
Olympiads in Informatics, 2007, Vol. 1, 50–56 50
© 2007 Institute of Mathematics and Informatics, Vilnius

Polish Olympiad in Informatics –
14 Years of Experience

Krzysztof DIKS, Marcin KUBICA, Krzysztof STENCEL
Institute of Informatics, Warsaw University
Banacha 2, 02-097 Warszawa, Poland
e-mail: {diks,kubica,stencel}@mimuw.edu.pl

Abstract. This paper presents the organization of the Polish Olympiad in Informatics, together with
tasks preparation process and evaluation. It is a result of over 14 years of experience in organization
of programming contests for high-school pupils. We believe, that although described procedures
are rather widely know, their rigorous implementation is the key to organization of a successful
programming contest.

Key words: algorithmic problem solving, programming contest, informatics olympiads.

1. Introduction

Polish Olympiad in Informatics (POI) originates from a smaller contest, called Contest
in Informatics, and after evolving for a couple of years, it gained status of the national
olympiad in 1993. It is addressed to high-school students, however middle-school pupils
can also take part in it. The detailed organization rules can be found in (XIII Olimpiada
Informatyczna, 2006) or on the web page of POI: http://www.oi.edu.pl/.

POI consists of three stages. In each stage, a number of tasks of algorithmic nature is
presented to contestants. Solution of each task is either a computer program, or computed
data. The supported programming languages are: C, C++ and Pascal.

The first stage is usually organized in October and November. It gathers over a thou-
sand of contestants. Among them, about 40 contestants are from middle-schools. The
contestants are presented five or six tasks, that should be solved at home within a month
and sent backfor evaluation. About 360 contestants are qualified to the second stage of
competition.

The second stage is organized in six regional centers, located at universities cooperat-
ing with POI and takes three days. The first day is a preparation day – the contestants have
to solve one or two tasks during a three hour session, however the results do not count
in the competition. The objective of the preparation day is twofold: first, the contestants
can get familiar with the environment, second, the organizers can verify that everything
is ready. During the second and third day, the contestants have to solve two or three tasks
during five hour sessions. The solutions are collected from all the centers and then eval-
uated. Preliminary results are usually known a couple of hours after the competition is



Polish Olympiad in Informatics – 14 Years of Experience 51

finished. The results are approved in two weeks, which gives time to process possible
contestants’ complaints. About 70 contestants are qualified to the third stage of competi-
tion.

The final and third stage is organized in one place and takes five days. Traditionally, it
is organized in Sopot, a small city at the Baltic shore. Similarly to the second stage, there
are three competition days. The first day is also a preparation day, when the contestants
have to solve one or two tasks in three hours. on each of the other two competition days
the contestants have to solve three tasks in five hours. The preliminary results are known
just after the competition. The fourth day is a leisure day for contestants, while for orga-
nizers it is a day reserved for processing possible complaints. On the last day, there is an
awarding and closing ceremony.

POI loosely follows international tradition in medal allocation. There are three cat-
egories of medals: golden, silver and bronze. The number of medallists rather does not
exceed half of the number of finalists, and the ratio between the number of golden, bronze
and silver medals is close to 1:2:3, but it is not a rule.

Each year, POI requires preparation of approximately 17 tasks. Tasks preparation is a
continuous process. Before each stage of the competition, 5 to 7 tasks for this stage are
selected from the pool of about twelve tasks ready for the competition.

The next section of this paper presents the tasks preparation process, from a task idea
to a moment when the task is ready to be used. In the following section the evaluation
process is described.

2. Tasks Preparation

The main objective of the tasks preparation is to assure good quality of tasks. But what
does it mean? What makes a good task? We should take the following aspects into ac-
count:

– Task formulation – it must be clear, comprehensive and not too long.
– Differentiation of contestants’ skills – there should exist many ways of solving

the task, of different difficulty; moreover, it should be possible to distinguish these
solutions by testing.

– Thoroughness of analysis – task analysis should take into account wide spectrum
of solutions, covering all ways of solving the task accessible to the contestants, and
different programming languages and usage of STL (where necessary).

– Thoroughness of testing – tests should distinguish correct and incorrect solutions;
they also should distinguish different classes of solutions, regardless of the pro-
gramming language used to implement them (and possible usage of STL).

