
Olympiads in Informatics, 2008, Vol. 2, 48–63 48
© 2008 Institute of Mathematics and Informatics, Vilnius

Teaching Algorithmics for Informatics Olympiads:
The French Method

Arthur CHARGUÉRAUD, Mathias HIRON

France-IOI
5, Villa Deloder, 75013 Paris, France
e-mail: arthur.chargueraud@gmail.com, mathias.hiron@gmail.com

Abstract. This paper describes a training curriculum which combines discovery learning and in-
structional teaching, to develop both problem solving skills and knowledge of classic algorithms.
It consists of multiple series of exercises specifically designed to teach students to solve problems
on their own or with the help of automated hints and intermediate problems. Each exercise is fol-
lowed by a detailed solution similar to a lecture, and synthesis documents are presented at the end
of every series. The paper then presents a structured problem solving method that is taught to the
students throughout this curriculum, and that students can apply to organize their thoughts and find
algorithms.

Key words: teaching algorithmics, problem solving techniques, guided discovery learning.

1. Introduction

France-IOI is the organization in charge of selecting and training the French team to the
International Olympiads in Informatics (IOI). As main coaches of the French team since
its early days in 1997, our main focus is to develop teaching materials and improve train-
ing methods. Since there are no computer science curriculums in French high schools, the
students who come to us are usually self-taught programmers with almost no experience
in the field of algorithmics.

All the teaching materials that have been produced are made available to the public
on the training website (http://www.france-ioi.org), where the students can
study all year long. Intensive live training sessions are held several times a year for the top
students. The long-term objective is to reach a maximal number of students, so the online
training follows the same principles as the live training sessions. The aim of this paper
is to describe these principles. Section 2 gives an overview of the training curriculum.
Section 3 then presents the structure of the training website. Finally, Section 4 describes
the problem solving method that has been developed along the years and is now taught
throughout the website.



Teaching Algorithmics for Informatics Olympiads: The French Method 49

2. Philosophy of the Training Curriculum

In this section, we explain how the training curriculum is designed around series of prob-
lems for the teaching of classic algorithms and data structures as opposed to providing
lectures. We then present the benefits of this approach.

2.1. Introduction to the Structure of the Training

The training curriculum we present differs from those that can be found in many algo-
rithmic courses. Most curriculums follow a common pattern:

1. Provide basic knowledge. Teach algorithms and data-structure through lectures,
providing pseudo-code and complexity analysis.

2. Show examples. Illustrate how to apply this knowledge to practical situations.
3. Give exercises. Solidify what was taught, and try to develop solving skills.

This approach counts mostly on a student’s innate abilities when faced with new,
more difficult problems. Our thesis is that improving skills to solve new, difficult problems
is what really matters in algorithmics. Therefore the true aim of a teaching curriculum
should be to improve those skills. Providing the student with knowledge and experience
is necessary, but should not be the first priority.

The interactive training is structured around sets of exercises with each set focusing
on one particular area of the field. Within a set, each exercise is a step towards the discov-
ery of a new algorithm or data-structure. To solve an exercise the students submit their
source-code and the server automatically evaluates the code, in a fashion similar to grad-
ing systems that are used in many contests. If the students fail to solve an exercise, they
may ask for automated hints or new intermediate problems, which in turn ease the pro-
gression. Once the students succeed, they get access to a detailed solution that describes
the expected algorithm and presents a reasonable path to its discovery. At the end of each
sequence of exercises, a synthesis of what has been learned is provided.

Overall the curriculum can be seen as a guided step-by-step discovery completed with
instructional material as opposed to more standard curriculums which are typically based
on instructional material and very little discovery learning.

2.2. Teaching the Problem Solving Method

While training students along the years, it was tried as much as possible to give reusable
hints, i.e., hints valuable not only to the current problem but for others as well. Reusable
hints were then collected and sorted in an organized document. In recent years, the au-
thors have improved this document by carefully analyzing the way they come up with
ideas for solving difficult problems. As a result, a general problem solving method was
developed. This method is not a magical recipe that can be applied to solve any algorith-
mic problem, but someone who is sufficiently trained to apply this method will be able to
solve more difficult problems than he/she could have solved without it.



50 A. Charguéraud, M. Hiron

As the document describing the method appears very abstract at first, asking one to
“apply the method” is not effective. Instead, the teaching of the method is spread through-
out the training curriculum in three ways: 1

1. The hints given to students when they need help are (in most cases) hints that could
have been obtained by applying the method.

