > 0

7 2 65536 32768 T = 216, fails with 16-bit arithmetic
8 99999998 99999999 No Largest T , and K, that are not divisible
9 99999999 99999998 No Largest K, and T , that are not divisible

10 99999999 99999999 1 Largest K and T that are divisible

Legend:
Identifier of evaluation case
K Number of kids (input)
T Number of toys (input)
Q Number of toys per kid (quotient), if equally divisible, else No (output)
* indicates that any value Q satisfying 0 � Q < 108 is correct.

(END OF GRADING INFORMATION)

Each of these texts could be available in several languages. In our educational setting,
we often have material both in Dutch and in English. In contests like the International
Olympiad in Informatics (IOI, 2008), task descriptions are translated into the native lan-
guage of the contestants, resulting in dozens of versions of the same information, whereas
background and grading information is often presented in English only. Note that the tab-
ular overview of evaluation cases in the grading information would ideally be generated
from the actual evaluation data and summary texts (metadata).

A general concern with ‘plain’ text files is their encoding. For simple texts, ASCII
suffices, but especially for non-English texts, additional characters are desirable. We rec-
ommend the use of UTF-8 (RFC 3629, 2003), one of the Unicode standards.

Many texts, however, will not be written in a ‘plain’ text format, but some other for-
mat. Some relevant open format standards are:

Programming Task Packages: Peach Exchange Format 197

• LATEX, TEX, especially suited for texts involving mathematics (CTAN, 2008);
• OpenDocument, used by OpenOffice (OpenOffice, 2008);
• (X)HTML, used in web browsers (W3C, 2008);
• DocBook (DocBook, 2008);
• reStructured Text, used by Docutils (Docutils, 2008);
• various wiki formats.

Each of these open formats may have multiple variants. Note that these formats are
aimed at flexible text entry and editing. They can be converted into various (open) pre-
sentation formats, such as PDF.

One should also be aware of the need for version control on texts. This issue is
addressed further in Section 4.

2.2. Data Files

Besides human-readable texts, a task can also involve various other files, in both text or
binary format. We call them data files, even though they could well be source files with
program fragments, such as an interface definition for a library. These files could be part
of the material that the solver receives along with the task description, but they could also
be related to evaluation. Here is an overview:

• Data files accompanying the task description, possibly including source files. In our
educational setting, we sometimes have assignments where we provide a program
text ‘with holes’ to be completed by the students. Such a source file with holes
is created by a generic tool on the basis of our own solution with special ‘hole
markers’ in comments:

//# BEGIN TODO body of method TPointSet.Count
... author’s solution, to be suppressed ...

//# END TO DO

• Input data for evaluation runs; per run there could be several files;
• Expected output data for evaluation runs of deterministic1 programs, possibly mod-

ulo some simple equivalence relation. The equivalence could concern white space,
upper versus lower case characters, the order of numbers in a set, etc.;

• Auxiliary data used in evaluation runs of nondeterministic programs. This could
concern parts of the output that are deterministic, or some description of the ex-
pected output, e.g., in the form of a regular expression;

• Input data for tools that generate other files, such as large input for evaluation.

It is important that one can motivate the choice of data. A haphazard collection of
inputs does not make a good grading suite. Make it a habit to write a note for each data
file, summarizing its purpose (as opposed to its contents; for the latter, generator input or
characterizer output is more useful, see Section 2.4 on tools). Such notes can be (partially)
included in tabular overviews of data sets. This is especially useful for larger data sets.
The overview can be attached to the grading information.

There are some platform-related issues to keep in mind:

1By deterministic we mean that the input uniquely determines the output.

198 T. Verhoeff

End-of-line markers In text files, the end of a line is marked by a special character or
combination of characters, depending on the platform. Unix uses a line feed (LF),
Mac OS uses a carriage return (CR), and Windows uses the combination CRLF.
This is particularly relevant for files made available to the solver, and files directly
used in evaluation (e.g., to compare to the output of an evaluation run).