– Correctness – all example programs should obey input/output specifications and
should produce correct outputs; if necessary, an output checker is also needed.

Describing the tasks preparation process, we will emphasize requirements needed to
achieve the above objectives.

The tasks preparation process consists of the following phases: review of task ideas,
formulation, analysis, verification, and calibration.



52 K. Diks, M. Kubica, K. Stencel

2.1. Reviewing Task Ideas

Initially we need just a task idea. It only has to define the algorithmic problem to be
solved. When reviewing the idea, we should answer the following questions:

– Can the task be formulated in a short and comprehensive way? If it is too compli-
cated or requires explanation of many terms, then it is not suitable for a competi-
tion.

– Is the task a ‘handbook’ one? If so, then it would test knowledge of a particular
algorithm/technique rather than creativity. Hence it is not appropriate.

– Is the task unique, to the best knowledge of the reviewer?
– Can it be solved in a polynomial time? If not, then it is rather not possible to

evaluate it in a reasonable time. However, exceptions are possible.
– Are there many ways of solving the task, with different difficulties and different

(time) complexities? If not, the task is probably not appropriate for a contest, or it
may not be possible to distinguish different classes of solutions.

– Can it be solved by a high-school student? There is no universal answer to this
question. Our requirements are a little bit higher than those defined in (Verhoeff
et al., 2006). The expected knowledge is covered by most general handbooks on
algorithms, e.g., (Cormen et al., 1989) (skipping more advanced chapters) covers
it all.

2.2. Task Formulation

In the task formulation, all elements missing in the task idea should be added. In partic-
ular: a short story can be added to make the task more attracting. The language should
be simple. One should avoid complex sentences. All new notions should be introduced
before they are used. Greek symbols should be avoided. If a coordinate system is needed,
then the standard one should be used. Other detailed guidelines can be found in (Verhoeff
et al., 2006).

Input and output specifications must be precise – limits on the data sizes can be left
undefined. Preferably, the output should be short, hard to guess (e.g., not a yes/no answer
but rather some integer) and unequivocally determined by the input. However, this last
requirement is not crucial. The task formulation should contain an example, preferably
with a picture. The task should fit on one or two pages. Three pages are an absolute
limit. The task formulation should be also accompanied by a short description (one or
two paragraphs) of author’s solutions – it will be taken into account during the analysis.

2.3. Task Analysis

Task analysis is the most time-consuming part of preparation. The outcome of the analysis
should consist of: a document summarizing the analysis, a number of programs and tests.
Also, all missing elements in the task formulation (e.g., limits on the data sizes) should
be defined.

The analysis document is an internal document, so it can be written in a professional
language. The analysis document should discuss different solutions: the optimal solution



Polish Olympiad in Informatics – 14 Years of Experience 53

(within contestants’ scope), other possible solutions and a couple of incorrect solutions
that could be expected. It should discuss all the solutions proposed by the author of the
task, but by no mean should it be limited to these solutions. Of course not all incorrect
solutions can be foreseen, but a good sample is valuable.

The solution descriptions for pupils are prepared post factum. However, if they are to
be distributed during the competition, they should be prepared together with the analysis
document.

All correct solutions should be implemented both in C/C++ and Pascal. Moreover, if
application of STL is relevant, such solutions should be implemented in C++ using STL
and in C (not using STL). The rationale is that we need to know the actual running time
of these solutions. For other solutions, e.g., incorrect ones, just one implementation is
enough, since they should produce incorrect outputs.

In case of batch (i.e., typical) tasks, the set of 10 to 20 tests should be prepared. The
primary objective of tests is to distinguish correct and incorrect solutions. However they
should also distinguish all the classes of correct solutions, that are of different difficulty.
Tests should put stress on the asymptotic time-cost rather than absolute running time.
As a rule of thumb, solutions up to twice slower then model solutions should score the
full points. Moreover, the result of testing should not depend on the choice of the pro-
gramming language, or usage of STL. Some version of IOI-50% rule can be applied –
30%–60% of points should be allocated to correctness tests. In other words, correct but
not efficient solutions (however running in a reasonable time) should score 30%–60% of
points. The rest of points should be granted for efficiency. Such a thoroughness of testing
could be hard to achieve. The usual solution is to increase the data sizes. However, the
amount of available RAM and expected testing time can limit it.