2. Each detailed solution is presented in a way that shows how applying steps of the
method leads to the expected algorithm.

3. Advanced students are provided not only with the reference document describing
the problem solving method, but also with versions specialized to particular areas.

To teach this method, we follow an inductive approach rather that a deductive one,
since it is extremely hard to explain without many examples to rely upon.

2.3. Advantages over Traditional Curriculums

To improve skills for solving unknown hard problems, it is necessary to practice solving
such hard problems. So in a way, explaining an algorithm in a lecture can be seen as
wasting an opportunity to train that skill. It gives away the solution to a problem before
giving the students a chance to come up with a few good ideas on their own. By finding
some, if not all of the ideas behind an algorithm by themselves, students not only learn
that algorithm but also improve their problem solving skills. Also, by making these ideas
their own, they are more likely to adapt them to future problems.

Once students have spent time thinking about a problem and have identified its diffi-
culties, they are in a much better position to understand and appreciate the interest of the
reference solution that is then presented to them. More importantly, students can compare
the process they have followed to find the solution against the process that is described in
the lecture. They can then update their strategies for the next exercises.

Also, discovering by oneself the principles of breadth-first search, binary trees, and
dynamic programming generates a great deal of self-satisfaction. Even though the previ-
ous problems and reference solutions made it much easier by putting the students in the
best conditions, they get a sense of achievement for having come up with their own ideas,
gain confidence about their own skills and a strong motivation to go further.

Discovery learning is often proposed as an alternative to the more traditional instruc-
tional teaching, but has been strongly criticised recently (Kirschner et al., 2006). Our
purpose is not to advocate the pure discovery learning that these papers focus on and
criticize extensively. The curriculum we present is indeed based on guided discovery
learning, and is completed with extensive and carefully designed instructional teaching.
With a structure designed to ensure that each step is not too hard for students, and which
reinforces what is learned after each exercise, the risks associated with pure discovery
learning, such as confusion, loss of confidence and other counter-productive effects are
avoided.

1Note: the training material is constantly evolving, and what is presented here corresponds to the authors’
current vision. At the time of writing, many existing elements of the website still need to be updated to fit this
description completely.



Teaching Algorithmics for Informatics Olympiads: The French Method 51

To summarize, we teach problem solving techniques by relying in the first place on
the good aspects of discovery learning, and then consolidating the insight acquired by stu-
dents through instructional teaching. Teaching of pure knowledge, which is a secondary
goal, also follows the same process. This is the complete opposite of standard curricu-
lums which start by teaching knowledge in instructional style, and then leave students to
develop solving techniques mainly on their own.

3. Structure of the Training Curriculum

In this section, we give the global structure of the training curriculum, and describe each
of its components in more detail.

3.1. Overview of the Structure

The training website aims at being an entirely self-contained course in algorithmics. The
curriculum is divided into three levels of difficulty: beginner, intermediate, and advanced.
The only requirement for the “beginner” level is to have some experience of programming
in one of the languages supported by the server. At the other end, the “advanced” section
contains techniques and problems corresponding to the level of the IOI. Note that the
training website also includes instructional programming courses and exercises for the C
and OCaml languages.

Each of the three levels contains several series of exercises of the following kinds:

1. Step-by-step discovery. A sequence of problems designed to learn about a set of
classical algorithms on one particular topic. Each problem comes with a detailed
solution, as well as optional automated hints and intermediate exercises.

2. Application problems. A non-ordered set of problems of various topics involving
variations on algorithms and techniques previously learned through step-by-step
discovery.

3. Rehearsal exercises. Students are asked to write their best implementation of each
standard algorithm studied in a given domain. Reference implementations are then
provided.

4. Practice contests. Students are trained to deal with limited time and get them used
to zero-tolerance on bugs.

When students complete a series of exercises, they are granted access to a synthesis
document that recapitulates all the encountered concepts in a well-structured presenta-
tion. Once students complete an entire level, they are provided with various elements
of the problem solving method and a document summarizing techniques that have been
implicitly presented throughout the reference solutions.

Little by little, these documents constitute a sort of reference manual that a student
can look back to on a regular basis.



52 A. Charguéraud, M. Hiron

3.2. Hints and Intermediate Problems

To improve students’ problem solving skills, they are trained on problems that are hard
enough to make them think seriously and apply problem solving strategies, but feasible
enough to have a good chance at finding a solution within a reasonable amount of time
without the risk of losing motivation. Clearly there is no hope that a single set of problems
will suit all students and their disparate levels.