Byte order In binary files, the ordering of bytes in some multi-byte data items (such as
numbers) may vary between the platforms. The two main flavors are big-endian
and little-endian. The concerns are similar to those for end-of-line markers.

2.3. Configuration Parameters

The data files discussed in the preceding section play a specific role in grading the func-
tionality requested in the task: input(-related) data and output(-related) data.

A task can specify more than just functionality, It can, for instance, also impose perfor-
mance requirements. Such requirements are often expressed in terms of resource limits.
In particular, the following resources have been limited:

• size of submission (total size of source files);
• build time (total time allowed for compilation and linking);
• memory (RAM, hard disk space);
• execution time (total run time, or response time to specific events);
• number of times that certain resources may be used, for instance, that some function

in a library may be called.

Other things that can be treated as configuration parameter are: compiler options and
linker options.

Such configuration parameters are intrinsic to the task, and are sometimes – but not
always – communicated explicitly to the solver in the task description. They also need to
be taken into account during evaluation runs. For automatic grading and for later analysis
and comparison of tasks, it is useful to include configuration parameters in a task package
in a machine readable way. They should be easy to tune at a late stage.

Note, however, that the meaning of such parameters depends on the actual platform
used for evaluation runs. Platform information is discussed in Section 2.7 about metadata.
Also, it is imaginable that not all evaluation runs use identical parameter values.

2.4. Tools

When solving a task and when evaluating work submitted for a task, various generic soft-
ware tools are needed. Most notably these include editors, compilers, libraries, linkers,
loaders, debuggers, file comparators, etc. Generic tools are discussed in Section 2.7 along
with metadata.

There is often also a need for task-specific tools. These are to be developed by the
task author (or assistants). One can think of the following kinds of task-specific tools:

Input generator to produce specific input cases, for instance large cases with special
properties. Use of an input generator also helps ensure that valid data is created.

Programming Task Packages: Peach Exchange Format 199

Input validator to check that input files satisfy the assumptions stated in the task de-
scription. These assumptions often include format restrictions: what types of input
data appear in what order and in what layout (i.e., distribution over lines); but also
concern value restrictions: range limits on values, specific relationships between
values (e.g., a graph that needs to be connected).

Input data files need to be of high quality, and one should not simply assume that
they are valid (unless they are automatically generated maybe, but even then it is
useful to have the ability to independently check their validity). The application
of an input validator needs to be automated, because otherwise it will not be used
when it is most needed, viz. under pressure when last-minute changes are made.
Also see Section 3 about package operations.

Output format checker to check that output conforms to the format requirements of the
task. This tool can be given to the solver to help achieve the correct output format.
Note that this tool will not give information about the actual correctness of the
output. It can also be used during evaluation as a filter to ensure that a tool that
checks for correctness does not have to deal with badly formatted data.

Input/output characterizer to summarize characteristics of data files, in particular, to
generate, from actual input and output data files the tables appearing in the grading
information. Such summaries are useful in determining to what extent evaluation
runs cover various ‘corners’ of the input space. Doing this by hand is cumbersome
and error prone.

Expected-output generator to produce expected output on the basis of given input data.
This is useful when a task is (almost) deterministic. Note that in most cases a
solution to the task can act as expected-output generator. But it need not satisfy the
task’s performance requirements; it can be run in advance (or afterwards) and even
on a different platform.

Output checker to check that output2 generated in an evaluation run corresponds with
the input data in accordance with the requirements stated in the task description.
An output checker takes as inputs the input data file, the output data file produced
in the evaluation run, and sometimes also some preprocessed data (to avoid the
need for recalculating certain information, e.g., concerning deterministic parts of
the output; that way the checker can be kept smaller and more generic).

This applies especially to nondeterministic tasks. In case of a deterministic task,
output checking can be done generically by comparing actual output to expected
output, possibly modulo some simple equivalence relation.

Evaluation drivers and/or stubs to be combined with submitted program fragments to
build executables used in evaluation runs. In particular, if the task does not require
the solver to submit a main program (but, for instance, a module or library), then
the task author needs to provide a main program (or more than one) to act as an
evaluation driver of the submitted module or library. And, conversely, when the

2Occasionally, also the order of input-output interleaving needs to be checked.