If necessary, tests can be grouped – a solution is granted points for a group of test
only if it passes all the tests from the group. Grouping should be used when the correct
result could be ‘guessed’ with high probability, or when more than one test is needed to
distinguish correct from incorrect solutions.

Tests can be prepared in form of files or a generating program can be provided. The
latter option is especially useful for generating huge efficiency tests. If such a program
uses random number generator, then it should also set the random seed, so that it always
generates exactly the same set of tests. Tests should be accompanied with a program
verifying their correctness. Such a program should verify all conditions stated in the task,
what is sometimes quite not trivial.

If the task is an output-only one, then the set of tests should be prepared in a simi-
lar way, however we cannot control the running time. Contestants can even use different
programs to solve different tests. Usually we cannot measure efficiency of contestants’
solutions. However in this type of tasks, the running time is not so crucial, or the compe-
tition time is a sufficient limit. So, we can skip the requirement to implement all correct
solutions in all supported programming languages.

If the task is an interactive one, then we have to provide modules that should be com-
piled with contestants programs, in all supported programming languages. There should
be two versions of such modules: one provided during the competition and one for the



54 K. Diks, M. Kubica, K. Stencel

evaluation. The first version should just allow testing contestants’ solutions. The second
one should implement a couple of ‘strategies’. Different interacting strategies and dif-
ferent initial configurations correspond to tests. The module used for evaluation should
also be secured against reverse-engineering attacks or misuse. It can be divided into a
separate process and simple communication module that is compiled with contestants
solution. Then, the separate process is protected by the operating system. Moreover it
can be implemented in just one programming language. The communication can be done
via standard input output. However it should contain verification/check-sum codes, to
prevent contestant’s code form interacting with such a process.

2.4. Verification

The main goal of the verification phase is to assure correctness. The two main ways to
achieve it is thorough inspection of the analysis document and model solutions, and cross-
checking the model solutions and tests. The inspection should cover: task formulation,
analysis document, model solutions and programs for test generation and verification. An
independent model (but not necessarily optimal) solution should be implemented. The
result given by such a solution should agree with those produced by the model solu-
tions. Also, a program verifying correctness of tests has to be implemented. All model
and incorrect solutions should be evaluated on all the tests, and it should be possible to
distinguish classes of solutions of interest.

2.5. Calibration

All other phases of tasks preparation can be done in advance. However it is not possible
to define the actual time-limits without knowledge of the hardware used to evaluate so-
lutions. And this is usually known just before the competition. Hence, the calibration of
time-limits must be done as soon, as the hardware used for evaluation is installed.

3. Evaluation

In POI solutions to all tasks are graded automatically. A special software system has been
created for this purpose. It has been evolving from 1992. First it was written for MS-
DOS, then ported to Windows NT, thrown away and totally rewritten, and then finally
ported to Linux when it got the current shape of a full-fledged web system known as SIO
(Information System of Olympiad1). Contestants submit their solutions to the SIO system
which grades them and provides results. In most cases the full publication of the results
is delayed until the end of the competition. Only the result of the test case from the task
description is publicized immediately.

Most tasks require writing a program which is to read the input data and produce a
result. Such a task will be called a batch task. A small set of test cases is prepared for each

1The suspected permutation of letters is phantom. The abbreviation comes from the Polish name of the
system.



Polish Olympiad in Informatics – 14 Years of Experience 55

batch task. Each submitted solution is run for each test case. The SIO system measures
time and kills the program if the real time of the run exceeds the time limit twice. The
time limit does not concern the real running time but the system time plus user time of the
process. We allow doubled time limit for safety, but only the process running time counts.
If the process time exceeds the time limit, the solution will always get no points for the
given test case. The SIO also controls the security. It will stop a solution, if it executes
a forbidden system call (e.g., forks and network routines) or opens any file (solutions to
batch tasks are reading from the standard input and are requested to send the result to the
standard output).

If for a test case the solution does not exceed the time limit, terminates with the exit
code 0 and provides a correct answer, the solution will get points for this test case. In all
other cases, the solution will get no points for this test case.