The issue is addressed in the following way: a set of “main problems” that are non-
trivial even for the best students is given. For each problem, intermediate problems and/or
hints are given to students who cannot find the solution after a certain amount of time.
They are carefully selected to not only help the students reach the solution, but to also
make them realize they could have thought of the solution by themselves with the right
strategy, that they will then apply to solve the following problems.

From a practical point of view, a hint consists of information that is added at the end
of a task and may be remarks on properties of the task, a simplified formulation of the
problem, a well chosen graphical representation of an example, or a suggestion about the
kind of algorithm to look into. The last hints provided give the main ideas of the solution
and make sure students do not get stuck and give up on the task.

Sometimes intermediate problems are provided instead of hints. They are typically
simplified versions of the original problem or versions with weaker constraints for which
the students can submit a program and obtain a detailed solution. This gives them a strong
basis to attack the original problem.

One can compare each series of exercises to a climbing wall that leads to the discovery
of the algorithms in a particular area: when a hold is too high to be taken the students are
helped out by being provided with one or more extra intermediary holds. If this is not
enough, the student has the option to contact a coach. Overall the structure adapts itself
to the level of the students by providing steps of difficulty corresponding to their levels,
which help them to learn as much as possible.

3.3. Example: a Series of Problems Introducing Graph Algorithms

In this section, we illustrate the notion of step-by-step discovery with an example series
of problems that introduces students to very basic graph algorithms. This series appears
roughly in the middle of the beginner level of the training curriculum. Its only prerequi-
sites are the completion of a set of problems that covers basic data structures (introducing
stacks and queues), and another that introduces recursive programming.

The tasks from this first graph series all take a maze as input: a two-dimensional grid
in which each cell is either an empty square or a wall. The locations of the entrance and
exit are fixed (respectively at the left-top and bottom-right corners). The following list
describes these tasks and the list of hints and/or intermediate problems that the website
provides on demand.

1. Read a maze and print the number of empty squares that have respectively 0, 1, 2,
3, and 4 empty adjacent squares. The purpose of this problem is to introduce the



Teaching Algorithmics for Informatics Olympiads: The French Method 53

notions of neighbors and degree, and to show how to manipulate these notions in
the code in an elegant way.

a. Hint (Intermediate problem): “read a maze and print the number of empty
squares”. The aim of this new problem is to check that input data is read
correctly.

2. Read a 10×10 maze and print the number of different ways to go from the entrance
to the exit without walking through the same cell twice within a single path.

a. Hint: the following question is asked: “what question can you ask on each of
the neighbors of the first cell in order to compute the total number?”

b. Hint: the answer to the previous hint is given, and insists on the fact that there
is a set of cells one cannot use in the rest of the path.

c. Hint: the main idea of a recursive function is given, that maintains the current
set of cells that cannot be used for the rest of the path.

3. On a maze of up to 1000×1000 cells, give the total number of cells that can be
reached from the entrance.

a. Intermediate problem: same exercise with a 10×10 maze. This problem
comes with a hint of its own, telling how to reuse the idea from the previous
problem by marking every visited cell. It also comes with a detailed solution
of a working exponential algorithm.

b. Hint: the following suggestion is provided: “try to apply the algorithm given
in the previous hint by hand on an example and find out how to reduce the
amount of work involved”.

c. Hint: running of the algorithm is demonstrated with an animation that clearly
shows sequences of steps done several times.

4. Given a 10×10 maze, find the longest path going from the entrance to the exit
without traversing the same square twice. Print the path as a sequence of letters
(‘W’, ‘N’, ‘E’, ‘S’). When there is more than one such path print the one that is
first in alphabetical order.

a. Intermediate problem: any longest path is accepted as an output.

i. Intermediate problem: only output the length of the path
ii. Hint: the following question is asked: “in the solution provided for the

previous intermediate problem, when can you say that the square cor-
responding to the current step of the recursive exploration is part of the
longest path found so far?”

iii. Hint: the answer to the previous question is provided, and demonstrates
a way to record the steps of the longest path.

b. Hint: the following question is asked: “in the solution given for the first inter-
mediate problem, in which order should you try to explore the neighbors?”

This structure allows students to manipulate algorithms such as exhaustive search,
depth first search, and printing the path corresponding to an exhaustive search. Strong
students can do this quickly by solving 4 problems while weaker students can go at a
slower pace with a total of 8 problems.