200 T. Verhoeff

task requires the solver to submit a main program with one or more holes (e.g., in
the form of a pre-defined module or library), then the author may need to provide
evaluation stubs to fill these holes.

Not every task will need each of these task-specific tools.
Such tools need to incorporate task-specific knowledge. Often it is a good idea to

create a separate library with task-specific facilities (data types and related operations),
rather than duplicating such definitions in each tool. Duplication hinders future changes,
especially when a task is still under development.

Some tools can be combined, though this is not advisable. It is better to refactor com-
mon functionality into a task-specific library. For instance, an input/output characterizer
needs to read input and output files, and so could also report on the validity of their for-
mat and contents. But combined functionality complicates the interface of the tool, and
increases the risk that changing one piece of functionality will also (adversely) affect
other pieces.

There is an opportunity to use generic libraries for functionality common to multiple
tasks. For instance, RobIn (Verhoeff, 2002) was developed to assist in the construction of
input validators and output (format) checkers, by providing some simple operations for
robust input, that is, without making any assumptions about the actual input. RobIn was
used by the author at IOI 2000 in China to validate the input files.

2.5. Scripts

Besides task-specific tools, there will also be various task-specific scripts. Tools concern
task-specific technical operations, whereas scripts are more for management and for co-
ordinating the application of task-specific tools. Scripts can

• coordinate the entire grading process of a submission for the task, involving such
steps as

1) preprocessing of submitted work,
2) building various executables,
3) running executables with various inputs, capturing output and interleaving,
4) evaluation of the outputs of each run according to various criteria,
5) scoring to obtain numeric results,
6) reporting to present and summarize all results.

Such a grading script should be runnable by a daemon in an automated grading
system, but also by a task author or human grader in a stand-alone situation; a
task author may want to explore how a particular submission is handled, and a
human grader (teaching assistant) may want to re-evaluate a submission locally
under several what-if scenarios by making manual changes;

• coordinate the generation of all evaluation data;
• generate various overviews;
• generate an archive of material to be presented to solver, especially when this con-

sists of more than just the task description;
• validate the package contents, by evaluating all test submissions and checking the

results.

Programming Task Packages: Peach Exchange Format 201

2.6. Solution and Test Submissions

A task author not only needs to invent and describe the task, specify how it will be graded,
and provide data and (where applicable) task-specific tools, but also needs to write an
exemplary solution worthy of imitation. This solution is needed for pedagogical reasons,
and it also serves as a test for the grading data and tools. However, package testing should
not end there. In fact, solutions are needed in all allowed programming languages. Of
course, the grading tools and data should also be tested with imperfect solutions, to
check that these are graded in agreement with the intentions.

These test submissions (ranging from good to bad) belong in the task package, and
must be used to validate the package contents and in particular, the entire grading chain.
They also provide a means to test the installation of a package on a particular grading
system. There should be sufficient variety in submissions to ensure a broad coverage.

As with data files, it is recommended to include a separate note with each test sub-
mission, motivating its purpose. These notes can be summarized in a tabular overview,
together with actual and expected grading results.

The work submitted by solvers, when this task is actually used in a course or com-
petition, does not belong inside the task package, but should be stored separately. The
relationship between submissions and tasks does need to be recorded.

2.7. Metadata

We have come a long way in defining the package contents. What we have described so
far would already allow one to run a nice programming course or competition. When one
is involved in multiple events, year after year, the need arises to look at things from a
somewhat different perspective. For these longer term interests, it is useful to include cer-
tain metadata in a task package from the very beginning. One can think of the following
items.