There are two problems with such a grading procedure. POI is proud of finding good
yet simple solutions to them. The first problem is the discontinuity of the function which
maps running times to points. The second problem consists in outputs which are relatively
frequent in the result space (e.g., the answer ‘NO’ in a task which requires a specific
sequence of numbers as output).

The time-to-points function is flat from zero to the time limit (its value is the max-
imum number of points for the test case). Then, it instantly drops to zero and stays flat
until infinity. Apparently, this function is not continuous in the point of the time limit. If
a solution fluctuates over the time limit, its result will vary much in subsequent evalua-
tions. In order to avoid it, we decided to make the time-to-point function continuous. In
POI this function is flat from zero to the halved time limit. Then it linearly descends to
zero in the point of time limit. It is now continuous and if the running time of a solution
fluctuates, the number of point will never change rapidly. The final required remark here
is that time limits are set in such a way that the model solutions always terminate long
before the time-to-point function starts its descend.

The problem of answers frequent in the result space has been eventually adopted by
the IOI, but it has been invented for POI. The solution to this problem is as simple as
the continuous time-to-point function. Each test case consists of a number of test runs.
Each test run is connected with specific input data. Thus, running each test case means
running a solution program for each test run separately. A solution will get points for a
test case only if it solves all test runs correctly. Let us consider an example task where
the answer is a sequence of integers with some properties, but if such a sequence does
not exist, the program must output one word ‘NO’. Of course we don’t want to award any
points to a solution program which always prints ‘NO’. Thus, all test runs for which the
correct answer is ‘NO’ are grouped in test cases together with test runs which do produce
sequences of numbers. This way programs which solve nothing will get nothing.

Last but not least we should mention errare humanum est. Indeed, the grading pro-
cedure is configured and maintained by humans. Particularly, it concerns preparation of
test data. Thus, before the decisions on the qualification to the next round or the medal
allocation are made, contestants have access to the preliminary grading of their solution
on all test cases. These days it is easy, since we have the Internet. All this information



56 K. Diks, M. Kubica, K. Stencel

is available on contestants’ accounts in the SIO system. The contestants can appeal (of
course through SIO). Yet after all the appeals are concluded, the results are verified by
those who are the most interested. The decisions on medals and qualifications are made
using these strongly verified results.

4. Conclusions

Running an annual programming contest is a never-ending job. We have described the
organization of the Polish Olympiad in Informatics, with focus on tasks preparation and
evaluation. We hope, that it can be fruitful to organizers of other contests.

References

Cormen, T.H., C.E. Leiserson and R.L. Rivest (1989). Introduction to Algorithms. The MIT Press and McGraw-
Hill Book Company.

Kanarek, P., and A. Iwanicki (Eds.) (2006). XIII Olimpiada Informatyczna. Komitet Główny Olimpiady Infor-
matycznej.

Verhoeff, T., G. Horváth, K. Diks and G. Cormack (2006). A proposal for an IOI syllabus. Teaching Mathemat-
ics and Computer Science, IV(I).

K. Diks (1956), PhD hab. in computer science, associate professor at
Warsaw University, director of Institute of Informatics of Warsaw Uni-
versity, chairman of Polish Olympiad in Informatics, member of IOI-IC
since 2001, former chairmen of IOI’2005 in Nowy Sacz, CEOI’2004 in
Rzeszów and BOI’2001 in Sopot, Poland. His research interests are:
algorithms and data structures, parallel and distributed computing, and
graph theory.

M. Kubica (1971), PhD in computer science, assistant professor at In-
stitute of Informatics, Faculty of Mathematics, Informatics and Me-
chanics, Warsaw University, scientific secretary of Polish Olympiad in
Informatics, former IOI-ISC member and former chairman of Scien-
tific Committees of IOI’2005 in Nowy Sacz, CEOI’2004 in Rzeszów
and BOI’2001 in Sopot, Poland. His research interests focus on combi-
natorial algorithms and computational biology.

K. Stencel (1971), PhD hab. in computer science, at the moment works
at the Faculty of Mathematics, Informatics and Mechanics of War-
saw University. His research interests are connected with non-relational
databases. From 1995 he has been the chairman of the jury of Polish
Olympiad in Informatics. He was also the chair of jury at CEOI’97,
BOI’2001, CEOI’2004 and IOI’2005.