54 A. Charguéraud, M. Hiron

3.4. Detailed Solutions

Access to the detailed solution of each problem is only given once the problem has been
solved by the student and checked by the server. The students are encouraged to read these
analysis documents carefully. Indeed, having solved the problem successfully does not
necessarily mean one has understood everything about the algorithm he/she discovered.

This document contains complete instructional material on the algorithm studied that
consists of the following elements:

1. A step by step description of a thought process that leads to the key ideas of the
solution. The intent is to have the students realize that they could have applied this
process entirely on their own.

2. A well chosen graphical representation of the problem. Such diagrams help the
students to see the interesting properties of the problem and can be reused later
when working on similar problems.

3. A clear presentation of the algorithm. First through a few sentences giving the big
picture and then through precise pseudo-code. The rationale of why the solution
works is given, but no formal proof.

4. A complexity analysis of the solution.
5. Implementations of the reference solution, in C++ and OCaml that are as elegant

and simple as possible.

These elements are given not only for the expected solution of the problem, but also
for valid alternative solutions. Solutions usually start with a description of the princi-
ples and complexity analysis of algorithms that are correct but not sufficiently efficient,
since they are typically intermediate steps in the thought process. Counter-examples to
frequently proposed incorrect algorithms are sometimes presented to explain why those
algorithms cannot work. This is done in a way that teaches the students how to create
their own counter-examples.

This combination of elements gives the students a solid basis of knowledge and tech-
niques on which they can then rely to solve other problems.

3.5. Application Problems

When working on problems from the step-by-step discovery series, students are in an
environment which is particularly prone to bringing about new ideas. For instance, in
the middle of the graph algorithms series, the students expect each problem to be a new
graph problem and moreover expect its solution to be partially based on the elements
discovered in the previous exercise. While such series of exercises are great to learn
about graph algorithms, they do not train recognition of graph problems among a set of
random tasks.

So once the basic knowledge of each field is acquired it is important to train students
to solve tasks outside of an environment that suggests a given type of solution. Therefore
each level ends with sets of problems of various kinds that cover most of the elements
encountered throughout the discovery series. These tasks train the students in three ways.



Teaching Algorithmics for Informatics Olympiads: The French Method 55

First, they train to recognize the nature of a problem without any obvious clues. Sec-
ond, they train to apply the knowledge and solving techniques acquired to variations of
standard algorithms. And third, more difficult problems would typically require a combi-
nation of algorithms coming from different fields.

These application problems also come with hints and detailed analysis that insist on
the different steps needed to find the solution. Also, these solutions often describe some
useful programming techniques which help making the code shorter and cleaner, thus less
error-prone.

4. Introduction to the Problem Solving Method

This section gives an introduction to the problem solving method that we have developed
along the years and now teach throughout our website. We do not attempt to describe
the whole method in details since this would be way beyond the scope of this paper, but
instead we try to convey its main principles. To that end, we first explain how this method
has been obtained, then illustrate its working on three particular steps, and finally give an
overview of the other steps that it involves.

4.1. Origins of the Method

Throughout the years spent training the students on a regular basis through intensive live
sessions, sets of problems on the website or frequent email interactions, there have been
numerous occasions to look for the best advice to help students solve a given problem
without giving them the solution itself, or even part of the solution. On each of these
occasions, it could be determined which advice were the most successful.

It became apparent that some types of advice were very efficient over a variety of
problems. Little by little a collection of techniques was synthesized which led to a full
method for solving algorithmic problems.

It was then observed that on various occasions including IOI competition rounds,
students applying the new method in a systematic manner would find the right ideas for
difficult tasks more often than students who only counted on their intuition. Since then,
improving this method and the way it is taught throughout the training program have been
the top priorities. Every time coaches or contestants solve a hard problem, time is spent
analyzing what helped to get the right idea. This is then taken into account to update the
method when appropriate.

4.2. Dimensions of the Problem

This section describes a process that not only is a key to the application of several solving
techniques, but which also helps to get a clear understanding of a task.

The objective is to build an exhaustive list of the dimensions of the problem. The
word “dimension” is to be taken in its mathematical sense; informally it corresponds to
everything in the problem that can take multiple values (or could if it was not settled to
a specific value). Dimensions should be ordered by type: they can be the values from



56 A. Charguéraud, M. Hiron

the input data, from the output data, or intermediate values that are implicitly necessary
to be manipulated in order to get the output. Beginners are given a technique to ensure
no dimension has been missed (due to lack of space, this is not described here). Trained
students do this step as they are reading the problem statement.