Task-instrinsic metadata including

• Summary, describing the task in one sentence; this is useful when dealing with task
bundles;

• Task type, for instance, batch (through stdio, files, sockets, . . .), reactive (through
stdio, using or providing a library, sockets, . . .), output file only (for given input
files), etc.;

• Difficulty level, possibly distinguishing understanding (what to do), designing (ab-
stract solution), and implementing (concrete submission); this is, of course, a some-
what subjective judgment, relative to specific context parameters (skill of solver,
amount of time for solving, resource limits, programming language allowed, de-
velopment tools available, etc.); each of these could be expressed on a scale of
easy, medium, hard, possibly extended with easy-medium, medium-hard. This is
usually done in a review meeting;

• Topic classification, what topics are involved in the task description, what topics
are involved in a (typical) solution; this can be done in terms of a syllabus (Verhoeff
et al., 2006);

202 T. Verhoeff

• Notes for data files and test submissions, summarizing their purpose.

Author-related data such as name, contact information.

Event-related data such as name of (or even better, some standardized identifier for)
the original event (course or competition) at which it has been or will be used; date
of that event, amount of time allowed for solving, number of solvers involved, etc.

Solver-related data such as their background (educational level, experience), platform
used by solvers, characterizing the hardware architecture (processor, memory hi-
erarchy), operating system, but also compilers, linkers, standard libraries, possibly
also specific other tools allowed in solving the task at hand. This metadata helps
in interpreting such things as configuration parameters (time and memory limits),
because these are expressed relative to a certain platform.

Grading-related metadata such as grading scale (e.g., accepted–rejected, numeric 0–
100, numeric 1–5, letter A–F, . . .); amount of time it typically takes to grade a
single submission. If the grading platform differs from the solver’s platform, then
it must also be characterized.

Management-related data such as status of development (in preparation, already used;
incomplete, complete; draft, ready for review, approved); version information, re-
vision log of content and status changes, comments (by author and reviewers), and
a to-do list. A supervisor might also be interested in the amount of effort (time) it
typically takes to translate the task description (possibly relative to some standard).

What metadata to include will also depend on the style of the course or competition.
Compare, for instance, the styles of (IOI, 2008) and (ACM ICPC, 2008). Some metadata
will be the same for all tasks used together in the same event. Good tasks must be expected
to be reused later in other events, for example, on a training camp. It is advisable to copy
that common information in each task package, so that a task in isolation is still complete.

2.8. Miscellaneous Considerations

The preceding compilation of items that can be included in a task package is not claimed
to be complete and final. On some occasions, it may seem overkill; on other occasions,
one may wish to include additional information.

There is a trade-off between putting data inside the package or keeping it outside.
When data is not directly incorporated in the package, one has the option of incorporating
some form of reference (like a URL) to that information instead. Our system (Peach,
2008) can be configured with time intervals for when a task is available to solvers and
when submissions are accepted. We keep this information outside the package, because
it will differ for each reuse of the package, e.g., in next year’s course.

In an international event like the (IOI, 2008), texts presented to solvers must be trans-
lated. This is a major effort because so many languages are involved. It can be useful to
provide translation support, such as separate figures and a glossary.

Another issue to be addressed concerns task bundles, that is, sets of tasks used to-
gether in a course or competition. In a task bundle, one often strives for a certain level of

Programming Task Packages: Peach Exchange Format 203

uniformity. This can be achieved by copying common information into each task package.
However, this makes it harder to change common information easily and consistently. An
alternative is to introduce a kind of inheritance mechanism for task packages, and abstract
packages. In fact, task bundles call for bundle packages, that contain (references to) task
packages, but in particular also contain common items, such as document templates to be
used for all tasks. But his is beyond the scope of the present article.

3. Package Interface and Operations

In the preceding section, we have discussed the contents of a task package. When con-
structing a package, the author is mainly “working inside it”. Once a package is com-
pleted, there are several different ways of using it. At that stage, the package users (of-
ten not the author) wish to abstract from all internal details, and concentrate on specific
package-level operations, such as

viewing (a summary of) (parts of) the package contents;

validating the package contents (for internal consistency and completeness; this is what
the test submissions are for);

generating various items from the package, e.g., an archive to be made available to
solvers, or information for a mediator (like a team leader);

grading a submission for the task; this could be done locally on the user’s platform, or
remotely inside an automated grading system; grading can be done completely, that
is, fully performing all grading steps (preprocess, build, execute, evaluate, score,
report), or partially, that is, performing only some user-selected steps;

cleaning up a package by removing auxiliary and temporary files;

installing a package in an automated grading system, e.g., by a simple drag-and-drop.