For each dimension in that list, the range of possible values should be indicated. The
constraints for the input dimensions are usually given in the task. For other dimensions,
some calculations (or approximations) might be needed.

To illustrate the process, consider the following problem:
“You are given the coordinates (x1, y1) and (x2, y2) (0 � x1, x2, y1, y2 �
100 000) of two diagonally opposite corners of each of N (0 � N �
10 000) rectangles. Write a program that computes the maximum number
of rectangles that have the same area.”

Table 1 describes the dimensions for this problem. Notice that there is more to con-
sider than just two dimensions (x, y) of the plan since x1 and x2 as well as y1 and y2,
can be changed independently and have different meanings. Note the potential overflow
for the surface of rectangles which means 64 bits integers will be needed at some point
in the implementation.

Filling the second column may not always be obvious, and one has to be careful not
to blindly write down what is given in the problem statement. In particular, the range of
values for a dimension can be significantly reduced when it is impossible to reach all the
values from the range given in the task.

Having this table of clearly listed dimensions at the top of one’s paper is very useful
both while looking for ideas and during the implementation phase. The next two sections
will show how this list can be used as a first step to some very effective techniques.

Table 1

Dimensions of a problem

Dimension Range of values

Input dimensions

id of a rectangle [0..9999]

x1 [0..100,000]

y1 [0..100,000]

x2 [0..100,000]

y2 [0..100,000]

Output dimensions

Number of rectangles of a given surface [1..10,000]

Implicit dimensions

Width of a rectangle [0..100,000]

Height of a rectangle [0..100,000]

Surface of a rectangle [0..1010] (overflow!)



Teaching Algorithmics for Informatics Olympiads: The French Method 57

4.3. The Power of Simplification

The most recurring advice given to the students when they are stuck on a hard problem
can be synthesized in the following way:

“Simplify the problem, and try to solve each simplified version as if it was
a new, independent problem.”

This simple advice is undoubtedly the most powerful problem solving technique in
the method. It is effective in that its sole application suffices to resolve many hard prob-
lems and in that there is a very precise recipe to generate simplified versions of a given
problem.

The idea that simplifying a task may help to find the solution of a problem is not new.
It is described for instance by Ginat (2002), and mentioned in the analysis of various tasks
such as “Mobiles” from IOI 2001 (Nummenmaa et al., 2001). What is presented here is
a technique to look for every useful simplification of any task, that students are asked to
apply systematically.

There can be many different ways to simplify a given problem and not all of them
give as much insight into the complete problem. Moreover, some useful simplifications
may not come to mind immediately. So what is needed is a way to come up with the most
useful simplifications in a quick manner. The following recipe can be used to go through
every simplified version of a problem.

1. For each dimension of the task (see Subsection 4.2) try to simplify the problem
by either: (a) removing the dimension, (b) setting the value for this dimension to a
constant, or (c) reducing the range of possible values for that dimension.

2. Among the resulting simplifications, rule out those which clearly lead to a non-
interesting problem. Then, for the sake of efficiency, sort the remaining simplified
problems according to their interest – this is to be guessed by experience.

3. For each simplification considered, restate the corresponding problem as clearly as
possible and try to solve it as if it were a completely independent problem. This
may involve applying the problem solving method recursively, including a further
simplification attempt.

4. Try to combine the solutions of the different problems in order to get some ideas
for the complete problem. (There are some specific techniques to help with this
step).

Notice that there is no need to simplify more than one dimension at a time since the
simplification recipe is called recursively when necessary.

The fundamental idea behind this technique is that although solving a simplified ver-
sion of the problem is almost always easier than solving the whole problem, it is often
very helpful. Indeed, the complete solution needs to work at least on instances of the sim-
plified problem, so any algorithm or clever observation required in the simplified solution
will most likely be a part of the complete solution.

Finding the solution to a simplified version has an effect akin to getting a very big
hint. Given that the simplification technique is so useful to produce hints and that it is
so easy to apply (at least with some experience) it is tried to have the students apply this
technique as a reflex.



58 A. Charguéraud, M. Hiron

Going from the solution(s) of one or more simplified versions of a problem to a solu-
tion for that problem can be difficult, and a separate document provides with techniques
that make it easier. The content of that document is out of the scope of this paper.

As an example, consider the task “A Strip of Land” (France-IOI, 1999) where, given
a 2-dimensional array of altitudes, the goal is to find the rectangle of maximal surface,
such that the difference between the lowest and highest altitude within that rectangle is
stays below a given value.

Examples of simplified versions of this task that are obtained by applying the de-
scribed method are:

1. Remove the y dimension; the task is then, given a sequence of integers, to find the
largest interval of positions such that the difference between the minimal and the
maximal value from that interval is less than a given bound.

2. Reduce the altitude dimension to only 2 values, 0 and 1; the task is then to find the
largest rectangle containing only zeros.

3. Apply both simplifications; the task is then to find the maximal number of consec-
utive 0s in a sequence of 0s and 1s.

Each of these simplified versions appears much easier to solve than the original task,
and a solution to the original problem can be obtained by combining ideas involved in the
solutions of these simplified problems.

4.4. Graphical Representations: Changing Points of View

Drawing different examples on a piece of paper and looking at them can be a very good
way to get ideas. Drawing helps to show many properties clearly and all the elements
that are laid on the paper are elements that do not need to be “maintained” in the limited
short term memory. That memory can then be used to manipulate ideas or imagine other
elements moving on top of the drawing. For a given problem, however, some drawings
are much more helpful than others.

When students are working on hard problems they typically write some notes about
the problem on a piece of paper and draw a few instances of the problem as well as the
corresponding answers. Then they stare at their paper for a while thinking hard about how
to solve the problem. When a student do not seem to be moving forward on a problem,
coaches look at how he drew his examples and often think “no wonder he can’t find the
solution, with such a drawing no one could”.

The students’ drawings represent examples that are too small for anything interesting
to appear and they are asked to try with larger ones. Other times the problem lies with
their choice of a graphic representation for the problem. Students tend to draw things
in a given way and often stick to that representation throughout their whole thinking
process. They sometimes make a similar drawing multiple times hoping that new ideas
will come. Their mistake is to forget that there can be several different ways to draw the
same example and the first one that comes up is seldom the one that does the best job at
bringing ideas.

To illustrate the point, consider the following task:



Teaching Algorithmics for Informatics Olympiads: The French Method 59

“Given a sequence of positive integers, find an interval of positions within
that sequence to maximize the product of the size of the interval and the
value of the smallest integer within that interval of positions.”

Faced with this task most students will naturally write a few sequences of integers on
their paper and compute the product for various possible segments.

However, there is a way to represent such sequences that is much more expressive:
draw each number of the sequence as a vertical bar whose height corresponds to the value
of that number. Segments that are potential answers for a given instance of that problem
can then be represented as rectangles whose height is the minimum height among all bars
along its length. The answer then corresponds to the rectangle with the largest area. This
new representation displays some of the properties of the problem in a much clearer way,
and makes it easier to solve the task (Fig. 1).

The most important advice that is given regarding graphical representations is the
following:

“Don’t stick to your first idea of a graphical representation and try different
ways to draw examples”.

Applying this advice in an efficient way is not as easy as it seems. Students may
quickly think about several representations, but often miss the most interesting ones. Stu-
dents are taught to apply a simple technique to enumerate the most interesting graphical
representations and select the best ones.

The main idea behind that technique is to observe the following fact: there are only
two dimensions on a piece of paper. So only two dimensions of the problem can be
presented in a very clear ordered way, where values can be compared in an instant, by
looking at their relative positions. Selecting the two dimensions of the problem that will
be mapped to the x and y axis of the sheet of paper is an essential part in selecting the
right representation. The following steps summarize this process:

1. Among all the dimensions of the task (see Subsection 4.2) identify the most im-
portant ones starting with the dimensions that correspond to values that need to
be compared easily. Consider grouping the dimensions that are compatible as one
(x1 and x2 may both be represented on the same axis). This first step is used to
optimize the chances of finding the best representation quickly.

2. For every possible pair among these dimensions consider a graphical representation
that maps each dimension of the pair to the x and y axis of the paper and find a
reasonable way to represent the others in the resulting grid.

Fig. 1. Two graphic representations for the same problem.



60 A. Charguéraud, M. Hiron

3. Among these possible representations, apply each of them on a simple example. By
comparing the results, it is usually clear which representation is the most helpful
to visualize the problem and bring ideas.

In most cases, there are only a few pairs of dimensions to enumerate so this technique
can help to quickly find the best representations. When the problem is more complex and
the number of dimensions is higher, there can be quite a few pairs to enumerate. This
may seem like a long process, but with some experience and a couple of rules of thumb
to discard the least interesting representations, drawing an example for each potentially
interesting pair can be done fairly quickly.