Especially for the automated use of packages, it is necessary to have a well-defined,
clear, and uniform interface for the package operations. The implementations of these
operations are provided by the scripts and tools inside the package, involving various
external facilities (like compilers and libraries). The interface is intended to protect (the
integrity of) the package contents.

It could be useful to include in the interface some limited ways of modifying a package
as well. Renaming a task is good candidate, as is tuning (some of) the configuration
parameters.

4. Package Format

There are many ways in which the package contents can be stored and given an interface.
By using appropriate wrappers, one can convert between formats. However, an abundance
of different formats is far from convenient. We now briefly describe the format currently
used in (Peach, 2008).

204 T. Verhoeff

4.1. Peach Exchange Format for Programming Task Packages

Peach task packages are stored in a directory tree with a predefined structure, naming
scheme, and files formats. Fig. 1 shows the main features.

There are separate subdirectories for

• evaluation data subdivided in cases;
• test submissions subdivided by programming language;
• texts subdivided by natural language;
• tools.

The subdirectories for texts are named by their (RFC 4646, 2006) code; this code is based
on (ISO 639-1, 2002) alpha-2 language identifiers and (ISO 3166-1, 2006) alpha-2 coun-
try codes. Unfortunately, there is no international standard for programming language
and dialect identification codes. We use common names in lower case, and currently do
not distinguish dialects.

At present, human-readable metadata can be stored in one language only, and is dis-
tributed over the tree (e.g., in various summary.txt files). Scripts are not in a separate
subdirectory but spread out as well. A Python script in the root coordinates the grading
steps, including language-dependent builds through a generic module. This script can be
run locally or by a daemon inside our grading system (Peach, 2008). Other scripts are in
(Unix) makefiles, e.g., for building tools and cleaning up, and in (Unix) shell scripts for
viewing evaluation cases, and generating expected output through a known-correct solu-
tion. Evaluation drivers and stubs are stored with the test submissions, because in most
cases they depend on the programming language. When communication is via sockets, it
could be language independent, in which case, they are put in a generic subdirectory.

The current format does not standardize storage of additional task-specific informa-
tion (other than texts), and of scripts to generate an archive for solvers. These things are
handled in an ad hoc way.

Platform dependencies and tool dependencies (like compilers and libraries) are han-
dled implicitly by references. Submissions are graded on a Linux platform, whereas in
our educational setting, most students use Windows. There are minor issues concerning
compiler versions.

The current format does not support inheritance or sharing of common information.
Related packages are mostly created by branching.

Some temporary files are created inside the package when using it. This limits the pos-
sibilities of concurrent usage. Evaluation-related files are stored in a working directory
outside the package.

Peach3, the latest version of (Peach, 2008), still uses the format introduced for Peach2.
We are working on an improved Peach Exchange Format to overcome the limitations
mentioned above.

Our task packages are stored in a central Subversion repository for configuration man-
agement. This works quite well because most persistent data is stored in line-based text
files. Each package is treated as a composite configuration item. Tags are used to record
status changes, and branches are used for variants.

Programming Task Packages: Peach Exchange Format 205

Fig. 1. Directory structure for information in Peach task package.

206 T. Verhoeff

5. Conclusion

We have introduced the notion of a programming task package containing all task-related
information, and serving as a unit for storage and communication. We have inventoried
the stakeholders and contents of such packages, and the package interface and operations.
This helps put in perspective the issues that arise when dealing with programming tasks
on a larger scale.

Our automated programming education and contest hosting software (Peach, 2008)
uses a package exchange format, which we have briefly described. The format is currently
under revision to make it more generally usable. The Peach software is available under
an open-source license.

At the moment, an application is lacking to handle task packages. Such an applica-
tion should be supported on multiple platforms, and preferably should (also) provide a
graphical user interface, possibly via a web browser.