Of course, selecting these two dimensions is not enough to get a good representation
and much advice can be given depending on the type of problem. In most cases though,
what should be represented on the paper to get ideas is mostly the same: the components
of the example, and the answer for that example. Students often do fine naturally at se-
lecting which elements to draw, but may need some advice on what example to draw, and
how to draw it.

Once the students have a nice and carefully drawn graphic representation of a good
example in front of them it is observed that they are much more likely to get the right
idea. We often observe students spend a lot of time working on a problem only to see the
solution “appear” to them as soon as they are asked to use a graphic representation that
can be obtained by the aforementioned technique. All that was needed for them to find
the solution was to change their point of view on the problem. Forcing oneself to try out
different graphical representations is a very effective way to try new points of view.

4.5. General Structure

So far, three particular elements of the problem solving method have been presented. In
this section, we give an overview of its structure by briefly describing each of the main
steps.

The method can be divided in two parts. The purpose of the first part is to help to
bring a better understanding of the problem and to bring solution ideas. The second part
contains steps to apply on each idea that comes up during the first part. Unless the task
is really easy and the solution is obvious, students should at least go through the first
four steps of Part 1 to make sure they have a clear understanding of the problem before
working on a given idea. After that, they may jump to the second part at any time and
come back later to Part 1 if necessary.

The following steps should be attempted in the order they are listed. It might however
be necessary to come back to a previous step at some point to spend more time on it. For
example, it is often useful to come back to Step 4 and generate some new examples.

1. Restate the problem (or sub-problem) in the simplest way, discarding superficial
elements of the story, to get a clear idea of its essence. A good formulation usually
involves two sentences: the first one describes the data and the second one the
question that must be answered on this data. Someone who has not seen the full
task should be able to start looking for a solution after reading this description only.



Teaching Algorithmics for Informatics Olympiads: The French Method 61

2. Write down a list of all the dimensions involved in the task and the corresponding
constraints, as described in Subsection 4.2. This further helps to get a clear idea of
the task and is necessary both to find a good graphical representation (Step 3) and
to simplify the problem (Step 6).

3. Find the best graphical representations for the task by applying the technique de-
scribed in Subsection 4.4. This can make working on examples (Step 4) much more
effective at bringing ideas.

4. Generate different kinds of examples and solve them carefully and entirely by
hand. These examples should be large enough so that the answer is not obvious
and needs some effort to be determined. This step has many benefits. First, it helps
to get all the details of the problem clearly in mind. Also since the brain is naturally
lazy, ways to avoid doing too much work will often come automatically, which can
lead to good ideas. These examples will be used again later to test new ideas and
check the final implementation, so writing them rigorously is rarely a waste of
time.

5. Look for an algorithm that gives a correct answer to the problem, without worrying
about efficiency, and describe it clearly. The purpose is to separate the concern
of correctness from the concern of efficiency and this often helps to clarify the
recursion involved in the task. In some cases, writing it as pseudo-code may be
a good idea. Depending on the form of this “naive” solution, different specific
methods can then be applied to transform it into an efficient solution. Note that it is
sometimes useful to implement such a brute-force solution, to generate data from
some examples that one can then analyze to look for specific properties.

6. Simplify the problem and try to solve each simplified version as if it were a new,
independent problem, as explained in Subsection 4.3. Then try to combine the
different ideas into a solution for the original problem.

7. Try to see the task from different point of views by listing standard algorithms
and wondering how they could be applied. One may ask questions like “can the
problem be seen as a graph problem?”, “could it be solved with a shortest path
algorithm?”, or “how could a sweep-line technique be applied?” and so on. Even
in the case where the solution is not a standard algorithm, changing point of view
on the task in this way may help to bring new, original ideas.

For each promising idea obtained during this first part the students are asked to go
through the following steps. Note that Step 5 should be applied on any “reasonable” idea
that is found to be incorrect.

1. Describe the solution in a couple of sentences. The objective is to make it clear
enough that anyone who knows the task and is experienced with algorithmics can
understand the idea. Depending on the type of the algorithm, the method provides
standard ways to describe the solution.

2. Find a good graphical representation of the algorithm. In a similar fashion to what
we described in Subsection 4.4, there is often one or more good ways to represent
the dynamics of an algorithm graphically. This can help to understand why it works
and brings attention to special cases or possible optimizations. Again, the method
provides standard representations for certain classes of algorithms.



62 A. Charguéraud, M. Hiron

3. Using this graphical representation, try to execute the algorithm by hand on a cou-
ple of examples. This gives a better feeling of how it works and may bring up
elements to think about during the implementation.

4. Look for counter-examples to this algorithm, as if it were a competitor’s solu-
tion that you want to prove wrong (i.e., forget that you really hope it works). If
a counter-example can be found, then it often offers an excellent example to use
when looking for better ideas. It is also useful to explicitly state why the idea does
not work.

5. After spending some time looking for counter-examples without finding any, it usu-
ally becomes clear why there is no chance of finding a counter-example. In other
words, it becomes clear why the algorithm is correct. While it is too hard and too
long to carry out a formal demonstration of correctness, stating the main invari-
ants that make the algorithm work reduces the risk of implementing an incorrect
algorithm.

6. Determine the time and memory complexities as well as the corresponding running
time and actual memory needed. At this point you may decide if it is worth going
ahead with this algorithm or better to keep looking for more efficient and/or simpler
solutions.

7. Write the pseudo-code of the algorithm, try to simplify it and test it before going
ahead with the actual implementation.

On many occasions during this process, students may encounter sub-problems that
need to be solved. For example it could be a simplified version of the original problem
or something that needs to be done before starting the main algorithm. When students
encounter such sub-problems, they tend to work on them with less care and apply less
efficient strategies than when they work on the original task. It is important that faced
with such a sub-problem, they work on it as if it were the original problem and apply the
method (recursively) on it, starting with Step 1.

The structure of the curriculum aims at teaching the students how to apply all of these
steps. The hints and intermediate problems often correspond to applying steps of the first
part. The detailed solutions try and follow the method closely. Documents synthesizing
algorithms and data-structures providing domain-specific techniques are designed to help
out during this process, particularly during Step 7 of Part 1. Finally, each step of the
method is described in great detail in an independent document.

5. Conclusion

We described a complete curriculum for teaching algorithmics, organized around the aim
of teaching problem solving skills. Unlike most traditional curriculums which follow an
instructional approach, this curriculum combines the benefits of both guided discovery
learning and instructional learning, using the first to introduce new notions and relying
on the second to consolidate the knowledge acquired. Thanks to a system of hints and
intermediate problems, the discovery learning component is effective for students of dif-
ferent levels.



Teaching Algorithmics for Informatics Olympiads: The French Method 63

Throughout the structure, we teach the application of the problem solving method
that we have developed along the years. This is done by following an inductive approach:
the application of the method is illustrated through the hints, intermediate problems and
solutions to the tasks, and then generalized into synthesizing documents.

This training website has introduced algorithmics to hundreds of students over the
years, many of whom developed a strong interest in the field. Motivated students often
solve more than 200 of the problems in our series within one or two years, going from a
beginner’s level with only some experience in programming to a level that allows some
of them to get medals at the IOI, ranging from bronze to gold.

This success shows that such a curriculum can be a very effective way to teach algo-
rithmics and more specifically, problem solving skills. In the future, we aim at improving
this curriculum by adding more series of problems to cover a wider range of domains, by
optimizing the structure it is based on, and by perfecting the method that it teaches.

References

Charguéraud, A. and Hiron, M. Méthode de résolution d’un sujet.
http://www.france-ioi.org/train/algo/cours/cours.php?
cours=methode_sujet

Ginat, D. (2002). Gaining Algorithmic Insight through Simplifying. JCSE Online.
France-IOI. France-IOI Website and Training Pages.

http://www.france-ioi.org
Hiron, M. Méthode de recherche d’un algorithme.

http://www.france-ioi.org/train/algo/cours/cours.php?
cours=methode_recherche_algo

Kirschner, P.A., Sweller, J. and Clark, R.E. (2006). Why minimal guidance during instruction does not work: an
analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching.
Educational Psychologist, 41(2), 75–86.

Nummenmaa, J., Mäkinen, E. and Aho, I. (Eds.) (2001). IOI’ 01 Competition.

A. Charguéraud is the vice-president of France-IOI. After his partici-
pation at IOI’02, he got involved in training the French team to the IOI.
He has designed many tasks and tutorials for the training website, as
well as tasks for contests. He is a PhD student, working at INRIA on
formal verification of software.

M. Hiron is a co-founder and president of France-IOI. He has selected
and trained French teams for International Olympiads since 1997, and
is the co-author of many elements of the training website. As a business
owner, he works on projects ranging from web development, to image
processing and artificial intelligence.