Having a widely used task package format helps to improve the quality of program-
ming tasks. But using task packages does not automatically lead to good quality. Task
authors must still pay attention to many details when formulating a programming task;
see for instance (Verhoeff, 2004).

We hope that this article will stimulate the development of an international standard
for programming task packages. It would be good to standardize the interfaces of var-
ious task-specific tools as well. The International Standard Task Number and an ISTN
Registration Authority (ISTN/RA) will then arise naturally.

Acknowledgments. The author is much indebted to Erik Scheffers, who co-designed
Peach and who did most of the implementation work. We also wish to give credit to the
more than 1500 users of Peach, who took part in dozens of courses and competitions,
causing Peach to grade well over 25 000 submissions to date.

References

ACM ICPC (2008). ACM International Collegiate Programming Contest.
http://icpc.baylor.edu/ (visited March 2008).

CTAN (2008). Comprehensive TEX Archive Network.
http://www.ctan.org/ (visited March 2008).

DocBook (2008). http://www.docbook.org/ (visited March 2008).
Docutils (2008). http://docutils.sourceforge.net/ (visited March 2008).
IOI (2008). International Olympiad in Informatics.

http://www.IOInformatics.org/ (visited March 2008).
ISO 639-1 (2002). Codes for the representation of names of languages – Part 1: Alpha-2 code.

http://www.iso.org/iso/language_codes/ (visited March 2008).
ISO 3166-1 (2006). Codes for the representation of names of countries and their subdivisions ÐPart 1: Country

codes.
http://www.iso.org/iso/country_codes/ (visited March 2008).

OpenOffice (2008). http://www.openoffice.org/ (visited March 2008).
Peach3 by E.T.J. Scheffers and T. Verhoeff (2008). Technische Universiteit Eindhoven, The Netherlands.

http://peach3.nl/ (visited May 2008).
RFC 3629 (2003). IETF Standard 63 concerning UTF-8, a transformation format of ISO 10646, Nov. 2003.

http://www.ietf.org/rfc/rfc3629.txt (visited March 2008).

Programming Task Packages: Peach Exchange Format 207

RFC 4646 (2006). IETF Best Current Practice concerning Tags for the Identification of Languages, Sep. 2006.
http://www.ietf.org/rfc/rfc4646.txt (visited March 2008).

Sloan, N. (2008). Online Encyclopedia of Integer Sequences.
http://www.research.att.com/ njas/sequences/ (visited March 2008).

UVa Online Judge (2008). http://icpcres.ecs.baylor.edu/onlinejudge/ (visited
March 2008).

Verhoeff, T. (1988). Guidelines for Producing a Programming-Contest Problem Set. Oct. 1988, expanded July
1990.
http://www.win.tue.nl/ wstomv/publications/guidelines.pdf (visited March 2008).

Verhoeff, T. (2002). RobIn for IOI I/O, version 0.7. July 2002.
http://www.win.tue.nl/ wstomv/software/robin/Doc07.txt (visited March 2008).

Verhoeff, T. (2004). Concepts, Terminology, and Notations for IOI Competition Tasks. Sept. 2004.
http://www.win.tue.nl/ wstomv/publications/terminology.pdf (visited
March 2008).

Verhoeff, T., Horváth, G., Diks, K. and Cormack, G. (2006). A proposal for an IOI syllabus. Teaching Mathe-
matics and Computer Science, IV(1), 193–216.
http://www.win.tue.nl/ wstomv/publications/ioi-syllabus-proposal.pdf (vis-
ited March 2008).

W3C (2008). World Wide Web Consortium. http://www.w3c.org/ (visited March 2008).

T. Verhoeff is an assistant professor in computer science at Technische
Universiteit Eindhoven, where he works in the Group Software Engi-
neering & Technology. His research interests are support tools for ver-
ified software development and model driven engineering. He received
the IOI distinguished service award at IOI 2007 in Zagreb, Croatia,
in particular for his role in setting up and maintaining a web archive of

IOI-related material and facilities for communication in the IOI community, and in es-
tablishing, developing, chairing, and contributing to the IOI Scientific Committee from
1999 until 2007.

